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Fading Multipath Channel
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Abstract. Application of the EM (Expectation–Maximization) algorithm to sequence estimation in an unknown channel can in principle
produce MLSE (maximum likelihood sequence estimates) that are not dependent on a particular channel estimate. The Expectation step of
this algorithm cannot be directly performed for continuous phase modulated (CPM) signals transmitted in a time varying multipath channel.
We therefore derive a simplification of the EM algorithm for CPM signals in this channel. Simulations applied to the Global System for
Mobile Communications (GSM) show that the simplified EM algorithm significantly decreases the amount of training data needed for the
channel model considered, and removes the majority of the bit errors that are due to imperfect knowledge of the channel.
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1. Introduction

There has recently been much interest in improving equaliza-
tion techniques in mobile radio. A number of recent works in-
cluding [1,17] study equalizers for CPM signals that are sub-
ject to multipath. Many current receivers compute an estimate
β̂ of the fading multipath channel, denoted here by β, and
then produce the estimate of the transmitted data sequence C
that maximizes the likelihood function f (y | C, β̂), where
y denotes samples of the received signal. This sequence es-
timate then depends on the channel estimate β̂, which is of-
ten determined from training data. Recent works have ex-
plored variants of this receiver. For example, in [6] the com-
plexity of the VA (Viterbi Algorithm) in the maximization of
f (y | C, β̂) is reduced, while in [3] blind channel estima-
tion is investigated. Both [6] and [3] require slightly more
power to achieve the same BER than conventional equalizers.
Because all of these receivers maximize f (y | C, β̂) with re-
spect to C, they incur bit errors due to the difference between
the estimate β̂ and the true channel β. Such bit errors could
be reduced by a receiver that instead maximizes f (y | C),
which is the desired receiver since the channel β is not of di-
rect interest to the mobile user. We propose and implement
an algorithm which can perform this maximization for CPM
signals by simultaneously estimating the sequence C and han-
dling the time varying multipath channel. Our algorithm thus
improves performance of reception of such signals relative to
current conventional equalizers.

Combined data detection and channel estimation for sig-
nals that are transmitted with modulations other than CPM
have been recently studied in works such as [8,10]. In these
studies another likelihood function f (y | C, β) is maximized
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jointly with respect to C and β, by alternating between es-
timation of C and β. The EM (Expectation–Maximization)
algorithm is used for the channel estimation portions of these
methods.

In [4] combined detection and decoding of CPM signals
is done by using the EM algorithm for channel estimation
only; this EM algorithm is then embedded in the iterations
of another algorithm that performs detection and decoding.
In contrast, in our work, the entire process of handling the
channel and detecting the CPM signal is accomplished within
a single EM algorithm.

The EM algorithm [9,15] is an iterative method for max-
imizing a likelihood function in the presence of unobserved
data. This algorithm has been traditionally applied to parame-
ter estimation in many works such as [18]. The EM algorithm
has also been applied to sequence estimation [11,12,16],
where either interfering users’ bits or unknown parameters,
such as symbol timing, are treated as the unobserved data.

The EM algorithm has recently been applied to perform
sequence estimation when the channel is unknown [11]. In
this case, it averages over possible realizations of the channel
to produce the most likely transmitted sequence C, given only
the received signal samples y. The desired likelihood function
f (y | C) is maximized with respect to C. This study shows
examples in which the channel is either a random phase or
a random amplitude fading channel; the average over these
channel models was performed analytically.

In this paper, we apply the EM algorithm to estimate data
sequences transmitted instead by continuous phase modula-
tion (CPM) in a multipath channel, in which each path con-
tains a random phase, amplitude, and time delay. In this
case, the EM algorithm’s averaging over the unknown chan-
nel cannot be performed analytically, and is computationally
intractable. Therefore, we derive a simplified version of the
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EM algorithm for this problem. We show that this simplified
EM algorithm is equivalent to the original EM algorithm and
it maximizes f (y | C), when an adequate amount of training
data is used. Maximization of this desired likelihood func-
tion, rather than other commonly used likelihood functions,
produces performance improvement; we demonstrate that our
algorithm applied to GSM can significantly reduce the num-
ber of training bits needed relative to current methods.

In section 2 the modulation and channel models are speci-
fied. The EM algorithm is applied to sequence estimation for
these models in section 3. We present a simplified version of
this EM algorithm in section 4, and prove its equivalence to
the original EM algorithm in appendix A. Section 5 discusses
initialization of the algorithm and use of training data. Sim-
ulation results are presented in section 6, and conclusions are
drawn in section 7.

2. The model

The transmitted data sequence is denoted by Cn for n =
1, 2, 3, . . . , where Cn ∈ {−1, 1}, and the sequence is denoted
collectively by C. The transmitted signal uses some form of
CPM, and is thus given by

X(t) = cos

(
ωct +

∑
n

Cnq(t − nT )
)
, (1)

where T denotes the bit period, and ωc is the carrier fre-
quency. The continuous function q(t) can be represented as
the integral of a baseband pulse

q(t) = πhf

T

∫ t

−∞
g
(
t ′
)

dt ′. (2)

For example, in Gaussian minimum shift keying (GMSK),
which is used in GSM and GPRS (General Packet Radio Ser-
vice), the baseband frequency pulse g(t) spreads each trans-
mitted symbol over several symbol periods, and the modula-
tion index is hf = 0.5.

We consider a general multipath model withM paths. The
received signal is then

W(t) =
M∑
i=1

αi(t)X
(
t − τi(t), θi (t)

)
, (3)

where the phase shift, amplitude, and delay of the ith path
are denoted respectively by θi(t), αi(t), and τi(t). White
Gaussian noise is added to the multipath fading model (3),
and the resulting received signal can then be represented as

V (t) = �{
Y (t) exp( jωct)

}
, (4)

where the complex envelope Y (t) of the received signal is

Y (t) =
M∑
i=1

αi(t) exp
[
j
(
�i(t,C)

)] + nI(t)+ jnQ(t). (5)

The phase in (5) is

�i(t,C) = θi(t)− ωcτi(t)+
∑
n

Cnq
(
t − τi(t)− nT

)
, (6)

and the inphase and quadrature noise components nI and nQ

are independent white Gaussian noise processes with double-
sided power spectral density No. The inphase and quadrature
samples of the received signal Y (t) are denoted collectively
by y. In our simulations of GSM the sampling rate is 2/T , and
an ideal filter of bandwidth 1/T is assumed at the receiver.

We denote the channel parameters collectively by β:

β = β(t) = {
α1(t), θ1(t), τ1(t), . . . , αM(t), θM(t), τM(t)

}
.

(7)
We note that C is divided into subsequences of symbols

such that the channel varies little over the length of a sub-
sequence. Assuming a constant channel during each subse-
quence, we use the EM algorithm separately within each sub-
sequence to compute the MLSE of that subsequence. Here-
after, y, C, and β refer to a single such subsequence, which
for GSM corresponds to a time slot.

3. The EM algorithm for sequence estimation

The quantity to be estimated here is the sequence C. The
“missing data” of the EM algorithm is the unknown chan-
nel β, while the “complete data” are {y, β}. Thus, an expec-
tation over the missing data amounts to taking an average over
the unknown channel [11]. We first summarize application of
the EM algorithm to sequence estimation in the presence of
a general unknown channel β, as was described in [11]. We
next focus on application to the modulation and channel mod-
els specified in section 2.

The EM algorithm here consists of repeating two steps.
The E (Expectation) step computes the expected value of the
“complete data” log likelihood lnf (y, β | C) as a function of
the sequence estimate C:

Q
(
C

∣∣ Ĉp
) = E[

ln f (y, β | C)
∣∣ y, Ĉ

p]
. (8)

The (p + 1)st E step is computed in (8) by using the density
f (β | y, Ĉ

p
) to take the expectation over β, where the se-

quence estimate Ĉp of C is obtained from the previous (pth)
M step. In the (p + 1)st M (Maximization) step, the trans-
mitted sequence Ĉp+1 that maximizes Q(C | Ĉp) is found.
This sequence estimate will then be used in the E step in the

(p+ 2)nd iteration in f (β | y, Ĉ
p+1
). The E and M steps are

repeated until convergence is achieved, which for the problem
here of sequence estimation occurs when Ĉp+1 = Ĉp.

Equation (8) can be simplified, as was done in [11] by
omitting normalization constants and terms independent of C
hereafter, which will drop out in the M step:

Q
(
C

∣∣ Ĉp
) =E[

ln f (y | β,C) ∣∣ y, Ĉ
p]

=
∫

ln f (y | β,C)f (
β

∣∣ y, Ĉ
p)

dβ, (9)
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where the posterior density of β can be expressed as, omitting
the normalization constant,

f
(
β

∣∣ y, Ĉ
p) .= f (

y
∣∣β, Ĉp )

ρ(β), (10)

and ρ(β) is the prior density of the channel parameters.
The EM algorithm is now applied to CPM and the time

varying multipath channel model described in section 2. The
density f (y | β, Ĉp) can be obtained from (5) and is

f (y | β,C)

= exp

{
− 1

2No

K∑
l=1

{[
yI(tl)−

M∑
i=1

αi(tl) cos
(
�i(tl,C)

)]2

+
[
yQ(tl)−

M∑
i=1

αi(tl) sin
(
�i(tl,C)

)]2}}
, (11)

whereK is the number of samples of the received signal, and
the inphase and quadrature components of the received signal
samples taken at time tl are denoted by yI(tl) and yQ(tl), re-
spectively. Omitting the constant factor 1/(2No), we denote
the negative logarithm of (11) by the following “distance”
function:

λ(β, y,C)= − ln f (y | β,C)

=
K∑
l=1

{[
yI(tl)−

M∑
i=1

αi(tl) cos
(
�i(tl,C)

)]2

+
[
yQ(tl)−

M∑
i=1

αi(tl) sin
(
�i(tl,C)

)]2}
. (12)

Equation (12) is substituted into (9) to yield the algorithm at
the (p + 1)st iteration:

E step: Q
(
C

∣∣ Ĉp
) = −

∫
λ(β, y,C)f

(
β

∣∣ y, Ĉ
p)

dβ, (13)

M step: Ĉp+1 = arg max
C

Q
(
C

∣∣ Ĉp
)
. (14)

Equation (10) is used in (13), where the density f (y | β, Ĉp)
can be obtained from equation (11), and construction of the
prior density ρ(β) is discussed in section 5. We will later
refer to the steps (13)–(14) as the “complete” EM algorithm.

The EM algorithm could be directly implemented if the
multiple integral in (13) could be performed analytically, as
it can for the modulation and channel models considered in
the examples in [11], which produce a likelihood function
f (y | β,C) that is simpler than that of (11). However, calcu-
lation of Q(C | Ĉp) with the likelihood function (11) would
require numerical integration for every realization of the se-
quence C, which would be computationally intractable.

4. Simplified EM algorithm

We present a simplification of the EM algorithm in section 4.1
to enable evaluation of the otherwise intractable step (13). We
explicitly calculate the E step of the simplified algorithm in
section 4.2.

4.1. Reduction of the EM algorithm

The idea behind simplification of the E step (13) is that most
of the contribution to the integral comes from a limited range
of β values near the peak of f (β | y, Ĉ

p
), and the symbols in

the sequence C can take on only discrete values, so that the
same sequence C will be optimal for all values of β in this
limited region. We state the simplified EM algorithm below,
and prove its equivalence to the complete EM algorithm in
appendix A.

We denote

β̂p = β̂p(y, Ĉ
p) = arg max

β

f
(
β

∣∣ y, Ĉ
p)
. (15)

We assume β̂p is unique; this assumption is removed at the
end of appendix B. In section 4.2 we show how to com-
pute β̂p. The simplified EM algorithm at the (p + 1)st it-
eration for every p � 0 is

E step: Qsimp(C
∣∣ Ĉp

) = −λ(β̂p, y,C)
, (16)

M step: Ĉp+1 = arg max
C

Qsimp(C
∣∣ Ĉp

)
, (17)

where the M step can be performed with the VA. The
E step (16) of the simplified EM algorithm replaces the ex-
pectation Q(C | Ĉp) of the log likelihood in the complete
algorithm (13) with the log likelihood Qsimp(C | Ĉp) evalu-
ated at the single value of the channel parame-
ters β̂p. Equivalence of the simplified EM algorithm (16),
(17) to the complete EM algorithm (13), (14) is, therefore,
achieved if arg maxC[− ∫

λ(β, y,C)f (β | y, Ĉ
p
) dβ] =

arg maxC[−λ(β̂p, y,C)]. A sufficient condition for this
equivalence is given by (A.4) of appendix A. In the remainder
of this paper the sequence Ĉp+1 is defined by (17).

The probability pnotEM that the simplified EM algorithm at
iteration p+1 is not equivalent to the complete EM algorithm
is

pnotEM = Pr
(
arg max

C
Q

(
C

∣∣ Ĉp
) �= Ĉp+1 )

, (18)

whereQ(C | Ĉp) is defined by (13). Generally, the probabil-
ity pnotEM decreases as the SNR increases, since f (β | y, Ĉ

p
)

is more peaked with a higher SNR, and thus approximation of
the integral (13) by using only β = β̂p becomes more accu-
rate. The effect of the amount of training data transmitted on
the size of pnotEM is discussed in section 5.

The initial E step (16) of the simplified EM algorithm es-
timates the channel using training data, for example, as de-
scribed in section 5. The information symbol estimates de-
rived from this channel estimate in the M step (17) are then
used in subsequent iterations to improve the channel estimate.
The improved channel estimate in turn results in the elimina-
tion of bit errors due to the initial imperfect channel estimate.

Conventionally, the parameter which is being estimated by
an EM algorithm takes on a continuum of values, in which
case the algorithm has been shown [9] to converge to the cor-
rect local maximum of the likelihood function if the initial
value of that parameter is close enough to this maximum. In
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contrast, we use the EM algorithm for estimation of the se-
quence C, which consists of a series of symbols that take on
discrete values. Each M step in essence through the VA con-
siders every possible sequence C; the issue of convergence to
the global maximum is different here. In appendix B we prove
convergence of our simplified EM algorithm to the global
maximum of f (y | C). A sufficient criterion (B.7) for this
convergence requires that the prior density be peaked; use of
enough training data for the given SNR should enable this
criterion to be satisfied, as discussed in section 5.

The actual steps of the simplified EM algorithm are sim-
ilar to those of other algorithms such as joint sequence and
parameter estimation [13], as well as [8,10]. However, the
simplified EM algorithm differs from these other algorithms
in two ways. First, at each iteration of the simplified EM
algorithm channel estimates derived from prior information
such as training data are combined with those derived from
current estimates of information symbols, as we show ex-
plicitly in section 4.2. Secondly, as we show in appendix B,
this combination makes the simplified EM algorithm produce
the sequence estimate that maximizes the pertinent likelihood
function f (y | C), which does not depend on the unknown
channel, rather than other commonly used likelihood func-
tions such as f (y | C, β). As a result, the simplified EM al-
gorithm removes most bit errors due to imperfect knowledge
of the channel, as we demonstrate in section 6.

4.2. E step of simplified algorithm

Explicit calculation of the E step (16) requires calculation
of β̂p through (15), and thus calculation of the posterior den-
sity f (β | y, Ĉ

p
). The posterior density (10) is the product of

the prior density and f (y | β, Ĉp); below we show how both
of these densities can be treated as Gaussian.

We first consider the prior density. Any prior density ρ(β)
with tails that have sufficiently low probability such that (A.4)
is satisfied with high probability, or less restrictively, that ren-
ders the probability (18) small, allows the simplification of
the E step done in section 4.1. The exact form of the prior
density used will have little effect on the final results of the
algorithm; as long as the tails of ρ(β) are small enough that
ρ(β) satisfies (B.7), the algorithm will converge to the global
maximum of f (y | C), as shown in appendix B.

In this section we consider a Gaussian ρ(β), in order
to illustrate how information from training data is com-
bined with information from tentative symbol estimates in the
E step (16). We derive a Gaussian approximation to (10),
which will be used by the receiver in section 6, where it is
seen that this approximation in the receiver yields quite good
performance, although it differs from the density of the simu-
lated true channel. Thus, the simplified EM algorithm demon-
strates robustness with respect to the particular channel prior
density assumed by the receiver.

We now consider a Gaussian prior density ρ(β):

ρ(β) = exp

[
− (β − βρ)tB(β − βρ)

2

]
, (19)

where the superscript t denotes transpose. Derivation of the
mean βρ and inverse variance matrix B is discussed in sec-
tion 5.

We next derive a Gaussian approximation to f (y | β, Ĉp).
We consider the estimate, denoted by β̃p, at iteration
p + 1 of the true β that maximizes the likelihood function
f (y | β, Ĉp):

β̃p = β̃p(y, Ĉ
p) = arg min

β

λ
(
β, y, Ĉ

p)
, (20)

where the negative log likelihood λ(β, y, Ĉ
p
) is obtained

from (12). Common techniques to perform numerical min-
imization would require taking numerical derivatives with re-
spect to β of (20), although methods that do not involve deriv-
atives [2] are available. In order to compute these derivatives,
we therefore require CPM so that the phase �i(tl, Ĉp), as
given by (6), is continuous with respect to the multipath para-
meter τi(tl).

When β is close to β̃p, a Taylor series expansion of the
exponent in (11) about β̃p yields

f
(
y

∣∣β, Ĉp ) ≈ exp

[
− (β − β̃p)tAp(β − β̃p)

2

]
, (21)

where the constant factor exp(−λ(β̃p, y, Ĉp)/(2No)) has
been omitted because it is irrelevant in the M step. The matrix
elements of Ap are

Apij = 1

2No

∂2λ(β, y, Ĉ
p
)

∂βi∂βj

∣∣∣∣
β̃p
. (22)

The posterior density (10) for the channel parameters is,
therefore, the product of the Gaussian densities (19) and (21)
for β near β̃p, and thus, in this region is also a Gaussian den-
sity that can be expressed as

f
(
β

∣∣ y, Ĉ
p ) ≈ exp

[
− (β − β̂p)tÂp(β − β̂p)

2

]
, (23)

where the estimated posterior mean β̂p and the inverse poste-
rior variance matrix Âp at iteration p + 1 are

β̂p = (
Âp

)−1(Apβ̃p + Bβρ
)
, (24)

Âp = Ap + B. (25)

Equation (24) is, thus, a weighted sum of the estimate βρ ob-
tained from the prior density ρ(β), which, for example, is de-
rived from training data, and the estimate β̃p, which is derived
through (20) from the estimate Ĉp at iteration p of the infor-
mation sequence. At each iteration, the estimates β̃p and Ap

derived from f (y | β, Ĉp) are updated, while the estimates
βρ and B derived from ρ(β) remain fixed. Thus, (24) and (25)
can be used to calculate β̂p and thereby the E step (16) of the
simplified EM algorithm.

5. Initialization

We start the algorithm with the E step by constructing the ini-

tial channel parameter density, denoted here by f (β | y, Ĉ
0
),
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although there is actually no previous sequence estimate Ĉ0.
Therefore, we equate

f
(
β

∣∣ y, Ĉ
0 ) = ρ(β). (26)

The initial M step will then produce the first sequence esti-
mate Ĉ1.

We now describe methods for constructing ρ(β), which
will be used in (26), as well as in (24) which is used in sub-
sequent iterations of the E step (16). We consider a Gaussian
prior density for the purpose of illustration. We assume the
channel changes rapidly enough that it is not highly cor-
related between a given user’s consecutive subsequences or
time slots, so that we use training data in each subsequence
to derive the parameters of ρ(β). Given a training data se-
quence CT of symbols in a time slot and the corresponding
samples of the received signal denoted collectively by yT , we
let the mean value βρ = βT of β, equal the maximum likeli-
hood estimate of β:

βT = βT (yT ,CT ) = arg min
β

λ(β, yT ,CT ), (27)

where λ(β, yT ,CT ) is given by (12). We choose the variance
of β in the prior density by considering how likely β is to be
close to the estimate βT , or equivalently, what is the variance
of the estimate βT for a given β. Hence, using the Cramer–
Rao inequality [7] as a guide, we choose the variance of ρ(β)
to be greater than the inverse of the Fisher information ma-
trix J(βT ), which in this case has matrix elements

Jij (βT ) = E
[
∂ ln f (yT | βT,CT )

∂βT i

∂ ln f (yT | βT,CT )

∂βTj

]
,

(28)
where E denotes the expectation over the possible values of
yT for the given No. Therefore, the Gaussian prior density
based on training data has mean and inverse variance equal to

βρ = βT , (29)

B = f J
(
βT

)
,

where f < 1. From equations (24) and (25), it is seen that
the greater f is the greater the weighting of the channel esti-
mate βρ derived from training data relative to that β̃p derived
from observations of the signal, in the computations of β̂p.
Thus, the choice of f determines this relative weighting. As
discussed at the start of section 4.2 and proven in appendix B,
the exact form of the prior density ρ(β) will have little effect
on the final results of the algorithm, as long as ρ(β) has small
enough tail probability to ensure convergence to the sequence
that maximizes f (y | C), for example, by satisfying (B.7).
We, therefore, suggest choosing f close to 1 to make ρ(β)
more peaked; the simulations of section 6 show good perfor-
mance of the simplified EM algorithm for such values. Al-
ternatively, the variance of βT , and hence B, could be deter-
mined more precisely from repeated numerical experiments
calculating βT from the training data.

In the first (p = 0) iteration (26) indicates that (24) and
(25) reduce to

β̂0 = βρ. (30)

Â0 = B. (31)

The first iteration of our simplified EM algorithm is analogous
to the current equalization method used in GSM. First, the
channel estimate βT is derived from training data, and is used
in the E step (16) to form Qsimp(C | Ĉp) with β̂0 = βT .
Next, the transmitted information sequence is estimated from
this imperfect estimate of the channel using the M step (17).

This M step is equivalent by (12) and (16) to maximizing
f (y | βT ,C) with respect to C. While in GSM the analo-
gous estimate of the transmitted sequence from training data
is the final estimate, our simplified EM algorithm uses this
first sequence estimate to improve the estimate of the chan-
nel parameters through (20) and (24), which in turn is used to
improve the sequence estimate through (16) and (17).

The sequence estimate based on even our first EM iter-
ation is expected to be an improvement over that obtained in
GSM due to our use of a discrete multipath channel model (3),
rather than the finite impulse response used in GSM. Since
estimation of a finite impulse response from training data re-
quires a linear approximation to the nonlinearly modulated
GMSK signal, this estimation incurs error. It was shown [5]
that use of a multiray model to parameterize the channel, sim-
ilar to our model, instead of a finite impulse response model,
helps eliminate this linearization error and improves perfor-
mance by 2 to 4 dB.

Computation of the matrix elements of B using (11) in (28)
shows that they grow with the length of the training se-
quence and are inversely proportional to the power spectral
density No of the noise. Hence, the length of the training
sequence can in principle be selected so that for the low-
est desired SNR the prior density (19) will with high prob-
ability be peaked enough that it satisfies the condition (A.4)
for p = 0, which guarantees equivalence of the simplified
and complete EM algorithms, or similarly that the probabil-
ity pnotEM in (18) is small. Likewise, use of enough training
data will ensure that (19) with high probability satisfies (B.7),
which guarantees convergence of the simplified EM algo-
rithm to the maximum of f (y | C). Reduction of the amount
of transmitted training data is investigated in section 6.

We now consider equivalence of the simplified and com-
plete EM algorithms for subsequent (p > 0) iterations.
Equivalence of the algorithms depends on if evaluation
of (13) can be replaced by evaluation of −λ(β̂p, y,C)
where β̂p maximizes f (β | y, Ĉ

p
). Equation (25) indicates

that f (β | y, Ĉ
p
) for p > 0 is more sharply peaked than

f (β | y, Ĉ
0
) = ρ(β). Thus, if

pnotEM � p∗
notEM (32)

for some small desired probability p∗
notEM for the initial

(p = 0) iteration, then it is expected that subsequent iterations
(p > 0) will also satisfy (32), for large enough eigenvalues
of B and β̂p not too far from β̂0.
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We have thus far assumed that the channel is uncorrelated
between a user’s successive time slots of data, so that the
channel needs to be estimated independently in each time slot.
When the channel fades more slowly, information from one
time slot can be used to form an initial estimate of the channel
in the next time slot, as is discussed in [19]. An intermediate
scenario would take advantage of the fact that the time de-
lays τi(t) and phase shifts θi(t) are slowly varying functions
of time at vehicular speeds in most situations. Thus, only the
parameters αi(t) would need to be completely reestimated in
every time slot, as is done in [5], while estimation of τi(t)
and θi(t) could use information from preceding time slots for
the initial estimate in the current time slot.

6. Simulations

Simulations of our simplified EM algorithm were performed
with the GMSK modulation of the GSM system for various
lengths of the training data sequence. Each subsequence over
which the EM algorithm was run corresponds to a GSM time
slot. The channel realization is chosen independently in each
time slot, so that the simulation’s time slots represent, for
example, a user’s consecutive time slots in a rapidly fading
channel. Initially, a two path multipath model is used for
the true channel, and the receiver also assumes the channel
consists of two multipath components. Additional multipath
models are considered at the end of this section. Each multi-
path component undergoes independent Rayleigh fading. It is
assumed that the time delay of the first path is known, so that
we set that delay to zero and consider the relative time de-
lay between the two paths. The time delay between the paths
was randomly picked from a uniform distribution with a range
from 0.9µs to 7.2µs. Although this probability density of the
true channel parameters differs from the Gaussian prior den-
sity assumed by the receiver, as described in section 4.2, the
simplified EM algorithm performs quite well, as expected.

Equation (29) is used to form a Gaussian prior density (19)
from training data, and (24), (25) are used in the E step in each
iteration. The VA is used to find the optimal sequence Ĉp+1

through (17) in each M step of the simplified EM algorithm.
No channel coding was used, and the transmitted data is an in-
dependently identically distributed binary sequence with −1
and +1 equally likely.

The probability of bit error is plotted as a function of SNR
in figures 1 and 2 when 14 and 26 bits, respectively, of train-
ing data per time slot are used by the receiver. The SNR in
each curve in each figure refers to the actual signal to noise
ratio at the receiver before processing. The BER for each
curve in each figure is based on 116 information bits that are
estimated in each time slot. The simulations corresponding to
both figures 1 and 2 use the same realization of the random
channel model.

The upper (dashed) curve in each figure displays the BER
when sequence estimation is performed by the “training data
method”. In this case, training data alone are used to esti-
mate the channel, followed by estimation of the information

Figure 1. BER versus SNR when only 14 bits of training data per time slot
are used.

Figure 2. BER versus SNR when 26 bits of training data per time slot are
used.

sequence, given this channel estimate, through one pass of
the VA. The sequence estimate derived from the training data
method is, thus, analogous to the method used in [5] (which
has computational complexity much less than that of the finite
impulse response model currently used in GSM). The BER
from the current GSM system, if it did not use channel cod-
ing, would thus be higher than that of this upper curve due
to the parametric multipath channel model, as explained in
section 5.

The middle (solid) curve in each figure displays the BER
when the simplified EM algorithm is used. The difference be-
tween the upper curve and the solid middle curve shows the
improvement obtained by the simplified EM algorithm rela-
tive to the training data method. Since the training data pro-
vide a better channel estimate when 26 bits are used instead
of 14, the upper (dashed) curve based on the training data
method shows better performance in figure 2 than in figure 1.
The EM algorithm decreased the BER by 35% to 49% rela-
tive to that of the training data method when 14 bits of training
data are used, with the largest decreases at the highest SNR.

The lower (dotted) curve in each figure displays a lower
bound on the lowest possible BER that can be achieved for the
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simulated channel: it is the BER when the channel is known
exactly by the receiver, and is thus identical in figures 1 and 2.
The EM algorithm essentially removes the bit errors of the
training data method due to uncertainty in the channel, as seen
by the fact that in both figures the EM algorithm’s BER is
almost as low as the BER when the channel is exactly known.
At high SNR the performance of the simplified EM algorithm
approaches that of a receiver to which the channel is exactly
known.

By comparing the differences in each figure of the solid
middle curve to the common lower bound of an exactly
known channel, we see that the simplified EM algorithm per-
forms nearly as well when 14 bits of training data per time
slot are used as when 26 bits of training data per time slot
are used. Furthermore, a comparison of the middle curve in
figure 1 to the upper curve in figure 2 shows that use of the
simplified EM algorithm with 14 training bits per time slot
outperforms the training data method with use of 26 bits of
training data per time slot. Since the SNR in both figures is
based on 26 bits of data being transmitted during the train-
ing period, if only 14 bits of training data were transmitted,
further power savings could be achieved.

Further simulations showed that as the number of training
bits per time slot is decreased below 14, the BERs of both
the training data method and the simplified EM algorithm in-
crease substantially. We note that all of the above results were
obtained from transmission of one of the specified 26 bit train-
ing data sequences used in GSM. These training sequences
were selected for their optimal correlation properties to be
used with a matched filter in estimating the channel impulse
response. However, since we use a discrete multipath chan-
nel model, and directly estimate the channel through (15),
other training sequences optimized for this method may find
even fewer training bits needed by the receiver than reported
here.

The simulation results discussed thus far have been based
on a two-path channel model, as well as a receiver that as-
sumes a two path channel. We now consider cases in which
the channel can have multiple multipath reflections and the
receiver may assume a different number of multipath reflec-
tions than that found in the actual channel. In figure 3, we
display results of the case in which the receiver assumes a
two path model, whereas the actual channel has three multi-
path components. The extra path of the actual channel acts
as an extra unmodeled noise source, as seen from (5). In this
case, the EM algorithm again offers improvement over us-
ing training data alone; however, the performance does not
closely approach that of the case in which the complete three-
path channel is known by the receiver.

When the receiver assumes M = 2 paths, as it does in
figures 1–3, most of the decrease in the BER in the EM al-
gorithm takes place in the p = 1 iteration. While there is
some additional decrease in the next (p = 2) iteration, little
improvement is seen in subsequent iterations. Therefore, a
practical receiver could require only one or two iterations fol-
lowing the initial sequence estimate (p = 0) based on train-
ing data alone. In figures 1–3 the BER plotted for the sim-

Figure 3. BER versus SNR when 26 bits of training data per time slot are
used, and the channel has 3 multipath components, whereas the receiver as-
sumes a 2 path channel.

plified EM algorithm is taken after the p = 2 iteration. In
figure 3, the BER is also plotted after the p = 1 iteration; this
curve is seen to lie very slightly above the simplified EM al-
gorithm curve, which uses two iterations. The simplified EM
algorithm’s computation time is dominated by the VA rather
than the channel updating. Hence, a simplified EM algorithm
which is terminated after the p = 1 iteration should take ap-
proximately twice as much computation time as the training
data method.

We now consider the event in which the true channel has
M paths, and the receiver also assumes an M path channel.
Performance of the training data method, when it is used with
a fixed amount of training data, will worsen with increas-
ing M since as the number of channel parameters to be es-
timated increases, the error in estimating them will increase.
Similarly, since the initial iteration of the simplified EM algo-
rithm is equivalent to the training data method, for large M
more training data will be needed to provide an accurate
enough initial estimate of the channel for the simplified EM
algorithm. If enough training data are used so that the chan-
nel prior density satisfies (B.7), the simplified EM algorithm
will converge to the sequence that maximizes f (y | C), as
discussed in section 4.1, which was based on generalM , and
at convergence, should offer significant improvement over us-
ing training data alone. However, as M increases the number
of iterations until convergence may increase. In conventional
uses of the EM algorithm the number of iterations until con-
vergence is known to increase with the amount of “missing
data” [9]; the analogous missing data in our model are the
channel parameters. The convergence rate of the simplified
EM algorithm for larger values of M remains a question for
further investigation.
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If the receiver uses a channel model which has more paths
than the actual channel does, initial estimation of the channel
from training data will result in overfitting and a higher BER,
because the channel will be fit to random noise fluctuations.
In addition, at this initial iteration, as well as at E steps in sub-
sequent iterations, the receiver’s use of extra multipath com-
ponents could render the channel parameters unidentifiable,
in which case the optimizer may be unable to maximize (15).
When this problem occurs, the number of paths used by the
receiver should be reduced. Furthermore, the receiver should
begin by assuming a minimal number of multipath compo-
nents. Assuming the receiver can tabulate its frame or bit
error rates, the receiver could vary the number of paths it as-
sumes, if the current model is giving too high a frame error
rate.

7. Summary

Application of the EM algorithm to find the MLSE of CPM
signals in a fading multipath channel cannot be directly im-
plemented. We derive a simplified version of the EM algo-
rithm to enable implementation. We show that for suitable
initial conditions, with high probability, the simplified EM al-
gorithm is equivalent to the complete EM algorithm, and it
maximizes the desired likelihood function f (y | C). Simu-
lations for GSM show that the simplified EM algorithm pro-
duces a BER almost as low as that of an ideal receiver that has
perfect knowledge of the channel for the model considered,
and reduces the required training data from 26 to 14 bits per
time slot. The simplified EM algorithm could also be applied
to other CPM systems that are subject to a fading multipath
channel; two examples of such systems are GPRS (General
Packet Radio Service), an evolution of GSM for data trans-
mission, and HIPERLAN (High Performance Radio Local
Area Network), a European standard which uses GMSK for
data transmission at rates of 24 Mbit/s [1].

Appendix A. Conditions for equivalence of the simplified
and complete EM algorithms

We first describe stringent conditions under which the com-
plete (13), (14) and simplified (16), (17) EM algorithms are
equivalent. We then show a less restrictive criterion for this
equivalence.

In the maximization of Q(C | Ĉp) in the M step, we con-
sider the result of minimizing λ(β, y,C) with respect to C for
various values of β, and note that a range of β will produce
the same sequence that minimizes λ(β, y,C). We define Sp

to be the set of all β such that the same sequence minimizes
λ(β, y,C) as minimizes λ(β̂p, y,C):

Sp = {
β: arg min

C
λ(β, y,C) = arg min

C
λ
(
β̂p, y,C

)}
. (A.1)

If

suppρ ⊂ Sp, (A.2)

where supp ρ denotes the support of the prior channel density
ρ(β), then only λ(β̂p, y,C) needs to be minimized and the
integral in (13) need not be evaluated, for the purpose of find-
ing the sequence Ĉp+1 that maximizes Q(C | Ĉp). In this
case

arg max
C

[
−

∫
λ(β, y,C)f

(
β

∣∣ y, Ĉ
p)

dβ

]
= arg max

C

[−λ(β̂p, y,C)]
, (A.3)

and the simplified (16), (17) and complete (13), (14) EM al-
gorithms are equivalent.

As shown below, this equivalence can also be met by sat-
isfaction of the less restrictive condition:

Fp(Sp)

1 − Fp(Sp) � k, (A.4)

where Fp(Sp) denotes the probability at iteration p + 1 of
β ∈ Sp, given y and Ĉp:

Fp
(
Sp

) =
∫
Sp
f

(
β

∣∣ y, Ĉ
p)

dβ, (A.5)

and k > 0 is finite and is defined below. Use of sufficient
training data for the lowest desired SNR will allow (A.4) to
be met with high probability, as described in section 5. Use of
this criterion in practice requires evaluating the multidimen-
sional integral (A.5). The limits of this integral, as defined
by (A.1), are determined by minimizing λ(β, y,C) with re-
spect to C for each possible value of the multidimensional
parameter β; each such minimization requires the VA to be
run, making evaluation of (A.5) computationally onerous.

We first let QR(C | Ĉp) denote the contribution to
Q(C | Ĉp) from values of β in the region R:

QR
(
C

∣∣ Ĉp
) = −

∫
R

λ(β, y,C)f
(
β

∣∣ y, Ĉ
p)

dβ. (A.6)

We consider the possibility that a sequence estimate
Ćp+1 �= Ĉp+1, where Ĉp+1 is defined by (17), maximizes
Q(C | Ĉp) at iteration p + 1, and we define

.QR
(
Ćp+1, Ĉp+1

∣∣ Ĉp
)

= QR
(
Ćp+1

∣∣ Ĉp
) −QR

(
Ĉp+1

∣∣ Ĉp
)

= −
∫
R

.λ
(
β, y, Ćp+1, Ĉp+1)f (

β
∣∣ y, Ĉ

p)
dβ, (A.7)

where we have defined

.λ
(
β, y, Ćp+1, Ĉp+1) = λ(β, y, Ćp+1) − λ(β, y, Ĉp+1)

.

(A.8)
If

.Qsuppρ
(
Ćp+1, Ĉp+1

∣∣ Ĉp
)

= .QSp
(
Ćp+1, Ĉp+1

∣∣ Ĉp
)

+.Qsuppρ\Sp
(
Ćp+1, Ĉp+1

∣∣ Ĉp
)

< 0, (A.9)
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then the sequence Ćp+1 cannot maximizeQ(C | Ĉp). The se-
quence estimate Ĉp+1 maximizesQSp(C | Ĉp) by the defini-
tions (A.1) and (17), and thus,.QSp(Ćp+1, Ĉp+1 | Ĉp) < 0.
Consequently, if Ćp+1 were to maximize Q(C | Ĉp), then
.Qsuppρ\Sp(Ćp+1, Ĉp+1 | Ĉp) > 0 must hold, and thus,

max
β1∈suppρ\Sp

(−.λ(β1, y, Ć
p+1
, Ĉp+1)) > 0. (A.10)

We let

βmin = arg min
β∈Sp

.λ
(
β, y, Ć

p+1
, Ĉp+1). (A.11)

Since βmin ∈ Sp, the definition (A.1) implies that
.λ(βmin,y, Ćp+1, Ĉp+1) > 0, if the sequence that min-
imizes λ(βmin, y,C) is unique. If this sequence is not

unique and .λ(βmin, y, Ć
p+1

, Ĉp+1) = 0, then (A.1) im-
plies that the M step (17) of the simplified algorithm will
also yield Ćp+1. Thus, hereafter we need only consider
.λ(βmin, y, Ćp+1, Ĉp+1) > 0. We thus define a finite num-
ber k′, which is positive by (A.10),

k′ = maxβ1∈suppρ\Sp(−.λ(β1, y, Ć
p+1
, Ĉp+1))

.λ(βmin, y,Ćp+1, Ĉp+1)
. (A.12)

Thus, k′ depends on Ćp+1, as well as indirectly on supp ρ
and Sp. Then we have ∀β1 ∈ suppρ \ Sp

−.λ(β1, y, Ć
p+1
, Ĉp+1) � k′.λ

(
βmin, y,Ćp+1, Ĉp+1).

(A.13)
We use (A.7) and (A.11) to show that

.QSp
(
Ćp+1, Ĉp+1

∣∣ Ĉp
)

� −.λ(βmin, y, Ćp+1, Ĉp+1)Fp(Sp), (A.14)

where Fp(Sp) is given by (A.5), and we also use (A.13) to
yield

.Qsuppρ\Sp
(
Ćp+1, Ĉp+1

∣∣ Ĉp
)

� k′.λ
(
βmin, y, Ć

p+1
, Ĉp+1)[1 − Fp(Sp)]. (A.15)

Summation of (A.14) and (A.15) shows that the inequality in
(A.9) is satisfied if

Fp(Sp)

1 − Fp(Sp) � k′. (A.16)

Hence, if (A.16) is satisfied for all possible sequences
Ćp+1 �= Ĉp+1, then Ĉp+1 as defined by (17) maximizes
Q(C | Ĉp). Thus, we obtain (A.4) by defining

k = max
Ćp+1

k′. (A.17)

Appendix B. Convergence of the simplified EM algorithm
to the maximum likelihood estimate

We now prove that the simplified EM algorithm converges to
a sequence CP , by the P th iteration, which maximizes the

likelihood function f (y | C). Using Bayes Theorem, we ex-
press this likelihood function as

L(C | y) = f (y | C) =
∫
f (y | β,C)ρ(β) dβ. (B.1)

Convergence to a sequence CP is guaranteed since L(C | y)
increases on each EM iteration, when (A.16) is satisfied, by
the same arguments as in [9], and since L(C | y) is clearly
bounded.

In order to show CP maximizes (B.1), we note that by (12),
(16), and (17) CP = arg maxC f (y |β̂P ,C), and hence, that
by (A.1)

CP = arg max
C

f (y | β,C), β ∈ SP . (B.2)

We consider the possibility that another sequence Ć �= CP

maximizes L(C | y), and note that

L
(
CP

∣∣ y
) − L(

Ć
∣∣ y

)
=

∫
SP
.f

(
y

∣∣β,CP , Ć )
ρ(β) dβ

+
∫

suppρ\SP
.f

(
y

∣∣β,CP , Ć)
ρ(β) dβ, (B.3)

where

.f (y | β,C1,C2) = f (y | β,C1)− f (y | β,C2). (B.4)

Hence, CP maximizes L(C | y) if for every sequence
Ć �= CP equation (B.3) is positive. The integrand in the first
term in (B.3) is always positive by (B.2), while the second
term in (B.3) must be negative if Ć is to maximize L(C| y).
Therefore, maxβ∈suppρ\SP (−.f (y | β,CP , Ć))must be pos-
itive.

We define the probability, based on the priory density, that
β ∈ SP as

Fρ
(
SP

) =
∫
SP
ρ(β) dβ, (B.5)

and also define

κ ′ = maxβ∈suppρ\SP (−.f (y | β,CP , Ć))
minβ∈SP .f (y | β,CP , Ć) . (B.6)

Then in analogy to the derivation in appendix A of (A.4), it
can be seen that a sufficient condition for CP to maximize
L(C | y) is

Fρ(S
P )

1 − Fρ(SP ) � κ, (B.7)

where

κ = max
Ć
κ ′. (B.8)

The above proof assumed β̂p as defined by (15) is unique,
which usually occurs in practice. However, even when β̂p is
not uniquely defined by (15), the proof given here, as well as
that in appendix A, still holds, as long as β̂p is redefined. The
simplified EM algorithm relies on use of a single value of β,
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denoted by β̂p at iteration p, which is used in the E step (16)
to replace the integral (13). There are other possible defini-
tions for β̂p in addition to arg maxβ f (β | y, Ĉ

p
), which was

used in (15). The sufficient conditions (A.4) and (B.7) depend
on the definition of β̂p through the corresponding region Sp

defined in (A.1).
We now present definitions that can be used for β̂p in a few

special cases in which (15) does not exist. If f (β | y, Ĉ
p
) is

a uniform density, the point β̂p could be defined as the mean
of f (β | y, Ĉ

p
), a definition which could also be used even if

(15) exists. As a second example, if at iteration p there are
multiple values of β that maximize f (β | y, Ĉ

p
), one value

can be chosen at random to be β̂p; the associated region Sp

would be used throughout the proof here and in appendix A. If
another value of β that also maximizes f (β | y, Ĉ

p
), which

we denote by β̂p,2, satisfies β̂p,2 ∈ Sp, then it will yield
the same final sequence CP as β̂p does. If instead β̂p,2 ∈
suppρ \ Sp, then β̂p,2 is treated as any other point in this
latter region in the proofs.
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