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Abstract 
We perform sequence estimation for CPM signals trans- 
mitted in a time varying multipath channel. The EM 
(Expectation-Maximization) algorithm, an iterative proce 
dure for producing maximum likelihood estimates, is applied 
to handle the unknown channel. In order to  enable imple- 
mentation of the EM algorithm in this system, a simplifica- 
tion of this algorithm is derived. Channel estimates derived 
from training data or estimates of previously transmitted 
information symbols are used initially. In subsequent itera- 
tions tentative estimates of current information symbols are 
used in addition to  improve the channel estimates, which in 
turn improve sequence estimation. Simulation results of the 
simplified EM algorithm applied to  GSM are presented. 

keywords: EM algorithm, GSM. 

I Introduction 
The EM algorithm [l] can be applied to simultaneously per- 
form sequence estimation and handle an unknown channel 
by averaging over possible realizations of unknown channel 
parameters at each point in time [2]. The convergence prop- 
erties of the EM algorithm [l] imply that the final sequence 
estimate is the MLSE (maximum likelihood sequence esti- 
mate), where the likelihood of the received samples given the 
transmitted data sequence is not dependent on an estimate 
of the channel. Application of the EM algorithm can thus 
potentially enable performance improvement over equaliza- 
tion methods that are based on a single possibly inaccurate 
estimate of the channel at each point in time. Recent ap- 
plication of the EM algorithm to sequence estimation [2] 
considers a received signal that is linear in the transmitted 
symbols and a channel that is either a random phase chan- 
nel or a random amplitude fading channel. The average 
over unknown channel parameters for these two models was 
performed analytically. 

In this paper, we apply the EM algorithm to estimate 
data sequences transmitted by continuous phase modulation 
(CPM) in a time varying multipath channel. Our channel 
model has random time varying parameters for the ampli- 
tude, phase shift, and time delay for each multipath com- 
ponent. The averaging over these multipath parameters can 
not be performed analytically, and is computationally in- 
tractable. Therefore, we derive a simplified version of the 
EM algorithm to  enable implementation. This simplified 
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EM algorithm is equivalent to the original EM algorithm 
when an adequate amount of training data is used. 

In Section I1 the modulation and channel models are spec- 
ified. The EM algorithm is applied to  sequence estimation 
in Section 111, and an implementable version of the EM 
algorithm is derived for these models in Section IV. The 
construction of the prior density used in the EM algorithm 
is discussed in Section V. Simulation results based on the 
GSM system are presented in Section VI, and conclusions 
are drawn in Section VII. 

I1 TheModel 
The transmitted data sequence is denoted by Cn for n = 
1,2,3, ... where Cn E {-1, l}, and the sequence is denoted 
collectively by C. The transmitted signal uses some form of 
CPM, and is thus given by 

~ ( t )  = COS(W,~ + Cnq(t - nT)), (1) 
n 

where T denotes the bit period, and wc is the carrier fre- 
quency. The continuous function q ( t )  can be represented as 
the integral of a baseband pulse. 

We consider a general multipath model with a total of M 
paths. The received signal is then 

M 

V ( t )  = Cai(t)x(t - Ti(t),&(t)) (2) 
i= 1 

where the phase shift, amplitude, and delay of the ith path 
are denoted respectively by Bi(t ) ,  ai(t), and ~ i ( t ) .  White 
Gaussian noise is added to the multipath fading model (2), 
and the resulting V ( t )  can then be represented as 

V ( t )  = ?R(Y(t)exp(jw,t)}. (3) 

The complex envelope Y ( t )  of the received signal is then 

M 

Y ( t )  = Cai(t) a P  [j (@i ( t ,  c ) ) ]  + nI(t) 4- jnQ(t), (4) 
i= 1 

where the phase is 

@i(t,C) = &(t) - WcTj(t) + C C n q ( t  - ~ i ( t )  - nT), ( 5 )  

and the inphase and quadrature noise components n1 and 
nQ are independent WGN processes with noise density No. 

n 

We denote the channel parameters collectively by p: 

P = P( t )  = {ai(t),&(t),7i(t), . . . Q I M ( t ) , e M ( t ) , 7 M ( t ) } .  (6) 
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The receiver should produce the MLSE of the transmitted 
sequence C, given the samples of Y( t ) ,  denoted collectively 
by y: the likelihood f ( y  I C) must be maximized with re- 
spect to C. However, the received signal samples y depend 
on unknown channel parameters P. Conventional methods 
compute an estimate p of 0, and then, given p, produce the 
sequence estimate of C that maximizes f (y  I C,p). Bit er- 
rors in the estimate of C arise that are due to  errors in the 
channel estimate p. 
I11 The EM Algorithm for Se- 

quence Estimation 
In order to remove bit errors due to uncertainty in the chan- 
neI, we apply the EM algorithm to take an average over 
the unknown channel parameters. The EM algorithm is 
used here to  produce estimates C that maximize f (y  I C) 
by averaging the logarithm of another likelihood function 
f (y ,P  I C) over P. We now summarize application of the 
EM algorithm to  sequence estimation in the presence of a 
general unknown channel with parameters denoted by b. 
Equations (7) to  (9) below parallel the formulation in [2], 
where application of the EM algorithm to sequence estima- 
tion was first described. We then focus on application to the 
modulation and channel models specified in Section 11. 

The EM algorithm consists of repeating two steps until 
convergence, at which point the estimate of C will be a 
local maximum of f (y  I C ) .  The E (Expectation) step at 
the (p + ,)st iteration computes the expected log likelihood 

Q(CP+’ I Cp> = E [lnf(y,P I CP+l) I y,CP] , (7) 

as a function of CP+l, given y and the estimate CP of C 
from the previous (pth)  iteration. The conditional density 
f (P  I y, C”) is used to take the expectation over the un- 
known parameters P. The M (Maximization) step of the 
(p+l)st iteration determines the transmitted sequence CP+‘ 
that maximizes Q(CP+l I CP) given CP. This estimate CP+l 
will then be used in the E step in the (p + 2)nd iteration in 
f ( P  I Y, c(p+l)). 

As shown in [2], the E step (7) is reduced to  

Q(CP+l I Cp) = 

where the density f (P  I y, C”) can be expressed as 

f ( P  I Y, cp> = f(Y I P,CP)P(P)* (9) 

The EM algorithm is now applied to  CPM and the mul- 
tipath channel model described in Section 11. The density 
f ( y  I P,  C) can be obtained from (4), and omitting the nor- 
malization constant is : 

K 

f(Y I P1C) = e x p - q  (10) 
k 1  

l 2  M 

t- 1 

1’) M 

+ Y Q ( ~ I )  - ai(tr) sin (@i(ti, C)) /2No,  [ i= 1 

where K is the number of samples of the received signal, 
and the inphase and quadrature components of the samples 
taken at time ti are denoted by p ~ ( t l )  and ~ ~ ( t r )  respectively. 
We denote the negative logarithm of (10) by: 

NP,Y,C) = -lnf(Y I P,C). (11) 

Substitution of (ll), evaluated at CP+l, into (8) yields 

Equation (9) is used in (12), where construction of the 
prior density p ( P )  is discussed in Section V. The E and 
M steps are repeated until CP+l = CP, when convergence is 
achieved, at which point the estimated sequence CP+l is a 
maximum of f (y  I C). 

The EM algorithm could be directly implemented if the 
multiple integral in (12) could be performed analytically, 
as it can for the modulation and channel models consid- 
ered in [2], which produce a likelihood f ( y  I P,C) sim- 
pler than that of (10). However, for modulations such as 
GMSK with the channel model of Section 11, calculation of 
Q(CPS1 I CP) would require numerical integration for every 
realization of the sequence which would be computa- 
tionally intractable. 

IV Simplified EM Algorithm 
We now simplify the EM algorithm to enable evaluation of 
(12). This simplification is accomplished by deriving a Gaus- 
sian approximation to  (9) as a starting point. We first note 
that the sequence C is divided into subsequences of sym- 
bols such that the channel varies little over the length of 
a subsequence. Assuming a constant but unknown channel 
during each subsequence, we use the EM algorithm sepa- 
rately within each such subsequence of symbols to  compute 
the MLSE of that subsequence. We let a subscript s denote 
the number labeling each subsequence. 

We begin by deriving a Gaussian atpproximation to  f(ys I 
P, Csp). We consider the estimate @ at iteration p of the 
true p during transmission of subsequence s that maximizes 
the likelihood f(ys  I P, Cup), where Cf denotes the current 
estimate of the transmitted symbols in that subsequence, 
and ys denotes the corresponding samples of the received 
signal. Thus 0,” is defined by 

,& = @(yu,Ci) = argminX(P,Ys,CsP), (13) 

where X(P, ys, Csp) is obtained from (10) and (11). In order 
to enable this minimization to be performed numerically, we 
require CPM so that the phase ? i ( t l ,  Cup) as given by ( 5 )  is 
continuous. When P is close to  pf, a Taylor series expansion 
of the exponent in (10) about @ yields 

P 

f(Ys I PI c3 = exp - [ (P - PVAi (P - R)/4 , (14) 
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where an overall constant factor independent of P has been 
omitted because it is irrelevant in the M step, and the su- 
perscript t denotes transpose. The elements of the positive 
definite matrix Af are given by 

We consider a Gaussian prior density pe(/3): 

pa (@)  e x P - [ ( P - s 8 P ) t B S ( P - 8 8 P ) / 2 ] '  (16) 

The mean &, and inverse variance matrix B8 depend on 
the speed at which the channel changes, and are derived 
explicitly in Section V. The posterior density (9) for the 
channel parameters is therefore the product of the Gaussian 
densities (14) and (16), and thus can be expressed as the 
Gaussian 

where the estimated posJerior mean 6: and the inverse pos- 
terior variance matrix Af in subsequence s at iteration p 
are 

A: = A$+B,. (19) 

Equation (18) is thus a weighted sum of the estimate &, ob- 
tained from the prior density, which for example is derived 
from training data, and the estimate &', which is derived 
from the estimate of the information sequence Cf through 
(13). At 'the pth iteration the estimates D,P and Af derived 
from the likelihood function are updated, while the esti- 
mates pBP and B, derived from the prior density remain 
fixed throughout all iterations for subsequence s. 

Using the approximation (17) in (12), it is seen that most 
of the contribution t o  (12) comes from values of P near 
the peak & of f(P I y.,C:). We consider a region R(A:) 
around &! with size determined by Af such that m p t  of the 
contribution to Q(C:+' I C!) comes from P in R(A!). The 
region R(Ai) grows with No, since matrix elements of both 
B, and A{ are inversely proportional to  No. Equation (12) 
can then be approximated by 

(20) 
In the maximization of &(Cf+' I C!) in the M step, 

we consider the result of minimizing A@, ys, CSp+') with 
respect to Cf+' for various values of 0, and note that a 
range of will produce the same optimal subsequence C:+'. 
We define S to  be the set of all P such that the same 
subsequence Cf+' minimizes A@, y,, Cp') as minimizes 
N&,Ya, c.p+l):  

If 
R(A:) c S, 

then every in the integral in (20) produces the same sub- 
sequence Cf+l upon minimizing X(P, ys, Cp').  Therefore, 
for the purpose of finding the optimal subsequence Cf+', 
only A(&?, ye, CSp+') needs to  be minimized and the inte- 
gral in (20) need not be evaluated. Hence, the M step is 
reduced to  finding the optimal sequence Cf+l: 

and the Viterbi Algorithm can be used to  perform this min- 
imization. 

The E step is then reduced to computing p,P = B,P(y=, CSp) 
from (18), since the integration need not be performed. 
Therefore, when (22) is satisfied, the EM algorithm, reduces 
to  iteratively estimating P and C. This reduced EM algo- 
rithm is thus similar to  joint sequence and parameter estima- 
tion discussed in [4]. We have shown here that our iterative 
algorithm produces the sequence estimate that maximizes 
the likelihood f ( y  1 C), since it is equivalent to  the EM al- 
gorithm when (22) holds. 

V Initialization 
Since the EM algorithm converges to  a local maximum of 
f ( y  I C), a good initial estimate Ci must be provided to  en- 
sure convergence to  the global maximum of the transmitted 
data sequence. We start the algorithm in each subsequence 
with the E step by constructing the initial channel parame- 
ter density denoted by f (P I ys, CEO). There is no previous 
estimate CEO, and thus the density f(P I y., C.') is actually 
independent of any estimate of the transmitted information 
subsequence. Therefore, we equate the posterior density to 
a prior density p,(P) 

f (P  I YS, = (24) 

in the initial E step of each subsequence. In addition, the 
prior density p&?) will also be used in f(P I y., C.") in (12) 
through (9) in subsequent iterations of the E step. 

We now describe methods for constructing p8(P) .  We con- 
sider a Gaussian density (16). We first discuss very slowly 
and very rapidly varying channels from which p,(P) is de- 
rived from previous subsequences and training data respec- 
tively. Intermediate situations are considered at the end of 
this section. 

When the channel fades slowly, information from one sub- 
sequence can be used to  form an initial estimate of the chan- 
nel in the next subsequence. If a mobile moves very slowly, 
so that the channel changes very little between that user's 
successive subsequences, then the assignment 

(25) 
P P d P )  = f ( P  I Ys-1, CS-1 1, 

P can be used, where f(P I ys-l, Cs-l ) denotes the posterior 
channel density obtained from the final (Pth)  EM iteration 
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of subsequence number s- 1. The prior density p,(P) is then 
given by the Gaussian density specified by equations (17) to  
(19) evaluated at the final iteration of subsequence s - 1, so 
that pe(B) has the mean and inverse variance 

P s p  = jr-1 

B, = 

When the channel changes rapidly enough that a given 
user's consecutive subsequences are not highly correlated, 
equation (25) is no longer accurate. In this case, training 
data can be used to  construct p,(P). Given a training data 
sequence C,T of symbols in each subsequence s and the 
corresponding samples of the received signal denoted collec- 
tively by Y,T, we let the expected value of P, denoted by &, 
equal the maximum likelihood estimate of P in subsequence 
s derived from this training data: 

where X(/3,ys~,  C,T) is given by (11). In order to  determine 
the variance of p, we consider the Cramer-Rao inequality 
[3], which states that the covariance matrix of an unbiased 
estimator is at least as large as the inverse Fisher informa- 
tion matrix. Hence, we choose the variance of p,(P) to  equal 
the inverse Fisher information matrix. The matrix elements 
J i j ( D 8 ~ )  of the Fisher information matrix J, are 

L 

where E denotes the expectation over the possible d u e s  of 
Y,T. Therefore, the Gaussian prior density based on training 
data has mean and inverse variance equal to  

In the first Cp = 0) iteration of each subsequence (24) indi- 
cates that the prior density alone is used for f(P I ys,Cso). 
Equations (18) and (19) then reduce to  

s," = D8P.  

A: = B,. 

When training data is used as in (30), the first iteration 
of our simplified EM algorithm is thus analogous to  the 
current equalization method used in GSM: the channel is 
estimated from training data, and then the transmitted se- 
quence is estimated from this possibly imperfect estimate of 
the channel. While in GSM this estimate of the transmitted 
sequence is the final estimate, our simplified EM algorithm 
uses this first sequence estimate to  improve the estimate of 
the channel parameters, which in turn is used to  improve 
the sequence estimate. 

The condition (22) for simplification of the EM algorithm 
for p = 0 reduces to  

We note that Ai 2 B,, with equality holding atAp = 0. 
This matrix inequality is defined in tbe sense that Ai - B, 
is nonnegative definite, and thus R(Af) E R(B,). Hence, 
if we ensure that (33) holds, then (22) will also be satisfied. 
When training data is transmitted and B, = J,, computa- 
tion of the matrix elements of J, using (10) in (29) shows 
their dependence on the number of symbols in the training 
sequence and the SNR. Thus the length of the training s e  
quence can be selected so that (33) and hence (22) will be 
satisfied for the lowest desired SNR. 

Above we discussed situations in which ps(@) is con- 
structed from training data inserted in each subsequence 
for a rapidly varying channel and from channel parameter 
estimates from the previous subsequence for a very slowly 
fading channel. A third scenario combines the two situations 
for mobiles of intermediate speeds: training data could be 
sent only when the receiver detects an unacceptable error 
rate, or it could be sent periodically. A prior Gaussian den- 
sity pBt(/3) with mean and variance given by (30) would be 
used for subsequences s' that contain training data. Subse- 
quences s without training data derive the prior density from 
the previous subsequence since the channel does not change 
too much over the time of a subsequence; thus p,(/3) is ap- 
proximated by a Gaussian with mean given by (26). How- 
ever, at intermediate speeds the variance would be larger 
than that given in (27), because the greater variations in 
the channel over the time of a subsequence considered here 
makes it more likely that in subsequence s beta will be far- 
ther from &, = than described by the inverse variance 

Thus in order t o  pick a larger variance matrix for 
p,(P) here, the inverse variance matrix B, could be chosen 
to  be some multiple of A$-l or J,I from the most recent 
subsequence, labeled by s', in which training data was sent. 

The information bit rate could potentially be increased 
by sending training data only in some subsequences, and by 
choosing the length of the training data sequence so that 
it is no longer than necessary to  satisfy (33) for the lowest 
desired SNRs, as well as to  produce a close enough initial 
estimate C: of C .  that will yield the correct local maximum. 

VI Simulations 
Simulations of our simplified EM algorithm were performed 
in a rapidly varying channel with the GSM system. Each 
subsequence over which the EM algorithm is run corre- 
sponds to  a GSM time slot. The true channel parameters 
are chosen independently in a user's successive time slots. A 
two path multipath model is used for the true channel, where 
each path undergoes independent Rayleigh fading. The time 
delay T was randomly picked from a uniform distribution 
with range from .9 psec to  7.2 psec. Equation (30) is used 
to  form p,(p) from training data, and the Viterbi algorithm 
is used to  find the optimal sequence CP+l through (23) in 
the M step. 

The probability of bit error is plotted in Figure 1 as a func- 
tion of SNR. It is the differences in the BE% of the three 

R(B,) c S. (33) curves, rather than the absolute BE% that is of interest 
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Figure 1: BER vs. SNR for a rapidly varying multipath 
channel in GSM with use of a discrete multipath model. 
The three curves correspond to  use of the simplified EM 
algorithm, use of training data alone to estimate the chan- 
nel, and the ideal case of a receiver to which the channel is 
exactly given. 

here. No coding or interleaving was used, and the abse  
lute BE& depend on the channel models. At  each SNR the 
BERs were calculated from either 40,000 or 80,000 indepen- 
dent time slots; repeated runs demonstrated high accuracy 
in the differences in the BERs for the three curves. 

The upper curve in Figure 1 displays the BER when train- 
ing data alone is used to  estimate the channel, and then the 
estimated sequence is produced from this channel estimate, 
as is done in the initial iteration of the simplified EM al- 
gorithm. This initial EM iteration is thus analogous to the 
method of sequence estimation currently used in GSM. In 
fact, the BER from the current GSM system, if it did not 
use coding or interleaving, would be expected to  be higher 
than that of this curve: All curves in Figure 1 were derived 
from the discrete multipath model (2), as opposed to the 
finite impulse response used currently in GSM to model the 
channel. Since estimation of a finite impulse response from 
a training data sequence requires a linear approximation to  
the nonlinearly modulated GMSK signal used in GSM, this 
estimation incurs error from this linear approximation. It 
was shown [5] that use of a multiray model to parameter- 
ize the channel similar to our discrete multipath model (6) 
eliminates this error and yields an improvement of 2 to 4 
dB relative to  use of the finite impulse to  characterize the 
channel. 

The solid middle curve in Figure 1 displays the BER 
when the simplified EM algorithm is used to estimate the 
sequence. The lower curve displays a lower bound on the 
lowest possible BER that can be achieved for this channel: 
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it is the BER when the channel is known exactly by the re- 
ceiver. The simplified EM algorithm is seen to  significantly 
decrease the BER relative to  that when training data alone is 
used to  estimate the channel. The EM algorithm essentially 
removes the bit errors due to  uncertainty in the channel, as 
seen by the fact that the EM algorithm’s BER is almost as 
low as the BER when the channel is exactly known. The 
EM algorithm decreased the BER by 14% to  20%, with the 
largest decreases at highest SNR, relative to  that when the 
sequence estimate is based on a single estimate of the chan- 
nel derived from training data and the discrete multipath 
model. 

Most of the decrease in the BER with the EM algorithm 
takes place in the first EM iteration following the initial step 
based on the training data. While there is some additional 
decrease in bit errors following the second EM iteration, lit- 
tle if any improvement is seen in subsequent EM iterations. 
Therefore, a practical receiver could be built by performing 
only one or two EM iterations following the initial sequence 
estimate based on training data alone. 

VI1 Conclusions 
We have derived a simplified EM algorithm t o  find the MLSE 
of CPM signals in a fading multipath channel. When enough 
training data is provided for the lowest SNR considered, the 
EM algorithm reduces to iteratively estimating the chan- 
nel parameters and the transmitted sequence. Initial chan- 
nel parameter estimates are obtained from training data for 
rapidly fadiig channels, or from previous subsequences for 
slowly fading channels. Subsequent iterations allow for im- 
provement in symbol estimation over that derived from the 
initial channel estimates. Simulations for GSM show that 
the simplified EM algorithm reduces the BER so that it is 
almost as low as that which would be obtained from an ex- 
actly known channel. 
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