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Abstract - We apply joint maximum likelihood (ML) estima-
tion to orthogonal frequency division multiplexing (OFDM) sys-
tems and develop a simple receiver structure that gives joint ML
estimates of a multipath channel and the transmitted data se-
quence. Simulation results have confirmed good performance of
our algorithm. For a two-path or three-path slow fading chan-
nel, our algorithm converges to the case with known channel
parameters.

1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) [3]
is a promising multicarrier digital communication technique
for transmitting high bit-rate data over wireless communi-
cation channels. OFDM has been chosen for digital audio
broadcasting (DAB) and digital video broadcasting (DVB). It
is also the technique used for the standards for wireless 5GHz
local area networks (IEEE 802.11a in the U.S. and HIPER-
LAN/2 in Europe).

Channel estimation for OFDM systems has been an active
research subject [1] because of its substantial influence on
the overall system performance. Insertion of pilots in OFDM
symbols provides a base for reliable channel estimation. For
slow fading channels, channel attenuations for different sub-
channels are correlated within one OFDM symbol and across
several OFDM symbols. When pilots are transmitted in cer-
tain positions in the time and frequency grid of OFDM, chan-
nel estimation can be performed by two-dimensional inter-
polation. One type of such estimation algorithms uses fixed
parameter linear interpolation [10,12]. These algorithms are
very simple to implement, but a large estimation error is in-
evitable in case of model mismatch. If the statistical proper-
ties of the channel are known, an optimal linear channel esti-
mator in the minimum mean-squared error (MMSE) sense
can be designed by using a two-dimensional Wiener filter
[6]. To reduce the computational complexity involved in two-
dimensional filters, suboptimal low-complexity separable es-
timators, which use one-dimensional finite impulse response
Wiener filters in the time and frequency directions separately
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have been suggested [6]. A robust implementation of the
MMSE pilot symbol assisted estimator, which does not de-
pend on channel statistics, has been discussed in [9].

Decision directed estimation is a type of blind approach.
Considering individual OFDM symbols, a low complex-
ity approximation to the frequency-based linear minimum
mean-squared error (LMMSE) estimator has been proposed
in [4]. This algorithm uses singular value decomposition and
the theory of optimal rank reduction. A related algorithm,
which takes advantage of the channel correlation in the time
direction as well, is presented in [8]. A second type of low
complexity approximation to the LMMSE estimator regard-
ing individual OFDM symbols is based on using transforms
that concentrate the channel power to a few coefficients in the
time domain. Low-complexity estimators of this type, based
on both the DFT and optimal rank reduction, have been pro-
posed in [13].

Several other blind channel estimation algorithms have
also been devised for OFDM systems. Some of them are
based on a subspace approach exploiting the cyclostation-
ary property that is inherent to OFDM transmissions in the
cyclic prefix [5,11]. Another type of blind channel estimator
capitalizes on the finite alphabet property of the modulated
symbols [14].

In this paper, we apply the method of maximum likelihood
(ML) estimation to OFDM systems, and develop ML estima-
tion algorithms to estimate jointly the multipath fading chan-
nel and the transmitted data sequence. The algorithm works
in an iterative fashion: it computes an initial estimate of the
channel based on either the pilot symbols or the estimate ob-
tained from the previous OFDM symbol and then operates in
a decision directed mode. The algorithm does not require any
prior knowledge about the channel. Exploiting the properties
of OFDM systems gives a very simple structure to realize the
joint ML estimate.

In what follows, we will first describe the OFDM system
model, including the effects of a multipath channel. Then we
derive an iterative algorithm that performs joint ML estimate
of the channel and the data sequence, and present simulation
results that verify the performance of the algorithm. Part of
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Figure 1: Baseband OFDM System

the work has been published in [2].

2. OFDM SYSTEM MODEL

Figure 1 shows a baseband equivalent representation of
a typical OFDM system. We focus our discussion on es-
timation of one OFDM symbol instead of a sequence of
symbols for the reason to be justified below. At the trans-
mitter side, the serial input data is converted into M par-
allel data streams, and each data stream is modulated by
a linear modulation scheme, such as QPSK, 16QAM or
64QAM. If QPSK is used, for instance, the binary input
data of 2M bits will be converted into M QPSK sym-
bols by the serial-to-parallel converter (S/P) and the mod-
ulator. The modulated data symbols, which we denote by
complex-valued variables X(0), . . . , X(m), . . . , X(M −1),
are then transformed by the IFFT, and the complex-valued
outputs x(0), . . . , x(k), . . . , x(M − 1) are converted back
to serial data for transmission. A guard interval is inserted
between the symbols. If the guard interval is longer than
the channel delay spread, and if we discard the samples of
the guard interval at the receiving end, the ISI will not af-
fect the actual OFDM symbol. Therefore, the system can
be analyzed on symbol-by-symbol basis. At the receiver
side, after converting the serial data to M parallel streams,
the received samples y(0), . . . , y(k), . . . , y(M − 1) are
transformed by the FFT into Y (0), . . . , Y (m), . . . , Y (M −
1), which should be equivalent to the data symbols
X(0), . . . , X(m), . . . , X(M − 1) in the absence of channel
distortion and/or noise. They are then demodulated and re-
stored in a serial order.

We consider a multipath channel model with the length of
its impulse response at most L time units, where the time unit
is 2M

R(M+N) for QPSK modulation. Here R is the source data
rate; M is the number of subcarriers; and N is the length of
the guard interval. Using the notation for OFDM symbols,
the output of the channel can be written as

y(k) =

L−1
∑

l=0

hlx(k − l) + n(k), 0 ≤ k ≤ M − 1. (1)

where (h0, . . . , hL−1) is the channel impulse response; and
n(k) is the additive white Gaussian noise. Note that y(k),
x(k), n(k) and hl are all complex valued.

This model essentially assumes that the channel is slowly
fading, i.e. the channel is constant during one OFDM sym-
bol. As will be discussed in Section 4.1, a time-varying chan-
nel can be well approximated by a constant channel during
a time interval T if fdT ≤ 0.01 is satisfied, where fd is
the maximum Doppler frequency, and in our case T is taken
as the OFDM symbol interval. If the source data rate is R
bits/second, and the modulation scheme is QPSK, we have
T = 2M

R . For a vehicle moving at speed v, the maximum
Doppler frequency is fd = fc

v
c where fc is the carrier fre-

quency and c is the speed of light. Hence, the relationship
that we need to satisfy the assumption is

M ≤ 0.01×
R

2
×

c

v
×

1

fc
. (2)

For example, if the data rate is 2Mbps, the speed of the vehi-
cle is 66mph and the carrier frequency is 1GHz, then we can
safely assume the channel characteristic remains unchanged
during one OFDM symbol, insofar as M is less than 100.

If cyclic prefix is used for the guard interval, intercarrier
interference in a multipath channel can be also avoided. Then
it can be shown that the following simple relation between
Y (m) and X(m) holds:

Y (m) =

(

L−1
∑

l=0

hl exp−j2π ml
M

)

X(m) + N(m) (3)

= H(m)X(m) + N(m), 0 ≤ m ≤ M − 1,(4)

where H(m) is the complex frequency response of the chan-
nel at subchannel m, and N(0), . . ., N(M − 1) are the DFT
of n(0), . . . , n(M − 1). If n(0), . . . , n(M − 1) are i.i.d.
Gaussian random variables, so are the transformed variables
N(0), . . . , N(M − 1). Equation (4) shows that the received
signal is the transmitted signal attenuated and phase shifted
by the frequency response of the channel at the subchannel
frequencies and disturbed by noise.

3. ITERATIVE ML ESTIMATION ALGORITHM

We can solve the channel estimation and signal detection
problem by using Eq. (3) or (4). The channel frequency
response parameters H(0), . . .,H(M − 1) are generally cor-
related among each other, whereas the impulse response pa-
rameters h0, . . . , hL−1 may be independently specified, thus
the number of parameters in the time domain is smaller than
that in the frequency domain. Therefore, it is more appropri-
ate to apply the ML algorithm to (3), i.e., find ML estimate
of the channel in the time domain.

We consider joint estimation of the channel and the trans-
mitted signal. To simplify notation, we use X, h and Y
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to represent the transmitted signal, the channel impulse re-
sponse and the received signal, respectively. The likelihood
function of Y , given X and h, is

f(Y |X, h) =
1

(2πσ2)M
exp

{

−
D(h, X)

2σ2

}

, (5)

where σ2 is the variance of both real and imaginary com-
ponents of n(k) and is equivalent to 1

2E[|n(k)|2], and the
function D(h, X), which we call the “distance” function, is
defined as

D(h, X) =
M−1
∑

m=0

|Y (m) −
L−1
∑

l=0

hl exp−j2π ml
M X(m)|2. (6)

We need to find h and X that jointly maximize f(Y |X, h),
or equivalently, minimize the distance function D(h, X).

Let hl = al + jbl for 0 ≤ l ≤ L − 1. If we know X, we
can solve for hl by

∂D(h, X)

∂al
|h=ĥ = 0, (7)

∂D(h, X)

∂bl
|h=ĥ = 0, (8)

which readily lead to

L−1
∑

l=0

âl<{s(k − l)}−

L−1
∑

l=0

b̂l={s(k − l)}=<{z(k)}, (9)

L−1
∑

l=0

âl={s(k − l)}+

L−1
∑

l=0

b̂l<{s(k − l)}=={z(k)}, (10)

for 0 ≤ k ≤ L − 1, or equivalently,

L−1
∑

l=0

ĥls(k − l) = z(k), 0 ≤ k ≤ L − 1, (11)

where z(k) and s(k) are defined as the IDFT of

Z(m) = X∗(m)Y (m), 0 ≤ m ≤ M − 1, (12)

and
S(m) = |X(m)|2, 0 ≤ m ≤ M − 1, (13)

respectively.
If we take the DFT of size L on both sides of Eq. (11), we

have,

Ĥ(L)(l)S(L)(l) = Z(L)(l), 0 ≤ l ≤ L − 1, (14)

where the superscript (L) denotes the size of DFT to dis-
tinguish from the previous DFT and IDFT, which are all
of size M. Thus ĥl can be obtained as the size L IDFT of
Z(L)(l)/S(L)(l) for 0 ≤ l ≤ L − 1, i.e.,

ĥ = IDFT

{

Z(L)

S(L)

}

. (15)
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Figure 2: Channel Estimation for OFDM
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For constant modulus signals, we have |X(m)|2 = C for
all m, where C is a constant. Therefore,

s(k) =

{

C, k = 0
0, k 6= 0

(16)

In this case, from Eq. (11) we can directly obtain

ĥk = z(k)/C, 0 ≤ k ≤ L− 1. (17)

Hence, for given X, the ML estimate of the channel ĥ is the
solution given by Eq. (15) or (17).

One problem with the above algorithm is the unknown
channel memory length L. However, since the system re-
quires that the channel memory be no greater than the guard
interval N , we can satisfy this requirement by setting L = N .

Figure 2 shows the diagram of the above ML channel es-
timation procedure. The steps shown in blocks with dashed
lines can be replaced by a division of a constant C for con-
stant modulus signals.

For a given channel impulse response h or its frequency
response H , the ML estimate of the transmitted signal can be
obtained by

X̂(m) = argminX=X̂{D(h, X)}

= Y (m)/H(m), 0 ≤ m ≤ M − 1. (18)

X̂(0), . . . , X̂(M − 1) is then passed through a hard
decision block, which generates the detected signal
X̃(0), . . . , X̃(M−1). The signal detection diagram is shown
in Fig. 3.

The channel estimation and signal detection procedures
described above are used iteratively to find the joint ML esti-
mates. The joint estimation starts from OFDM symbols that
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Figure 4: An example of transmitted OFDM symbols

contain some pilot symbols. An initial ML estimate of the
impulse response of the channel is obtained solely by the pi-
lot symbols. Based on the initial estimate of the channel, the
first estimation of the transmitted signal can be calculated.
Both the pilot symbols and the estimated transmitted signals
are then fed back to the channel estimation step to obtain an
improved estimation of the channel. Then an updated estima-
tion of the transmitted signal can be obtained using the new
channel estimate. The iteration procedure stops when the in-
cremental improvement on the channel estimation is below a
pre-determined threshold. For those OFDM symbols which
do not contain pilot symbols, the iteration starts by setting the
final estimation in the previous OFDM symbol as the initial
estimation of the channel. The rest of the iteration follows
the same procedure as done for OFDM symbols with pilot.

More precisely, using the OFDM symbol structure shown
in Fig. 4 as an example (where each column represents an
OFDM symbol), the iterative algorithm is described as fol-
lows.

A. Initialization step: Set i = 0

A-1. Initial estimate for symbols with pilots:

Use the pilot symbols to find ĥ
(1)

that minimizes
the distance function D(h, X (0)), i.e.,

ĥ
(1)

= argminh{D(h, X(0))}, (19)

where D(h, X(0)) is defined by

D(h, X(0))=

M/4−1
∑

n=0

|Y (4n)−

L−1
∑

l=0

hl exp−j2π nl
M/4 X(4n)|2.

(20)
In this step, only a part of the received signals,
i.e., Y (0), Y (4), . . . , Y (M − 4) are utilized. The
IFFTs in Fig. 2 are of size M

4 .

A-2. Initial estimate for symbols without pilots:

Set ĥ
(1)

to be the final estimate of the impulse re-
sponse of the channel obtained from the previous
OFDM symbol.

B. Updating step: For i ≥ 1

B-1. Signal detection: Given the channel estimate ĥ
(i)

,

find X̂
(i)

that minimizes D(ĥ
(i)

, X) of Eq. (6),
i.e.,

X̂
(i)

= argminX{D(ĥ
(i)

, X)}, (21)

and produce a hard decision X̃
(i)

by comparing

X̂
(i)

with appropriately set thresholds.

B-2. Channel estimation: Given the decision output

X̃
(i)

, replace those positions corresponding to pi-

lot symbols with true values and find ĥ
(i+1)

that

minimizes D(h, X̃
(i)

) of (6), i.e.,

ĥ
(i+1)

= argminh{D(h, X̃
(i)

)}. (22)

B-3. If the difference between two successive esti-
mates |ĥ

(i+1)
− ĥ

(i)
| is below a predetermined

threshold, terminate the iteration and output the

final decision X̃
(i)

; otherwise, set i + 1 → i and
go to step B-1.

4. SIMULATION RESULTS

4.1 Verification of Constant Channel Assumption

The time variation of the channel is characterized by the
normalized Doppler frequency fdT . Conventionally, if fdT
is less than 0.01, the channel can be assumed as constant dur-
ing the time interval T . We have verified this assumption
using a Rayleigh fading channel model generated by Jakes’
model [7].

To quantitatively compare the variation of fading channels
with different fdT during time interval T , we have calculated
the variance of the magnitude of the fading process with nor-
malized power during the interval T . The results for different
fdT is shown in Fig. 5. When fdT = 0.01, the variance of
the magnitude in time interval T is about 0.01 for a Rayleigh
fading process with normalized power. Therefore, the chan-
nel can be considered approximately constant in T . The fig-
ure also shows that the variance grows with fdT at a speed
proportional to (fdT )2.

4.2 System Performance

We have validated our ML channel estimation algorithm
by simulation. We use M = 64 subcarriers and QPSK mod-
ulation for each subcarrier. We transmit one OFDM symbol
with pilots in every four OFDM symbols. For those OFDM
symbols containing pilots, we use four equally spaced sub-
carriers for pilot symbols. Therefore, the pilot-to-data ratio
is 1/64. A two-path Rayleigh fading channel with transfer
function

h(z) = 0.8α0e
jθ0 + 0.6α1e

jθ1z−1 (23)
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Figure 5: Variance of Rayleigh fading process during interval T
with different normalized Doppler frequency

and a three-path Rayleigh fading channel

h(z) = 0.408α0e
jθ0 + 0.816α1e

jθ1z−1 + 0.408α2e
jθ2z−2,

(24)
have been used for simulations. Here α0, α1 and α2 are i.i.d.
random variables with Rayleigh distribution, and θ0, θ1 and
θ2 are i.i.d. random variables with uniform distribution. The
BER performance for different SNRs when the normalized
fading parameter fdT = 0.01 is shown in Fig. 6. The corre-
sponding mean squared error (MSE) of the estimated chan-
nel parameters are shown in Fig. 7. The BER performance is
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Figure 6: BER v.s. Eb/N0 for Rayleigh fading channels with fdT =

0.01 (a) two-path channel (b) three-path channel

compared with ideal cases, where the channel parameters are
exactly known at the receiver. Our simulation results show
that for SNRs between 10dB and 20dB the second iteration
can result in a 0.3dB to 0.8dB gain over the first iteration,
and in the region of high SNR the BER performance of our
algorithm is close to that of the ideal cases.

Figures 8 and 9 present the results when time variation
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Figure 7: MSE of hl v.s. Eb/N0 for Rayleigh fading channels with
fdT = 0.01 (a) two-path channel (b) three-path channel

of the channel gets larger, where the normalized Doppler fre-
quency fdT is 0.05. The mean squared estimation error of
the channel parameters in the first iteration is considerably
higher compared with the case when fdT = 0.01. More-
over, increasing SNR does not decreases the MSE as fast as
in the slow fading case, because when fdT gets larger, for
those OFDM symbols without pilots, the MSE for the ini-
tial estimate will be large as the channel changes consider-
ably from one OFDM symbol to another. In the case when
channel changes faster, a larger gain in terms of BER and
MSE will result from the second iteration. For example, at
10−2 BER, the second iteration will bring the required SNR
more than 2dB down. However, the third iteration does not
give much improvement. For SNRs between 10dB and 20dB,
compared with the ideal cases, the BER performance is about
1dB worse for the two-path channel and about 1-1.5dB worse
for the three-path channel.

5. CONCLUDING REMARKS

We have proposed an iterative ML estimation algorithm
for OFDM systems that jointly estimates the multipath chan-
nel and the transmitted data sequence. In each iteration, the
ML channel estimate for given data sequence is obtained by
processing the pilot symbols and the current estimate of the
data sequence with FFTs/IFFTs, whereas the ML estimate of
the transmitted data can be obtained independently for each
subcarrier using the estimated channel frequency response at
the corresponding subcarrier. We have conducted simulation
experiments, which showed that, for a two-path or three-path
slow fading channel, our algorithm converges to the case with
known channel parameters.

1644



(a)
10 11 12 13 14 15 16 17 18 19 20

10−3

10−2

10−1

E
b
/N

0
 (dB)

B
it 

E
rr

or
 R

at
e

first iteration        
second iteration       
third iteration        
true channel parameters

(b)
10 11 12 13 14 15 16 17 18 19 20

10−3

10−2

10−1

E
b
/N

0
 (dB)

B
it 

E
rr

or
 R

at
e

first iteration        
second iteration       
third iteration        
true channel parameters

Figure 8: BER v.s. Eb/N0 for Rayleigh fading channels with fdT =

0.05 (a) two-path channel (b) three-path channel

ACKNOWLEDGMENTS

The present work was supported in part by grants awarded
to Princeton University by the New Jersey Center for Wire-
less Telecommunications (NJCWT), and by Mitsubishi Elec-
tric Research Laboratories (MERL), NJ.

REFERENCES

[1] P. Chen, Signal Detection and Channel Estimation in Mul-
tipath Channels, Ph. D. Thesis, Princeton University, July
2001.

[2] P. Chen, H. Horng, J. Bao, and H. Kobayashi, “A joint chan-
nel estimation and signal detection algorithm for OFDM sys-
tems,” Proc. of 2001 Int. Sym. on Signals, Systems, and
Electronics (ISSSE’01), July 2001.

[3] L. J. Cimini, Jr., “Analysis and simulation of a digital mobile
channel using orthogonal frequency division multiplexing,”
IEEE Trans. Commun., vol. COM-33, no. 7, pp. 665-675,
July 1985.

[4] O. Edfors, M. Sandelll, J.-J. van de Beek, S.K. Wilson, and
P.O. Borgesson, “OFDM channel estimation by singular value
decomposition,” IEEE Trans. Commun., vol. 46, no. 7, pp.
931-939, July 1998.

[5] R. W. Heath Jr. and G. B. Giannakis, “Exploiting input cy-
clostationarity for blind channel identification in OFDM sys-
tems,” IEEE Trans. Sig. Proc., vol. 47, no. 3, pp.848-856,
Mar. 1999.

[6] P. Hoeher, S. Kaiser, and P. Robertson, “Two-dimensional
pilot-symbol-aided channel estimation by Wiener filtering,”
Proc. of 1997 IEEE Int. Conf. on Acoustics, speech, and
Signal Processing (ICASSP-97), vol. 3, pp. 1845-1848, Apr.
1997.

(a)
10 11 12 13 14 15 16 17 18 19 20

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

E
b
/N

0
 (dB)

M
S

E
 o

f h
l

h0:first iteration 
h0:second iteration
h1:first iteration 
h1:second iteration

(b)
10 11 12 13 14 15 16 17 18 19 20

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

E
b
/N

0
 (dB)

M
S

E
 o

f h
l

h0:first iteration 
h0:second iteration
h1:first iteration 
h1:second iteration

Figure 9: MSE of hl v.s. Eb/N0 for Rayleigh fading channels with
fdT = 0.05 (a) two-path channel (b) three-path channel

[7] W. C. Jakes, “Multipath Interference”, Chapter 1 of Mi-
crowave Mobile Communications, W. C. Jakes, Ed., IEEE
Press, 1994.

[8] Y. Li, L. J. Cimini, Jr., and N. R. Sollenberger, “Robust chan-
nel estimation for OFDM systems with rapid dispersive fad-
ing channels,” IEEE Trans. Commun., vol. 46, no. 7, pp.
902-915, July 1998.

[9] Y. Li “Pilot-symbol-aided channel estimation for OFDM in
wireless systems,” IEEE Trans. Veh. Technol., vol. 49, no. 4,
pp. 1207-1215, July 2000.

[10] J.K. Moon and S.I. Choi, “Performance of channel estimation
methods for OFDM systems in a multipath fading channels,”
IEEE Trans. Consumer Electronics, vol. 46, no. 1, pp. 161-
170, Feb. 2000.

[11] B. Muquet, M. de Courvile, P. Duhamel, and V. Buzenac,
“A subspace based blind and semi-blind channel identifica-
tion method for OFDM systems,” Prod. IEEE Workshop Sig.
Proc. Advances in Wireless Commun. (SPAWC’99), pp. 170-
173, May 1999.

[12] F. Said and A. H. Aghvami, “Linear two dimensional pilot as-
sisted channel estimation for OFDM systems,” 6th IEE Conf.
on Telecommunications, pp. 32-36, Mar. 1998.

[13] J.-J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson and
P. O. Borjesson, “On channel estimation in OFDM systems,”
Proc. of IEEE Vehic. Technol. Conf. (VTC’95), vol. 2, pp.
815-819, Sept. 1995.

[14] S. Zhou and G. B. Giannakis, “Finite alphabet based chan-
nel estimation for OFDM and related multicarrier systems,”
Proc. of 34nd Annual Conference on Information Sciences
and Systems (CISS’00), pp. WP3-31-36, Mar. 2000.

1645


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


