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Abstract - We propose two maximum likelihood based semi- 
blind block channel estimation and signal detection algo- 
rithms for multipath channels with additive Gaussian noise. 
The algorithms are based on the Baum-Welch algorithm and 
the segmental k-means algorithm for Hidden Markov Models 
(HMMs). By making use of a training signal, the algorithms 
are applied block-wise to sequential disjoint subintervals of 
the whole observation interval. We study the effects of block 
length in terms of the bit error rate (BER), the mean square 
error (MSE) of the estimated channel impulse response, and 
its Cramer-Rao lower bound. Our simulation results show 
that the BER performance does not suffer even for a short 
block length when a good initial estimate is available. 

1 INTRODUCTION 

In order to cope with an unknown and possibly time- 
varying radio channel, the problem of channel estimation 
is recognized as a key research problem, because a large 
class of interference cancellation algorithms and decod- 
ing algorithms require complete or partial knowledge of 
channel characteristics. The existing and proposed dig- 
ital communication systems support the use of known 
training signals to estimate the channel. By incorporat- 
ing the training signals into blind schemes, semi-blind 
channel estimation schemes are anticipated to improve 
the performance over pure blind or non-blind schemes. 

Hidden Markov Models (HMMs), on the other hand, 
have been extensively studied and successfully applied 
to problems of sequential pattern recognition such as 
speech recognition and handwriting recognition [7]. The 
parameter estimation problem for HMMs can be solved 
efficiently by the Baum-Welch algorithm [l]. The rees- 
timation formulas of the Baum-Welch algorithm can 
be interpreted as an application of the Expectation- 
Maximization (EM) [3] algorithm to HMMs, and the 
computational efficiency of the Baum-Welch algorithm 
comes from the efficient procedure of the forward- 
backward algorithm [7]. 

Recently the Baum-Welch algorithm for HMMs has 
been applied to maximum likelihood channel estima- 
tion [2,5]. In this paper, we propose a semi-blind block 
channel estimation and signal detection scheme which 
gives block-wise maximum likelihood channel estimate 
and MAP decoding by using the Baum-Welch algorithm 
in sequential disjoint subintervals of an observation. The 
advantage of block channel estimation lies in several as- 
pects. Firstly, it can avoid a long delay to process the 
whole observation interval; secondly, it is suitable for a 
slow time varying channel; thirdly, it has lower computa- 
tional complexity. We evaluate the performance in terms 
of the mean square error (MSE) and bit error rate (BER) 
for different block lengths. 

The segmental k-means algorithm for HMMs uses the 
state-optimized likelihood as its optimization criterion 
[4]. We apply the two iterative steps of the segmental 
k-means algorithm to channel estimation and signal de- 
tection and obtain a very simple structure which gives 
the maximum likelihood sequence estimate and decision 
directed channel estimation. This algorithm can also be 
applied to the received signal, block by block. We eval- 
uate the effects of block length by simulation, and com- 
pare the results with those obtained by the Baum-Welch 
algorithm. 

The rest of the paper is organized as follows. Section 2 
gives the channel model and its HMM description. Sec- 
tion 3 describes our semi-blind block channel estimation 
and signal detection scheme based on the Baum-Welch 
algorithm. Section 4 derives the two step iterative scheme 
based on the k-means algorithm. Section 5 evaluates the 
performance of the proposed schemes by BER, MSE and 
its Cramer-Rao lower bound for different block lengths. 
Section 6 presents our concluding remarks. 

2 

We consider the following multipath channel model: 

CHANNEL MODEL AND ITS HMM DESCRIPTION 

L 

Yn = hldn+l-l+ vn, (1) 
1=1 
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where the channel has memory of length L; h = 
( h l ,  h2, . . . , h ~ )  is the channel impulse response; vn’s are 
i.i.d. complex Gaussian random variables with zero mean 
and variance a’; d = (dl, d2, .. . , d ~ )  is the transmitted 
baseband signal including a training part and a data part. 

For a given observation sequence y =  ( y i ,  YZ, . . . , YN), 
our goal is to find the maximumlikelihood estimate of the 
channel parameter vector @ = (hl ,  hz, . . . , h t ,  a’) that 
maximizes f(gl@). 

The above problem can be formulated as an HMM pa- 
rameter estimation problem. An HMM models the case 
where the observation is a probabilistic function of the 
state of a Markov chain. An HMM is specified by three 
probability measures A ,  B and x ,  where A is the state 
transition probability matrix; B is a vector of conditional 
probability density functions (PDF) with each entry be- 
ing the observation PDF in a state, and x is the initial 
state probability vector. 

We define state S, = (dn+ l -~ ,  . . . , &-I,  d,). If each 
element takes on K possible values, the total number of 
states is KL. The parameters of the HMM can be found 
as : 
0 State transition probability ai, = PISn+l = jlSn = i]: 
data  part: 

aij = { 1/:: 
if i + j is permissible 
otherwise 

training part: 

if i -+ j is permissible 
otherwise aij = { ii 

0 Initial state probability xi = P[S1 = 21: 

- if starting from data part 
if starting from training part 

xi = { K L ,  
6 ( i  - io), 

where io is the starting state. 
0 Observation PDF in state i b;(y) = f(yIS, = i,c9): 

2 

) I  (2) 
1 Iy - CL1 Wi,L+l- l I  b.( ) - -exp(- - 2xu2 2a2 

3 BAUM-WELCH ALGORITHM 

3.1 Baum- Welch Algorithm for Channel Estimation 
The Baum-Welch algorithm is a computationally effi- 

cient reestimation procedure to  solve the parameter es- 
timation problem for HMMs. It finds the parameter e 
that maximizes the likelihood function f(ylc9) by itera- 
tively maximizing the Baum’s auxiliary function 

over e. Here is the estimation of @ in the kth  it- 
eration; s. = [SI, s,, . . . , SN] are the unobserved states 
corresponding to  the observations y. 

From Bayed rule and the properties of the HMM, we 
obtain the following equations: 

N 

P(Sle) = n asn-isn I (5) 

f(ylS18) = n f(YrllSn18). (6) 

n=2 

N 

n=l  

Substituting Eqs.(4),(5) and (6) into Eq.(3), we have, 

where C is a constant independent of 0, and X , ( i )  is 
defined as 

X , ( i )  = f(g, s, = i p ) .  (8) 

From Eqs.(2) and (7),  the maximization problem is 
equivalent to minimizing 

(9) 
over e. Therefore we can find by solving 

which readily leads to 

where &Lk+11 = (aF+llb[k+ll a[k+ll [k+l1 T with ajk+ll 
1 - * .  L bL 1 

and bjk+ll being the real and imaginary parts of hl in the 
k + l th  estimation, respectively. G is a 2~ x 2~ matrix 
with 

as its (I,m)th subblock, where Di,lm is defined as 

and is a 2L x 1 vector with 
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as its l th  subvector. 

tained as 
When h2[kf1] is available, can be readily ob- 

with the boundary conditions 

for 1 5 i 5 K L .  

3.2 Channel Estimation with Training Signal 

known. The log-likelihood function is given by 
For the training part, the transmitted sequence is 

logf(yl!!) = -Nt log(2.1ra2) 

where Nt is the length of the training sequence. The 
maximum likelihood estimate of e can be simply found 
by 

v,logf(yle)le=g = 0. (21) 

(22) 
Hence we obtain 

- iL = G; 'It, 
where Gt is a 2L x 2L matrix with the ( I ,  m)th subblock 

and It is a 2L x 1 vector with the l th subvector 

) ,  ~2 1 Reid: + 1 - 1 Yn > 
~2 1 ~m{d:+ 1 - Y n  > 
1 Ni 

L 

( 
and 

(23) 6 2  = - I Y ~  - kdn+l-lI2. 
2Nt n=l k 1  

Comparing Eqs.(ll),(l2) and (22),(23), we can see 
that the channel estimation for the training part is a 
degenerated case of the Baum-Welch algorithm, since 

A n ( i )  = f(y, S, = il@kl) 

(24) - - { j(yl@I),  if i = it 
0, otherwise, 

where i t  is a part of the training sequence. 

3.3 Semi-blind Block Channel Estimation and Signal 
Detection 

The Baum-Welch algorithm discussed in Section 3.1 
uses the entire observation to iteratively update the esti- 
mation of the channel parameters. It may cause a large 
time delay in decoding and is not suitable to time vary- 
ing channels. To deal with these problems, we divide the 
observation interval into sequential disjoint subintervals 
and apply the Baum-Welch algorithm to each subinter- 
val. Generally speaking, if the observation interval is 
too short, the Baum-Welch algorithm suffers from the 
problem that it may converge to a local minimum. How- 
ever, we can avoid this problem by using the training 
signal. We can obtain a good estimate of the channel 
for the subinterval corresponding to the training signal 
by Eqs.(22)-(23), and then use the estimates as initial 
values in adjacent subintervals. If the channel is slowly 
varying, a good initial estimate is made available by using 
the estimates from the adjacent subintervals, and thus 
the problem of converging to a local minimum can be 
avoided. 

Notice that MAP decoding can be obtained as a by- 
product of the Baum-Welch algorithm. For each subin- 
terval, after the final iteration, we decode the transmitted 
signal by 

Therefore, signal detection does not need any additional 
computation. 

S, = argmuziX,(i). (25) 

4 SEGMENTAL K-MEANS ALGORITHM 

Instead of the maximum likelihood criterion 

s - 
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used in the Baum-Welch algorithm, the segmental k- 
means algorithm uses 

as the optimization criterion for estimation the param- 
eters of the HMM. It focuses on the most likely state 
sequence as opposed to summing over all possible state 
sequences. The algorithm involves iteration of two fun- 
damental steps: (1) segmentation step, which finds the 
sequence that maximizes the joint likelihood function 
f(y,  sle) for the current parameter estimates; (2) opti- 
mEation step, which finds new estimates for e so as to 
maximize the above state-optimized likelihood. The con- 
vergence properties of the segmental k-means algorithm 
was proved in [4]. 

Applying the segmental k-means algorithm to our 
channel estimation and signal detection problem, we ob- 
tain a simple iterative structure as follows. At the I C t h  
iteration, we have 

since all S's are equiprobable. 

0 Optimization step: 

The segmentation step gives the maximum likelihood se- 
quence estimation for each iteration of estimated chan- 
nel parameters and can be implemented efficiently by the 
Viterbi algorithm. The optimization step estimates the 
channel in a decision directed mode, i.e. it updates the 
estimates of the channel by treating the current estimate 
of the transmitted signal as a known signal. 

As for the Baum-Welch algorithm, the segmental k- 
means algorithm can also be applied to the received sig- 
nal block by block. We evaluate the performance of the 
algorithms for different block sizes in the next section. 

5 PERFORMANCE EVALUATION 

5.1 Cramer-Rao Lower Bound (CRLB) 

unbiased estimate. 
The CRLB gives a lower bound for the variance of an 

where Io; is the Fisher's information for 0; 

l e i  = --E{? aei log f(Yl@)}. (31) 
a2 

Using the identity 

f(Yle) = P(S)f(Yle, S )  = Ez{f(Yle, S ) }  (32) 
S - 

and Jensen's inequality 

we have 

(34) 
a2 

Io; 5 - E s E { y  1% f(Yle?, S ) } .  dei 

By substituting Eq.(2) into f(yl0,S) of the above ex- 
pression, we find 

N' 
c74 

- -  - (37) 

where a; and bi are the real and imaginary parts of hi, 
respectively, and N' is the length of subintervals. We 
see that the CRLB is inversely proportional to  the block 
size. 

5.2 Simulation Results 
We evaluate the above semi-blind block channel es- 

timation and signal detection schemes by simulation in 
terms of their BER performances and MSEs of the esti- 
mated channel impulse responses. We take an antipodal 
signal where d, E {+1,-1) and a multipath channel 
with impulse response h = [0.408 0.816 0.4081 (channel 
(b) in [ 6 ] ,  chap.10). We choose two sets of parameters 
for initial estimates of h: 

hinitl = [0.577 0.577 0.5771 
klnit2 = [0.3 0.9 0.31 

hln;tl represents the case when we do not have any 
knowledge of the channel. In this case, we can only ran- 
domly choose an initial estimate, and the best we can do 
is to take an average value. klnit2 represents the case 
when a good initial estimate is available from an adja- 
cent subinterval. We test the performance for different 
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Figure 1: MSE of lz, SNR= 13dB (a) Baum-Welch algorithm; 
(b) segmental k-means algorithm 

Figure 2: BER for different block lengths, SNR=13dB 

block lengths N’ = 13 ,26 ,52 ,104  with SNR varies from 
7 d B  to 13dB. 

Fig. 1 and 2 illustrate the results for SNR= 13dB. The 
results for other SNR values exhibit similar patterns. 

From Fig. 2 we can see that for both the Baum-Welch 
algorithm and the segmental k-means algorithm if the 
channel is completely unknown, there is a substantial 
performance degradation to be incurred by using short 
blocks. However, if a good initial estimate is available, 
the block length can be shortened to a certain extent 
with only a minor performance loss. Also notice that 
with a good initial estimate, the performance degrada- 
tion of the segmental k-means algorithm compared with 
the Baum-Welch algorithm is reasonably small. The seg- 
mental k-means algorithm uses the Viterbi algorithm, 
whereas the Baum-Welch algorithm involves the forward- 

backward algorithm. Thus, the latter is much more com- 
putationally involved. In view of complexity, the seg- 
mental k-means algorithm is more attractive. 

6 CONCLUDING REMARKS 

We have proposed two semi-blind block channel esti- 
mation and signal detection algorithms using the Baum- 
Welch algorithm and the segmental k-means algorithm 
for HMMs. The algorithms apply to  the subintervals of 
the received signal instead of to the whole observation 
interval. This approach provides several advantages in 
terms of time delay, complexity and the ability to  deal 
with a slowly fading channel. Our simulation results 
show that if a good initial estimate is made available by 
using a training signal, the algorithms with short block 
length suffer only a minor performance loss. Comparing 
with the Baum-Welch algorithm, the segmental k-means 
algorithm is more attractive when the complexity is a 
major issue. 
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