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Abstract

We apply the EM (Expectation-Maximization) algo-
rithm to sequence estimation for GMSK, and in particu-
lar, to GSM. Time varying multipath channel parameters
are considered unknown, and are averaged over to obtain
the maximum likelihood sequence estimate. A simplified
EM algorithm is derived for low noise, and simulation re-
sults are presented, showing that this algorithm performs
well through a range of practical SNRs. This algorithm
could potentially increase the information bit rate and
improve sequence estimation in GSM.

I Introduction

There has been much recent interest in improving the
performance of reception of signals used in mobile land
radio [1]-[2]. A number of equalization and other schemes
[3] have been proposed to handle distortion due to multi-
path fading. Currently, in the GSM mobile celiular phone
system the impulse response of the channel is estimated
using training data inserted in each time slot. The esti-
mated impulse response function is then used to estimate
the transmitted data sequence.

In this paper, we discuss an alternative approach: We
consider a multipath channel with an impulse response
represented by delta functions for a finite number of
paths. Using the EM algorithm, we average the log likeli-
hood of the transmitted data sequence and the multipath
channel parameters over the multipath parameters. We
then find the data sequence that maximizes this averaged
likelihood. However, in order to average the likelihood
over the channel parameters, we must obtain their prob-
ability demsity. We estimate the density of the unknown
channel parameters based on a previous estimate of the
data sequence, and then use the estimated density of the
channel parameters in turn to produce an improved esti-
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mate of the transmitted data sequence. These steps are
repeated until convergence is achieved.

The goal from the point of view of the cellular phone
user is to obtain the most probable data that was trans-
mitted, given the received signal; this maximum a pos-
teriori probability estimate is precisely what we obtain
via the EM algorithm as discussed below. Specific esti-
mates of channel parameters are not necessarily required
to obtain this estimate, but rather the probability den-
sity of the channel parameters is used here. Presently,
sequence estimation in GSM is based on a possibly im-
perfect estimate of the channel impulse response. In con-
trast, successive iterations of the EM algorithm allow for
improvement of the initially imperfect estimate of the
probability density of channel parameters and also of the
initial estimate of the transmitted data sequence. In ad-
dition, our method uses channel information derived in
each time slot in the successive time slot. The informa-
tion bit rate in GSM could potentially be increased with
use of the EM algorithm since the need for training data
is reduced. Alternatively, the EM algorithm could possi-
bly be used in conjunction with training data to improve
estimation of the transmitted information sequence.

An iterative method for maximizing a likelihood func-
tion in the presence of unobserved data, the Expectation—
Maximization algorithm [4], has recently been applied to
the problem of sequence estimation with unknown chan-
nel parameters [5]. Additional recent applications of the
EM algorithm to sequence estimation are found in [6]-{7],
and to other detection and estimation problems include
(g-{10]. -

In Section II we describe the multipath channel model
and the received GMSK signal. Application of the EM
algorithm to sequence estimation, and to GMSK in the
time varying channel is discussed in Section III. We de-
rive a simplified version of the EM algorithm, valid for
low noise, in Section IV, and present simulation results
for this algorithm in Section V. Conclusions are stated
in Section VI

II The Model

We first describe the modulation scheme used in GSM,
as well as the multipath model we consider. The trans-
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mitted data sequence is denoted by C), for n =1,2,3, ...
where C,, can take on values of 1. The transmitted
signal

X(t) = Acos(wet + ¢(t)) 1)
is modulated using GMSK so that

o) = T4 / 3 Cnolt ~nT)at, ()

where the modulation index hy = .5 and the bit period
for GSM is T = 3.69 pusec. The baseband frequency
pulse g(t) is obtained by convolving a NRZ data sequence
with a Gaussian low pass filter and is given by

g(t):{erf[—j;_Bb ] + rf[f/"ﬂ(tu*)]}/z, (3)

where the bandwidth of the low pass filter B, satisfies
BT =.3.

We consider a general multipath model with a total of
M paths. The received signal is given by

Y(t) = anX(t—1,6:) + 0 X(t— 72,62)
+ .. .+aMX(t-TM,0M),

where 8;, a;, and 7; denote the phase, amplitude, and
delay of the i** path respectively. We set 8§, = n, =
0, and then the remaining phases and time delays are
relative to the signal from the first path. Letting

t
o) = [_ ot)dt', (4)

we combine equations (1) through (4) to obtain the com-
plex envelope of the received signal in the presence of
multipath fading and additive white Gaussian noise:

M
Y(t) =Y ciexp[i (®i(t, C)] + ns(t) + dne(®), (5)

=1

where

h
®i(t,C) = b; — wers + =L 3 Onglt =7 ~nT), (®

and the inphase and quadrature noise components ny and
ng are independent WGN processes with noise density
N,.

IIT The EM Algorithm

We would like to estimate the transmitted data sequence
C, for n =1,2,3,.., which we represent by C. Using the
EM algorithm, we present a method to find the maxi-
mum ¢ posteriori probability estimate for the sequence
of transmitted symbols C, given inphase and quadrature
samples of the complex received signal Y (t), denoted col-
lectively by y. Thus we maximize the posterior proba-
bility density f(C |y) with respect to C. Equivalently,

the ML estimate is found, using a prior density on C,
that restricts its values to 1. This prior density is in-
corporated into the EM algorithm, by using a Viterbi
algorithm to find the optimal path through a trellis of
allowed states for the M (maximization) step.

The EM algorithm produces maximum likelihood es-
timates in the presence of unobserved data by repeating
two steps until convergence. The E (Expectation) step
computes the expected log likelihood of the observed and
unobserved data by averaging over the unobserved data.
In the M (Maximization) step, the expected log likeli-
hood is maximized. References [4] and [5] provide back-
ground on the EM algorithm and its general application
to sequence estimation respectively, and equations (7)
and (8) below parallel the formulation in [5).

We now discuss the EM algorithm as used in sequence
estimation. The channel parameters, denoted collectively
by 8 = {a1,01, 11, --.an, 00,7}, are treated as the un-
observed data in the EM algorithm. An average over 3
is taken in the E step in order to compute the expected
log likelihood

Q(CP! | CP) =E e f(y,8| C**) |y, CP]  (7)
at the (p+1)®* iteration, where f(y, 8 | CP*1) is the joint
probability density of y and B conditional on CP+1. The
conditional expectation (7) is an average using the con-
ditional density of the channel parameters f(8 |y, C?),
given the estimate C? of the transmitted symbols from
the previous (the p*?) iteration. The M step determines
the value of CP*! that maximizes Q(CP*! | CP) given
CP; hence, terms independent of CP+! can be eliminated
from Q(CP*! | C?). Since f(8| CP') = p(8), where
p(B) denotes the prior density of 8 which is independent
of CP*+!, the resulting expected likelihood can be written
as

Q(crtticP) = Emf(y|B,CHY)|y,C?  (8)

/ In f(y | B, CPH)£(8 | v, CP)dB.

The EM algorithm is now applied to GMSK modula-
tion and the channel model described in Section II. The
conditional density of y can be obtained from equation
(5) and is:

Fv18,0) = (;N)Kexp - Z{

2
[yz(tz) - Z a; cos (®;(t, C))]

i=1

M 2
> asin (éi(t;,cn] } 9)

=1

+ [yQ(tt) -

where K is the number of samples of the received signal,
and the inphase and quadrature components of the sam-
ples taken at time #; are denoted by yr(t;) and yg(#;) re-
spectively. Substituting equation (9) evaluated at C?*!
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into (8) and eliminating terms and overall factors inde-
pendent of CP*! yields

~Qe™ | o) = ,

K M 2
> /{ [yl(tt) =" aicos (;(t, Cp"'l))]
=1 =1

M 2
+ [yq(t;) - Z «; sin (Qi(tz, CP'H)] }
=1
xf(8|y,C") dB. (10)
Furthermore,

7s(B 1y, CP) = £fs(y | B, CP)ps(6), (11)

where & is a constant independent of CP*1, and p,(8) is
the prior probability density of 3. For later use, we have
added the subscript s, which refers to time slot number
s. The density f(y | 8, C?) as determined from equation
(9) evaluated at CP can be used in (11), which in turn
can be substituted into (10).

Minimization of equation (10) with respect to CP*!
for the M step is performed at iteration p + 1, where
the values of CP are the estimates obtained from the M
step of the previous iteration. The E and M steps are
repeated until CP+! = CP, and convergence is achieved.

For each time slot, we use the EM algorithm to esti-
mate the symbols transmitted in that time slot. Because
the channel will not change too much during one time
slot, the approximation

£.81y,CY = four(B 1y, CP), (12)

can be used for the first iteration of time slot s, where
fem1(B Y, CP) denotes the density obtained from the fi-
nal (Pt*) EM iteration of the previous time slot. The
density used in subsequent EM iterations of time slot s
can be obtained from (11) and equation (9) used to cal-
culate f(y | 8, C?), where the prior density ps(8) can be
constructed using f,—1(8 |y, CP). Training data could

be used to form the prior density p;(8) for the first time -

slot.

IV Low Noise Algorithm

The EM algorithm could be simply implemented if the
multiple integral in (8) could be performed analytically.
However, for GMSK modulation in the presence of the
fading multipath channel, computation of Q(crt | CP)
in (10) would require numerical integration for each trial
sequence C. The EM algorithm can be implemented
more efficiently when the noise is not too high. We now
discuss an- algorithm for estimating C, which the EM
algorithm reduces to for the case of low noise.

We simplify the integral in (10) by noting that equa-
tions (9-11) indicate that for a relatively uniform prior
ps(8), most of the contribution to the integral comes from
values of 8 that make the likelihood (9) large. We fo-

the true B at iteration p of time slot s that maximizes
f(y | B,CP), and is thus defined by

B = BR(y,CP) = arg min A(B,y,CP),  (13)

where the negative log likelihood A(8,y,CP) is

K M 2
N80 = L[t - 3 ascos(3it6, )|

=1 :{:1 ;
+fuot) = 3 cssin @it e

=1

Equation (10) can now be written as

Q(CPH | CF) = - / (B,y,CP)F(8 | y,C)dB.

. (15)
When 8 is close to 5%,

516, ~ (57 e - [y )]
xew-[g- (-2 AG-B)A, (9

where the elements of the inverse covariance matrix A
are given by

_ )MB,y,C)
Aij = aﬂzaﬂg 'ﬁf .

We consider a uniform prior density ps(B) that restricts
8 sufficiently close to §% so that the approximation (16)
holds. Most of the contribution to Q(C?*! | CP) then
comes from § in a region R(A/N,), which grows with
N,, around J%.

In the maximization of Q(CP*! | CP) in the M step, we
consider the result of minimizing A(8,y, CP™!) for vari-
ous values of 3, and note that a range of 8 will produce
the same optimal sequence CP*1. We define S to be the
set of all 3 such that the same sequence CP* 1 minimizes
A(8,y,CP+") as minimizes A(8,y, C**). If

R(A[N,) C S, (17)

then the values of 3 that contribute significantly to the
integral in (15) all produce the same sequence C?* ! upon
minimizing A\(3,y, C** 1). Therefore, for the purpose of
finding the optimal sequence CP*!, only A(BP,y,CPHY)
needs to be minimized and the integral in (15) need not
be evaluated. Hence, the density

F(81y,CP)=6(8~ B (18)

can be used in (15). : L

The E step is then reduced to computing pE =
B2 (y, CP) from (13). The M step in turn becomes find-
ing CP+! to maximize Q(CP+! | C?) = -3y, CPY),
and the Viterbi Algorithm can be used to perform this

cus on this range of 8 and consider the estimate (% of maximization. Therefore, when the noise is low enough
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so that (17) is satisfied, the EM algorithm reduces to
iteratively estimating 8 and C. These estimations at
iteration p are accomplished by minimizing A(B,y,CP)
with respect to 8 for the E step, and then A(32,y, CP* h
with respect to CP*! for the M step. One EM iteration
of this low noise algorithm is thus analogous to the cur-
rent equalization method used in GSM in the sense that
there the channel impulse response function is estimated,
and then the transmitted sequence is estimated from that
impulse response function.

When the noise is high enough such that (17) is no
longer satisfied, our algorithm of iteratively estimating
B and C is no longer an EM algorithm. In this case,
implementation of the EM algorithm requires evaluation
of the integrals resulting from substitution of (9) into
(11) and (10).

In order to start the low noise EM algorithm, equations
(12) and (18) indicate that the initial estimate of 8 in
time slot s is given by the final (P**) estimate from the
previous slot:

,3; = 5—1- (19)

V Simulations

Simulations of the low noise EM algorithm were per-
formed for 300 consecutive time slots of 136 bits each.
The values of the true channel parameters were updated
after each slot, incorporating fast fading for a two path
model. The maximum fade is taken as 30dB. There are
30 fades per second of the primary path, and the mobile
speed is 50 kilometers per hour.

We use a Viterbi algorithm with a memory of L sym-
bols to minimize A(8?,y,CP*') with respect to CP+1
for the M step. The memory L = 3 + Tmax/T' comes
from three symbols from GMSK spreading plus multi-
path spreading which can be as large as the maximum
multipath delay 7inax.

We consider two different channel models, which we
refer to as Channel I and Channel II, which have differ-
ent average channel parameters. Figures 1 and 2 display
BER vs. SNR for Channel I and Channel II respectively.
The SNR is defined as

(20)
R .
where equation (20) is averaged over all the time slots
used in the simulation. Convergence in most time slots
is accomplished within 3 EM iterations.

In each figure the BER is plotted when the channel pa-
rameters are unknown and sequence estimation is done
with the low noise EM algorithm. For comparison, the
BER is also displayed for the case in which the channel
parameters are known exactly and need not be estimated.
The same time varying channel was used for the cases of
known and unknown channels. The ML estimate of the
sequence for the known channel is computed by minimiz-
ing the negative log likelihood (14) with 8 taking on its

known true values, with one pass of the Viterbi Algo-
rithm. For the case of unknown channel parameters, the
sequence is estimated using the low noise EM algorithm
discussed in Section IV.

From Figures 1 and 2, it is seen that throughout the
whole range of SNR plotted, the low noise EM algorithm
performs quite well; the BER is almost as low as for the
ML estimate of the sequence when the channel parame-
ters are known. It is seen that the low noise EM algo-
rithm’s performance, relative to the case of the known
channel, improves as the SNR increases. As the SNR in-
creases, the condition (17) is satisfied for a larger fraction
of the time during a mobile’s travels.

We note that the BER here can be improved, since
our simulations include no interleaving or coding, and
the received signal was sampled only once per bit. Fur-
thermore, since there was no interleaving or coding, the
absolute values of the BER. are strongly dependent on
the particular fades encountered in the 300 time slots.
However, comparison of the BER, for the low noise EM
algorithm used for the unknown channel to that of the
ML estimate for the same channel when it is known is
noteworthy.

While the low noise algorithm is the EM algorithm
whenever (17) holds and it therefore produces the ML se-
quence estimate, in the presence of noise, the final (Pt*)
channel parameter estimate 87, in slot s — 1 may differ
from the true 8 in that slot. Th1s difference along with
the slowly varying true channel parameters could poten-
tially make (19) far enough from the true channel param-
eters, so that the correct local minimum cannot be found.
We assume that (19) is close enough to the true channel
parameters in each time slot that the ML sequence esti-
mate and the approximate local minimum corresponding
to the true channel parameters can be found. If not,
there are two potential methods to correct for this devi-
ation. First, a smaller number of bits could be chosen
over which the EM algorithm is run. Another option is
to use training data every NV slots to realign the channel
parameters, where IV is chosen to be less than the num-
ber of slots over which (19) begins to deviate too much
from the true 8.

VI Conclusions

The EM algorithm can be used to average over unknown
multipath channel parameters to estimate a data se-
quence transmitted with GMSK. Training data would
then only need to be used occasionally to realign the
channel parameter estimates: of the fast fading channel.

When the noise is low, the EM algorithm reduces to
iteratively estimating the channel parameters and the
transmitted sequence. Simulation results indicate that
this low noise EM algorithm is successful for most of
the range of practical SNR. Further simulations need to
be performed to consider multiple reflected paths and a
broader range of channel parameters.

This work has focused on GSM,; future investiga-
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Figure 1: BER vs. SNR of low noise version of EM
Algorithm for the unknown channel, and of ML sequence
estimate for the corresponding known channel. Channel
I average parameter values: oy = 1.0,a0 = 7,72 =
2.5usec.

tion could determine its possible applicability to other
wireless technologies using GMSK, such as CDPD and
DECT.
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