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Abstract 
We introduce a multi-dimensional diffusion model to char- 
acterize the "on-off" sources behavior in an ATM statistical 
multiplexer, where multiple types of traffic are concentrated. 
Under a reasonable set of assumptions, this diffusion process 
can then be approximated by a multi-dimensional Ornstein- 
Uhlenbeck process, which is a Gaussian Markov process. The 
packet arrival process is shown to  be a Gaussian (but not 
Markov) process, and this process determines the statisti- 
cal behavior of the buffer content. We then derive an ex- 
pression for the joint probability distribution of the buffer 
content and "on-off" sources in the equilibrium state. The 
final solution form is given in terms of the eigenfunctions of 
Weber's equation. Some numerical case is compared with 
the solution method developed by Kosten [1984]. In a com- 
panion paper (Ren and Kobayashi [1992b]), we shall derive 
the time-dependent solution of the diffusion approximation 
model. 

1 Introduction 
In a future B-ISDN(broadband integrated services dig- 

ital network), multiple types of information services will be 
provided by means of fast packet switching with statistical 
multiplexers. The traffic into a statistical multiplexer is a 
superposition of packet streams from many sources of dif- 
fering types. The instantaneous packet arrival rate gener- 
ally depends on the number of sources in "burst" (or "on") 
states and thus fluctuates with high variability. Therefore, 
the traffic is usually far from Poisson or any type of renewal 
process: there is a positive serial dependence between suc- 
cessive packet arrivals, and this dependency is a major cause 
of congestion in the multiplexer queue and often leads to 
surprisingly large packet delays or packet loss under heavy 
traffic conditions. 

There have been a number of studies that report analytic 
models of statistical multiplexing. Haahida and Fujiki [1973], 
Kosten [1974,1984], Anick, Mitra and Sondhi [1982] formu- 
late the problem as a Markovian system by assuming ex- 

ponential distributions for both burst and silence periods. 
They assume that each burst generates packets at a con- 
stant rate, and arrival packets into the multiplexer output 
buffer is approximated by a fluid flow. Anick et al. and 
Kosten report comprehensive studies of this fluid model by 
calculating the eigenvalues of the resulting matrix equation 
that governs the underlying Markov process. Stern and El- 
walid [1991] discussed solutions of the fluid model when the 
sources are Markov modulated. 

All of the above studies, however, deal with the 
equilibrium-state solutions of the fluid model assuming a 
single type of traffic. Kosten [1984] and Kobayaahi [1990] 
discuss the equilibrium solutions for multiple types of traf- 
fic. More recently, the authors (see Ren and Kobayashi 
[1992a], Kobayashi and Ren [1992]) obtained theoretical re- 
sults on transient (or time-dependent) solutions of the sta- 
tistical multiplexer model for multiple types of traffic. The 
results require, however, numerical inversions of the Laplace 
transforms, thus their practical applications await a further 
investigation of efficient computational algorithms and ap- 
proximations. 

In this paper we develop a diffwion approzimation for 
the statistical multiplexer model and obtain computationally 
more feasible solutions than the results mentioned above. 
The idea of approximating a discrete-state process (e.g. a 
random walk) by a diffusion process with continuous path 
was discussed by Feller [1966] and others. Cox and Miller 
[1965] discussed applications of the diffusion process ap- 
proach to congestion theory. The procedure of using a dif- 
fusion process to study a queueing system - whether it be 
a continuous-time system or a discrete-time system- can be 
useful because mathematical methods associated with the 
continuum very often lend themselves more easily to analyt- 
ical treatment than those associated with discrete coordinate 
axes. See also Kleinrock [1976] and Kobayashi [1983] for ex- 
pository treatments on the diffusion approximation method. 

The diffusion processes we primarily deal with in the 
present and companion papers are an Ornstein-Uhlenbeck 
process (see e.g. Feller [1966], Cox and Miller [1965]) and 
its variants. An application of the Ornstein-Uhlenbeck (0- 
U) process to a communication network was discussed by 
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Kobayashi, Onozato and Huynh (19771 and Kobayashi [1983] 
in their performance analysis of the ALOHA random acceee 
scheme. Kobayashi [1990] also discusses the 0 - U  proceM to 
characterize the multiple on-off source modelr of a statistical 
multiplexer. More recently, Simonian [1991], Simonian and 
Virtamo [1991] discuss applications of an 0-U process to the 
analysis of statistical multiplexer. We should also note that 
Knessl and Morrison [1991] discuas the heavy-traffic analy- 
sis of the model of An id  et al [1982], resulting in an 0-U 
process representation. 

In the present paper, we will extend the earlier results 
and derive a diffusion approximation for multiple typm of 
traffic, and compute the equilibrium state distribution. In 
the companion paper (Ren and Kobayashi [1992b]), we shall 
discuss the transient analysis. 

2 Derivation of a Diffusion Ap- 
proximation Model 
Let there be Nk sources of type k, where k = 

1,2,. 9 e ,  K ,  and let Jk(t)  denote the number of type k sources 
in "on" (or "burst") state: the remaining Nk - Jk( t )  sources 
are "off' (or "silent"). We assume that successive "on" and 
''OF periods of each source form an alternating renewal pro- 
cess. For mathematical simplicity, we further assume that 
the uofl" and uon" periods of type b sources are both ex- 
ponentially distributed with parameters a h  and &, respec- 
tively: 

ah1 = 
p i 1  = 

The mean silence period of a type k source,(l) 
The mean burst period of a type k source. (2) 

Let j be a vector defined by 

where j ,  is an integer that Jk(t)  can take on, 0 5 jk 5 Nk. 
Let Rk [packets/sec.] be the rate with which a type k 

source generates packets during its burst period. The aggre- 
gate packet arrival rate is therefore 

K 

(4) 
k = l  

Let C [packets/sec.] denote the link capacity of a 
multiplexer output, and Q(t)  be the queue size in the as- 
sociated output buffer. Although Q(t )  is an integer-valued 
function, we approximate it by a time-continuous function as 
remarked earlier. Then we can relate the buffer queue size 
process Q(t )  to the packet arrival process R(t) by 

(5) 
- = (  dQ( t )  R( t )  - C,  

dt 0, otherwise. 

Although neither R(t) nor Q(t) is a Markov process, the 
multivariate process (J(t), Q(t) )  = ( J k ( t ) ,  1 5 k 5 K; Q(t) )  

if Q(t )  > 0 or R(t) > C, 

is a Markov process. We define the probability distribution 
function 

Pdj, Z , t )  = p d [ J k ( t )  = jk ,  1 5 k 5 K; and Q(t) 5 z ] .  
(6) 

Then we obtain the following partial differential equation 
that governs the proceee (J(t), Q(t) )  

where 1k is a vector that has unity in its k-th entry and is 
zero elsewhere. If we consider the limit case, i.e., z 4 00, 
Eq.(7) reduces to the system equation of a multi-dimensional 
birth-and-death process, yielding the following simple prod- 
uct form solution for the time-dependent solution 

K 

where 

and 

The expression of Eq.(9) is obtained by assuming that all the 
sources are initially off, i.e., Jk(0)  = 0 .  A generalization to 
arbitrary initial condition is straightforward (see Kobayashi 
and Ren [1992]). 
As is well known, the binomial distribution approaches 

a Gaussian distribution with mean Nkqk(t) and variance 
Nkqk(t)(l - q k ( t ) )  as Nk becomes large. This observation 
leads us to approximate the jump process J k ( t )  by a contin- 
uous process Yk( t ) .  Then we define the corresponding prob- 
ability distribution of the approximated multivariate process 
(Y(t) ,  Q(t>) by 

which is a density function with respect to the variables 
Yk(t), ( k  = 1,2, - -, K), but is a distribution function with 
respect to Q(t ) .  Then by applying the Taylor series cxpan- 
sions to the terms in Eq.(7) and retaining the first and the 
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second order terms, we obtain the following equation 3 An Ornstein-Uhlenbeck Process 

Y k p k  B2f(yi t i t )  +- 
2 BY: 

By a simple rearrangement, we can write 

Approximat ion 
The diffusion equations (16) and (19) have a simpler 

structure than a general multi-dimensional diffusion equa- 
tion (we e.g. Cox and Miller [1965]) in the sense that 
there are no cronecoupling terms *. This is not un- 
expected since the K components of the vector process 
J(t) = [Jl(t), Ja( t ) ,  . , JK(t)] are independent of each other, 
hence we find the product form solution of Eq.(8). There- 
fore, we can proceed to solve the individual diffusion pro- 
cesses (Yk(t)} eeparately. The forward equation for the k-th 
component process Yk(t) is given from Eq.(l6) as 

Now let y; be such that mk(y) of Eq.(14), known as the 
infinitesimal mean, becomes sero, i.e., 

Nkffk 
f f k  + P k  

y; = - 

where we write f instead of f ( y ,  E, t), and If we consider a narrow region around y = y; (which will be 
well justified as discussed later), we can approximate Uk(y), 

mk(yk) = Nkffk - ( f f k  + P k ) Y k i  (14) the infinitesimal variance, by a constant value 

(23) 
vk(yk)  = Nkffk - ( f fk  - P k ) Y k *  (15) 2NkffkPk 

f f k  + P k  vk(Y) vk(Y;) = -* If we take the limit z 4 00, then the marginal distribution 
function f (y ,  +oo, t )  er f ( y ,  t )  satisfies Then the diffusion equation (20) becomes 

where L is a linear operator defined by 

Equation (16) is the forward diffusion equation (see e.g., 
Feller [1966]) of the Markov process Y( t ) ,  which is a dif- 
fusion approximation of the process J(t). The operator L is 
also known as the infinitesimal generator of the Markov pro- 
cess Y(t ) .  The adjoint operator (see e.g. Wenteell [198l]) 
L' can be easily found to be 

The diffusion process that is characterized by the above equa- 
tion is called an Ornstein-Uhlenbeck process (Feller [1966], 
Cox and Miller [1965]). This type of equation appeared 
in an analysis of the ALOHA random-access protocol (see 
Kobayashi, Onoeato and Huynh [1977], Kobayashi [1983]). 
The equilibrium-state density function, denoted fk(y), is 
shown to be 

- -  a f (y , t )  - L' . f ( y J )  (19) When we impose the reflecting boundaries a t  y = 0 and 
y = Nk, the corresponding solution is a truncated (at y = 0 
and y = Nk) Gaussian distribution of the form (25). 

at 
is the so-called backward diffusion equation. 
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4 Analysis of the Buffer Behavior for k = 1,2,. -, K. 
Let us transform the variable y k  in the following way 

Now let us return to the generalised birth-and-death 
process equation (7) or its diffusion process analog (12). The 

(36) 

(37) 

y k  - 92 
z k  = - 

buffer content Q(t), a fluid process, is coupled with the vec- 
tor process J(t) (or its approximation Y(t ) )  only through its 
weighted sum R(t ) .  Because we are interested in the equilib- 
rium state solution, we can write the diffusion equation (12) 
in the limit t -+ 00 as 

u k  ' 
2 R k f f k  

a k  + p k  
w k  = z k - -  

and define A k ( Z k )  and B k ( W k )  88 

where 
d a B k ( w k )  1 W 1  

(28) + {s + u k ( u )  - $ } B k ( w k )  = 01 (40) 
h2 

We may solve the partial differential equation (27) by sepa- 
rating the variables y and z, and write where 

) U .  (41) 
Rk'k ) z u a + (  c k  - R k Y ;  

f ( Y 1 4  = 9 ( Y )  * F ( 4 .  (29) u k ( u )  = (- 
a k  + p k  a k  + p k  Then Eq.(27) reduces to the following ordinary differential 

equation. Equation (40) is the differential equation for a special 
parabolic cylinder function, which is also known as Weber's 
equation (see e.g., Olver [1974] p.206). Its elementary so- 
M o n s  which have the appropriate behavior as W k  + fao 

and Hardin [1970]) 

- -  F'(4 - 
F ( z )  (cf='=, R k y k  - c ) g ( Y )  

L - d Y )  
= U  (30) 

where L is the linear operator defined by Eq.(17) and is require u k ( t O  to be nonnegative integers, (see Sweet 

a real constant to be determined below. From the first and 
last terms in Eq.(30) we readily find 

F ( z )  = e"*= 

except for a multiplicative constant, which we shall deter- 
mine later. The differential equation for g ( y )  is obtained 
from the second and last terms in Eq.(30), by explicitly writ- 
ing the operator L: 

i k  = o11,2 , '* .  (42) ut(.) = i k i  

(31) Then the solution of Eq.(40), corresponding to i k ,  is given 
by 

(43) 
def 2-% -3 w k  

B k ( w k )  = D i b ( w k )  - ' e  4 Hih(z), 

u ( c f 1  R k Y k  - c ) g ( Y )  where Hi , ( . )  is the Hermite polynomial of order i k .  
Now we shall determine the eigenvalue U .  From Eqs.(34), 

(41) and (42), it is not difficult to  see that U must satisfy 
the following quadratic equation for each integer vector i = 

= E:='=, { ( a k  + p k ) & [ ( Y k  - Y ; ) g b ) ]  

K K K 
We further assume the following separation of variables 

K ) U a  + (c-c R k ? / ; ) u  - i k ( a k + p k )  = 0. 
g ( Y )  = n g k ( Y k ) i  (33) k t= l  k = l  k = l  

k = l  (44) 
and partition the constant C as 

Y 

Since all the components i k  are nonnegative, Eq.(44) yields 
two real roots; one positive denoted u t ,  and one negative 

n denoted U ; .  In particular, when i = 0, we find 
c = c c k .  (34) 

(45) 

(46) 

k = l  
uo' = 0 ,  

Then we can write separate differential equations for the K 
= - C - C k = ~ R k y ;  < o. 

K R'o' 
N k a k p k  c i a  d ck=l a:+ib 

- individual y k ' 8  by rearranging Eq.(32) uo 

( - ) G g k ( Y k )  + + f l k ) - [ ( y k  - Y ; ) g k ( Y k ) l  
d Y k  The last inequality is obtained by assuming that the system 

- u ( R k y k  - C k ) g k ( Y k )  = 0, (35 )  is stable. 
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Let us assume for the moment that the capacity of the 
Statistical multiplexer output buffer is infinite. Then Eq.(31) 
suggests that an inclusion of any positive root U[ > 0 would 
lead to an unstable solution. Thus, the general solution of 
Eq.(29) is representable as 

Note that the first term is the marginal distribution in the 
limit z -+ +00. A dominant term in the summed terms is 
the one that corresponds to the root U; of (46), since this 
root is the largest (i.e., the closest to the origin U = 0) among 
all the negative roots U;. 

Then the equilibrium probability distribution function 
that the buffer content exceeds z is defined by 

t-D+oo lim F ( Q ( t )  > z) = 1 - - * .  J_a- j(Y1.) dY - 
K 

U; z 
= bie 1 

i 

where 

The above expression for bi is derived using the property 
(Gradshteyn and Ryzhik [1965] p.837) that 

J-CO 

Determination of the unknown coefficients {ai} or {a;} is 
found not so simple. The cases discussed by Knessl and Mor- 
rison [1991] and Hagan, Doering and Levermore [1989] cor- 
respond, in our formulation, to the single type of traffic, i.e., 
K = 1. Their approaches, unfortunately, are not extendable 
to the multiple type case, in which we are primarily inter- 
ested. We are currently investigating an alternative method 
to determine the coefficients {ai} (or {bi}). 

However, the asymptotic behavior of buffer overflow, i.e., 
for sufficiently large z, is characterized by the term that has 
the largest negative (i.e. the dominant) root in its exponen- 
tial term. In our case, this dominant root is U;. Thus we 
find 

F ( Q  > z) x bOeuiz, when z is large. (51) 

Note that U; -, 0- when traffic intensity p (= w) 
approaches to 1, and all the other negative roots are upper- 
bounded. Also, when the traffic becomes heavy (i.e. p + l), 

the output buffer queue will blow up. This implies F(Q > 
z) w 1, for all z > 0. Then we find that bo M 1 (but always 
less than l), 

F ( Q  > z) M eu le ,  when p M 1 and z is large. (52) 
Our numerical study shows that the diffusion approxima- 

tion method presented above tends to  underestimate the 
buffer overflow probability. An intuitive interpretation of 
this error is that the arrival process 

K 

Rt = z R k y k ( 1 ) i  (53) 
k=l 

which is a diffusion approximation of R( t )  of Eq.(4), may 
take negative values, whereas R(t )  does not. But such error 
should become negligible as the traffic intensity increases. In 
fact we can show that for the infinite source model with single 
type of traffic (i.e. K = 1, N -+ 00, a -, 0 and Na + A), 
Zd- = jmi, where .Ed- is the largest negative eigenvalue 
derived by Kosten [1974]. The arrival process Rt has, in 
the equilibrium, a Gaussian distribution with mean m ~ ( =  

E:='=, Rky;)  and variance a i (=  c k = 1  ~ i u f ) .  BY applying 
the theory of large deviations [2], we can show 

K 

where 9' = . This leads to an approximate lower 
bound for F(Q > 0) since {Rt > C} implies ( Q ( t )  > 0). By 
combining the above arguments, we find 

0: 

provides a lower bound for F(Q > z) for sufficiently large z. 

5 Numerical Examples and Discus- 
sions 

Now we proceed to apply the above solution method to 
some numerical examples. As we noted earlier, the heavy- 
traffic analysis by Knessl and Morrison [1991] corresponds 
to the diffusion approximation model for a single type of 
traffic, i.e., K = 1. They discuss a number of numerical 
examples, and compare their asymptotic analysis with the 
exact solution by Anick, Mitra and Sondhi [1982], and show 
that the solutions agree quite well. 

Such an excellent agreement suggests that our diffusion 
approximation process model for multiple type of traffic will 
be also accurate enough for practical use over a wide range 
of traffic levels although a rigorous proof and numerical val- 
idation are yet to be demonstrated. 

We choose the following model parameters to be compa- 
rable with those of Kosten's numerical analysis, Le., K = 
2, c = 38, 

Type 1 Sources : N1 = 25, a1 = 0.4, p1 = 1.5 , R1 = 2 .  
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Figure 1: Asymptotic buffer overflow probabilities: Kosten's 
simulation result vs. diffusion model with two types of traf- 
fic. 

Type 2 Sources : Na = 50, = 0.6, f i a  = 0.75, Ra = 1 . 
For this set of parameters, which results in the traffic inten- 
sity p = 0.862, Kosten's largest negative (i.e. the dominant) 
eigenvalue is Zd- = -0.270, while our dominant eigenvalue 
(Eq.(46)) is U; = -0.293. The ratio of Zd- to U; is 0.922 
and approximately equal to the traffic intensity 0.862. Equa- 
tion (54) provides Prob(R > 38) x 0.254, which is a good 
approximation to Kosten's F(Q > 0) obtained by simulation. 
In Figure 1, the asymptotic buffer overflow probabilities are 
compared under Kosten [1984] model and our diffusion ap- 
proximation by Eq.(55). 

A more comprehensive numerical study, which will involve 
extensive simulation efforts, is currently pursued. 

The diffusion approximation method that we have intro- 
duced can apply to more general models. For example, the 
exponential distribution assumption made in Section 2 is not 
necessary (see Kobayashi [1990]). The only restriction is that 
the Laplace transform of the distribution function of J ( t )  
must be a rational function. That is, if the mean values of 
the silence and burst periods are given by a i 1  and fi;', re- 
spectively, the equilibrium distribution of PG, t )  is given by 
Eq.(8) irrespective of the distribution forms of silence and 
burst periods. 

6 Conclusion 
In this paper, we have developed a multi-dimensional 

diffusion model to characterize an ATM statistical multi- 
plexer with multiple types of traffic. Our results show the re- 
lation between the well-studied statistical multiplexer model 
and its diffusion approximation. The solution form for the 
buffer distribution obtained by the diffusion approximation 
has a spectral expansion expression, whose exponential terms 
can be easily derived. The diffusion model provides an ac- 
curate approximation in the operating region of our interest, 

i.e., when the number of sources is large and traffic intensity 
is high. 
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