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SUMMARY In the present paper we present a mathematical
theory for the transient analysis of probabilistic models relevant
to communication networks. First we review the z-transform
method, the matrix method, and the Laplace transform, as
applied to a class of birth-and-death process model that is
relevant to characterize network traffic sources. We then show
how to develop transient solutions in terms of the eigenvalues
and spectral expansions. In the latter half the paper we develop
a general theory to solve dynamic behavior of statistical multi-
plexer for multiple types of traffic sources, which will arise in the
B-ISDN environment. We transform the partial differential
equation that governs the system into a concise form by using the
theory of linear operator. We present a closed form expression
(in the Laplace transform domain) for transient solutions of the
joint probability distribution of the number of or sources and
buffer content for an arbitrary initial condition. Bosh finite and
infinite buffer capacity cases are solved exactly. The essence of
this general result is based on the unique determination of
unknown boundary conditions of the probability distributions.
Other possible applications of this general theory are discussed,
and several problems for future investigations are identified.
key words: tyansient analysis, statistical multiplexer, multiple-
types of traffic, fluid-approximation Kronecker sun, Laplace
transform

1. Introduction

A major performance issue associated with future
high-speed communication networks is that the trans-
mission speed is so high that a ratio of the propagation
delay (determined by the speed of light or electro-
magnetic wave for a given transmission media) to the
packet or cell transmission may become significantly
greater than unity. This presents a host of new chal-
lenges, as well as opportunities, to network designers
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and performance analysts. One such issue is that the
network design and control methods based on the
analysis of steady state solutions will no longer be
adequate: we need instead to develop a new methodol-
ogy to formulate and understand the transient behav-
ior of network systems.

For a multiplexer in fast packet switching, its
workload is characterized by the aggregate packet
arrival process that result from the superposition of
packet streams from multiple sources. The instantane-
ous arrival rate in the aggregate packet arrival process
is a function of the number of sources in their burst
states, and thus fluctuates with high variability. There-
fore, the aggregate traffic is usually far from a renewal
process, because there is a positive dependence between
successive arrival times. This dependence is a major
cause of congestion in the multiplexer queue and often
leads to surprisingly large packet delays under heavy
traffic conditions.

In the present paper we present a mathematical
theory for the transient analysis of probabilistic models
relevant to communication networks. An emphasis
will be placed on a general theory to understand
dynamic behavior of multiple traffic source models,
statistical multiplexer for B-ISDN. We use a linear
operator theory and its spectral expansion method, as
applied to the transform domain (the joint z-transform
and double Laplace transforms) of the partial
differential equation that governs the probabilistic
behavior of such systems.

2. Transient Analysis of On-Off Sources
2.1 The z-Transform Method

Let us assume that a multiplexer is connected to a
number of sources and that N sources are in the
“off-hook” state, i.e., N sources are engaged in their
calls. Of course, N will change whenever a call is
completed or a new call is initiated, but its time
constant is on the order of minutes as compared with
hundreds of milliseconds for bursts and silence
periods, or tens of milliseconds or less for packets.
Thus, N can be treated as a fixed constant in the
analysis of our model at either burst level or packet
level.
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Let J (¢) represent the total number of sources in
the burst state. 1f we assume, for mathematical simplic-
ity, the exponential distributions for both burst and
silence periods, the random process J(¢) can be for-
mulated as a birth-and-death process.

Let

P, n=PJ(1)=j], 0sj=N, (1)

and let A(j) and u(j) be the birth and death rates,
respectively, when J (¢) =j. Then we find that P(j, t)
satisfies the following set of differential equations:

LD )+ () PG D
+AG-DHPG—-1,1)
+u(j+D PG+, 1),
for 0L<N, (2)
with
P(—1,1)=P(N+1,t)=0, for all r. (3)

By setting the left side of (2) equal to zero, the
equilibrium state solution of Eq. (2) is obtained in a
straightforward manner (see e.g., Ref. (13)).

The time-dependent solution for the general class
of birth-and-death process model is difficult. But in the
on-off source model discussed above, the A(j) and
©{j) are given by

AG)=(N—ja, (4)
©(j) =jB. (5)
where

'=Mean off period (6)
B '=Mean on period (1)

and we can obtain a closed form solution of the
time-dependent solution as outlined below.

If we define the following z-transform with respect
to the integer variable j

N

G(z,)=2 PG, ) =2 PU.D) (8)
which is also known as the probability generating
function, E[2V"]. Then the set of (N +1) differential
equations of (2) reduces to the following single partial
differential equation:

%iz(z—l)[NaG(z, 1)
0G(z, 1)
~(az+ ) 22| (9)

which can be viewed as a special case of the following
planar differential equation:
oG aG

Por g =0 (10)
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where G denotes G (z, t) defined above, and p, ¢ and
r are, in general, functions of 7,z and G.

By solving the above partial differential equation,
we obtain

G(z, )= (az+ )"
_[( (a+B)(az+B) ]*N

az+B)—alz—1)e teth?
=[1+Ez-1q()]", (1)
where
q([): aiﬂ(l_ef(aﬂi)t)' (12)

In deriving Eq. (11), we assumed that all the sources
are initially off, i.e., J(0) =0 with probability one:

G(z,0)=1, (13)

By taking the inverse z-transform of G (z, ¢}, i.e.,
by calculating the coefficient of the z’ term, we find

N
Py, 0 =2{G(z, r>}=(j Jao =g,

(14)

which is the binomial distribution with parameter
q(t).

If we assume, instead of (13), an arbitrary initial
condition {P(i,0),0=<i< N}, we obtain

Gz t)zg] P(i.0)

i+ CE=DrO)[1+ =1 gq()]¥
(15)
where r(t) is defined by

r(1) = + B ewm=1- By (e

a/+ﬂ a+p

The inversion of the generating function G(z, )

~of Eq. (15) can be easily performed by observing that

Gi(z, ) =[1+ (-1 r(O)[1+ (=D g ()]
(17)

is a product of the generating functions of two
Bernoulli (or binomial) distributions. Thus we find

P:(j, =PI (1) =jlJ(0) =i]=Z7Gi(z, 1))
=2 L) ti=ro)y
(M Do =g ay)

in which we assume (;.):0 for i<j. Therefore we

finally obtain
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P@nzgp@ma@n (19)

Now in the limit t—oo, we find both ¢(¢) and
r(t) converge to a/(a+f):

) L o«
1;}2 r(t)_l,lfg q(t)————m (20)
Thus we find
. _ ny_a |V
wgquy_P+wz na+3], (21)
and

ymp@n:zﬂmeuJﬁ

=<f><ai3y(af3>&jg”’

(22)

which is the equilibrium solution, independent of the
initial distribution {P (i, 0)}.

2.2 Matrix Representation, Spectral Analysis and the
Laplace Transform

Now we discuss a matrix representation approach
to the birth-and-death process model. We draw much
of the material from Syski‘®. The matrix approach is
applicable to a general class of the birth-and-death
process model, whereas the z-transform method dis-
cussed in the previous section is suitable for a limited
class of the models, although it often results in a nice
closed form solution as shown in Eqgs. (14) and (18).
The on-off source model in which the birth and death
rates take special forms of Egs. (4) and (5) happens to
be one of few cases that allow such elegant solutions.

Define a column vector of (N +1) dimension:

[ PO, 1) |
P(1, 1)

P(j,t)

| P(N, 1) |
Then Eq. (2) can be written in matrix form as

dP (1) _
e I8 (24)

where # is an (N+1) X (N+1) tridiagonal matrix
whose elements m;; are defined as

my; 1 =A(—1), my=—A) —p(j),

mjj+1:ﬂ(j+ 1))
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for j=0,1,--, N,

and m;=0 for all other { and j. (25)

The differential equation (24) has the solution:

P ()=, () P(0), (26)
where the matrix function © (z) is given by

Plt)y=e". (27

The matrix #, called the infinitesimal generator
of the Markov process J(1), is a singular matrix,
because the sums of its rows equal to zero, therefore its
determinant vanishes. The matrix P (¢) is a stochastic
matrix, and satisfies the following Markov transition
property, i.e., the Chapman-Kolmogorov equation:

Pt+h) =P ) P(h), (28)

Assuming that the Markov process is ergodic and
hence that there exist stationary distributions, we
denote by p the vector of the limiting distribution:

p=lim P (1), (29)

whose jth element is p; as defined in Eq. (22).
It then follows from Eq. (24) that for the station-
ary distribution

M p=0. (30)

Let {s;, j=0, 1, -+, N} be eigenvalues of 4, i..,
they satisfy the determinant equation:

det|#—sI|=0, (31

then eigenvalues of P (¢) are e®‘. Therefore, the

determinant of P (¢) is given by
det| P (1) |=e™"* (32)

where T4, the trace of 4, is the sum of diagonal
elements of #(:

EMz—gMUHwUH (33)

Spectral Expansion and Projection Matrices
It is known from the matrix theory that the trace
is the sum of all eigenvalues:

EM=§&, (34)

and that the determinant is the product of all
eigenvalues:

ded/%|==ilAs. (35)

Since # is singular as we remarked earlier, the
determinant of # is zero. Therefore at least one
eigenvalue of #{ is zero, and thus the corresponding
eigenvalue of P(¢) is unity. Suppose that all
eigenvalues of P (¢) are distinct. Then the the matrix
has the following expansion, which is referred to as the
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spectral expansion:

N
P=3 ee, (36)
where € ; is a projection matrix with the properties:
0 for k=+j
&, for k=j,
and
N
RNe,=1I (38)

]
(=]

J

When some of eigenvalues are equal, i.e., when the
characteristic equation (31) has multiple roots, the
corresponding spectral expansion of Eq. (36) includes
polynomials in ¢.

Let U; and V; be left and right eigenvectors of #{
associated with the eigenvalue s; such that

Uii=sUj, (39)

M Vi=s;V5, (40)
1, for k=j,

U; sz&.k:{ ] (41)
0, for k=j.

Then we can write
&,=V;Uj. (42)

By substituting Eq. (36) into Eq. (26), the proba-
bility distribution vector P () can be written as

N
P (D=2} aeV, (43)

where the a; is the inner product of the initial distribu-
tion vector P(0) and the right eigenvector:

a;= U;P(0). (44)

It can be shown that the real eigenvalues are zero
or negative, whereas the complex eigenvalues have
always negative real parts. The number of zero
eigenvalue is N+ 1—r, where r is the rank of the
matrix #. When the process is ergodic, there should
be only one zero eigenvalue, thus 4 is of rank N. It
is not difficult to show that the left eigenvector Uj
associated with the eigenvalue 55=0 has unity as its all
elements:

U0,:[19 17.”,1]’ (45)

which implies @o=1. We can therefore write
N
P()=Vo+ Z}l e¥ta; V. (46)
=

Hence the limiting value of P (), as ¢ tends to infinity,
is Vs, because all the exponential terms approach zero.
As is expected from Eq. (29), we find

=W (47)
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It will be instructive to note that the limiting distribu-
tion p can also be expressed as

p=EP(0), (48)

which is the projection acting on the initial distribu-
tion.
Application to the On-Off Source Model

Now we are ready to apply the above results to the
on-off source model, where the birth and death rates
are given by Eqgs. (4) and (5) and the matrix # of Eq.
(25) is given by

[ — Na B
Ne —(N—1Da—§8 28
(N—Da —(N—2)a—28
M= .
i
—a—(N—-1)8 NS
a — N3 |
We then have
detltt—sT|=TI[j (a+8) +s] (49)

so the eigenvalues of # are
s;=—jla+p), j=0,1,2,, N (50)

and the non-equilibrium distribution P(t) can be
written as follows:

N
P()=p+ 3 e eV, (51)

An Infinite Source Model
Consider the limiting case, where

N—oo, a—0, while Na—24, (52)

Then the source model becomes an infinite source
model (see e.g. Ref. (13)), and bursts arrive according
to a Poisson process with rate A and lasts on the
average for 1/8 seconds. The transient probability
distribution function now takes the form

fpo—cnf

P(j’t): ]'

exp{ —A1—e,
j=0,1,-  (53)

The last expression represents the probability that j
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bursts are found at time ¢, and it is equivalent to the
time-dependent solution for an M /M /co queueing
system. Using a result in Taka¢s®®, we can assume that
the burst period has a general distribution G (t), and
find the following transient solution:

pin— {A[ G;!(y)dy}j

exp{—/i[;t G”(y)dy},
(54)

where G°¢(t) is the complement of the distribution
function G (¢).

The infinitesimal generator matrix 4 is an infinite
matrix given by

(-2 8 0 0
A —(A+pB) 283 0
M=| 0 A —(A+28) 0O
0 0 A 0
L : |

(55)

The above result carries over to the multiple types
of traffic, as discussed by Kobayashi and Ren"®.
The Laplace Transform Method

Let us begin with the differential Eq. (24), i.e.

dP (1)
dt

We define the Laplace transform of P (¢) as

=MP(1). (56)

P*(S):oft{P(t)}z-/o-mP(t)e_Stdt. (57)

Then Eq. (24) is transformed into the following matrix
equation:

sP*(s) — P (0) =M P*(s), (58)
which leads to

P*(s) =R (s) P(0), (59)
where

R$)=[sT—m]' =L AP ()} (60)

This relation between % (s) and P(r) is readily
obtainable from Eq. (26). The Laplace transform
R (s) is calld the resolvent of the Markov transition
operator P (¢) (see Feller'”, Syski®). The inverse
matrix Eq. (60) exists for those s which are not equal
to the eigenvalues s’s of #. The set of all s for which
R (s) exists is called the resolvent set and the set of
eigenvalues is called the spectrum. Referring to the
spectral expansion of Eq. (36), we have the following
expansion:

R (s5)=3-5

=os—s;’

(61)
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which leads to the following relationship between the
resolvent and the projection matrix:

£,=lim % (s) (s— ). (62)

We now go back to Eq. (60) and write
A (s)

_ _Als)
R(s)= det[sT— ]~ C(s)’ (63)
where
detlsl—/%|=JﬁI(JU(a+B) +s], (64)

as seen from Eq. (49). We write the (N +1) X (N +1)
matrix s« (s) defined in Eq. (63) as

A (s)=[A4;5(s)], (65)
where
A;(s) =det| ;. (66) .

The matrix J;; is a minor matrix of order N, obtained
by eliminating the jth row and ith column of [s/ — #].

3. Transient Analysis of a Statistical Multiplexer

There have been a number of studies that report
analytic model of statistical multiplexing, but most
studies have been limited to models with one type of
information source (e.g., voice sources) or two types of
sources (e.g, voice and data).

Anick, Mitra and Sondhi‘®, Cohen®™, Hashida
and Fujiki ¥, Kosten 19 Mitra ®Y, Stern ® and
others®-"29-@ discuss fluid approximation models
that are relevant to statistical multiplexing systems and
obtain the equilibrium state solutions for single type of
traffic sources. For an expository treatment of these
earlier results, the reader is referred to Kobayashi®®.
Ren and Kobayashi®® recently obtained transient
solutions for such statistical multiplexors by using the
double Laplace transform method.

Kosten™ presents some analytic and simulation
methods to derive the equilibrium solution for multiple
types of traffic. Kobayashi"®"'” discusses the case of
infinite sources with multiple types, and characterizes
an asymptotic behavior of the buffer contents in terms
of simple parameters of what he terms the “dominant”
type traffic. Elwalid, Mitra and Stern® and Stern and
Elwalid®® discuss equilibrium state solutions when
the sources are modeled as Markov modulated sources,
and derive both theoretical results and computational
methods.

In this section we present a general theory of
transient analysis of a statistical multiplexer with
multiple types of traffic, based on the recent result by
Kobayashi and Ren"®.
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3.1 Statistical Multiplexer for Multiple Types of
Traffic

Let there be N, sources of type m, where m=1, 2,

-, M, and let J,(¢) denote the number of types m

sources in “on” state (or in “burst”, or “talk spurt”

mode in the case of voice sources). Therefore, there are

Np—Jn(t) sources which are in “off” state (i.e.,
“silence” mode).

We assume that successive “on” and “off” periods
of each source form an alternating renewal process.
For mathematical simplicity, we further assume that
the “on” and “off” periods of type m sources are both
exponentially distributed with parameters @, and Sn,
respectively:

a»'=The mean off period of a type m source;
(67)
Bn'=The mean on period of a type m source.
(68)
Let j be a vector defined by

F=l. jar o5 ju], (69)

where jn is an integer that J, (f) can take on.

Each source of type m in its burst state generates
packets (or cells in the ATM terminology) at the rate
of R [packets/unit time]. The aggregate rate of
packet arrivals at time ¢ is therefore

R()=3 Rudn(0). (70)

Suppose that the buffer content is initially empty.
Then while R(¢) < C, the link capacity of the multi-
plexer output, the arriving packets are processed imme-
diately, thus no queue of packets will develop in the
buffer. Once R(¢) exceeds C, however, the output link
can no longer handle all the packets instantaneously,
and buffer contents will grow or deplete at the rate
R (1) — C, depending on whether this quantity is posi-
tive or negative at a given instant.

Let us define Q(¢) as the total amount of packets
found in the buffer of multiplexer output link. Strictly
speaking, Q(¢) is an integer-valued function, but we
approximate it by time-continuous function, assuming
that a series of packets arrive iike fluid flows. This
assumption is well justified in modeling a multiplexer
for a high speed link.

By extending Eq. (1) we define the following
probability distribution function:

P; t,x)=P[Jn(t) =jn, | =Em=M,;
and Q () = x]. (71)

Then we obtain the following partial differential equa-
tion that governs the dynamic behavior of the system

A MATHEMATICAL THEORY FOR TRANSIENT ANALYSIS OF COMMUNICATION NETWORKS

1271
under discussion:
PG (4 R,,,-,"_c>a_ipg; .
= é[(Nm —Jm) @nt jnBalPU; ¢
+§I(Nm—jm+1>ampg—1m; ‘, x)
+ 3 Gnt D BaP Gt L), (7D)

where I, is a vector that has unity in its mth entry and
is zero elsewhere.

3.2 Linear Operator and Transform Methods

In order to solve Eq. (72) we define the multi-
dimensional z-transform or probability generating
function

=Z{P{; t,x)}
=2 2 20 P 1, x)zl'zf* 2.

(73)

Substitution of Eq. (72) into Eq. (73) results in the
following expression, which is similar to to Eq. (9)
(see Kobayashi!'®):

G(z; t,x)

ot
aG(z, £, x) .
:ﬁl(z,,,—l)[NamG(z; t, x)
—~ (amz,,,+b’m)—a—(;(§;z+x)} (74)

Equation (74) is rather complex in its appearance,
but if we apply the theory of linear operator, the above
equation can be transformed into the following concise
expression:

a%G+i)—G MG, (75)

where we now drop the arguments z, f and x in the
function G(z; ¢, x). M is the linear operator defined
by

/% szﬁjl (Zm_ l) [NmamG‘ (amzm-i-,@,,,)g—z%],

(76)
and the operator J) is defined as

D G=”,§1[RmzmaTiG— CG]. (77)
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A critical observation that we make here is that the
operator { can be interpreted as a matrix multiplying
G, which should be interpreted as a vector of dimen-

M
sion L, where L= I—I1(N'"+l)' The matrix /4 is

representable in terms of the infinitesimal generator
matrices A ’s:

./%:./%1®./%2@"‘@/%M, (78)

where @ represents Kronecker sum. The Kronecker
sum of two matrices & and B is defined by (see e.g.,
Bellman®, Neuts®")

ADB=ARI+ 1R (79)

where & is the Kronecker product, which is well
known in the matrix theory. Lexicographical ordering
of the elements of vector G and those of # should be
chosen consistently and the example will clarify this
point. The matrix Mn» is an (Np+1) X (Na+1)
tridiagonal matrix of the form 4 defined earlier.

Similarly the matrix interpretation of the operator
Q) is given by the following diagonal matrix of dimen-
sion L:

D=R"PRPD--PRM—-C-I, (80)
where [ is the identity matrix of dimension L, and
R™=diag[0, Rm, ***, juRm, -, NuR2]. (81)

We define the Laplace transform of G(gz; ¢, x)
with respect to time ¢ by

G*(z; 5, x)=£.{G(z; 1, x)}. (82)

Then Eq. (75) can be transformed into
sG*(z; 5, x) —G(z; O,x)+o‘i)5ax—G*(z; 5, x)
=M G*(z; s, x). (83)

We then take the Laplace transform of G*(z; s, x)
with respect to the buffer content variable x;

sG** (z; s, u) —G*(z; 0, u) + D{uG**(z; s, u)
—G*(z; 5,0)} =M G**(z; s, u), (84)
from which we obtain

[sT+u D—m]G**(z: s, u)

=G*(z; 0, 0) +D G*(z; 5,0). (85)
We formally define an operator % (s) by
R(s)=[sI+uD—Mm]", (86)

which is a generalization of the resolvent defined in the
previous section. By applying the spectral expansion
method discussed earlier, we can represent the operator
F (s) as follows:

R(=g (87)
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where £ ; is the projection operator, and is obtained as

8j=£{rp_(s—sj)j?(s). (88)

As shown by Eq. (3), the operator &; can be more
easily obtained, once we find the jth left and right
eigenvectors associated with the eigenvalue s,.

Let s be one of the eigenvalues and let ¥ (z; u) be
the multidimensional z transform of the associated
right eigenvector. Then V(z; u) should satisfy the
following characteristic equation:

sV (z, wy=[M—u D]V (z; u) (89)

or

M
2 [amza+ (uRn~+ Bn— an) 2n

1

—Bm]aTam{ln Viz; w)}

m=1

=5+ UC+ 3 [Nntn (zn—1)). (90)
(u

Let zm (#) and zmz(u) be two (real) roots of the

quadratic equation
amzrﬁ+(URm+£m_am)zm_£m:0’ (91)

which leads to the following product form for
V(z; u):

=

V(z; u) =11 (za—2zmi () ) "™ (z2m — zm2 (u) ) V=5,

(92)

where kn is an integer parameter between 0 and Na.
Then taking the logarithm of Eq. (92), and subs itut-
ing it into Eq. (90), we find the following ex licit
formula for the eigenvalue:

M
s=uC— 23 | N — kmzZmz (1)
— (Np—kn) zZm (u0) ]. (93)
By substituting

__ _(uRm+Bm_am)im

Zm1 (%), Zmz2(u) = ,

20nm
(94)
D= (URm+Bm*‘a'm)2+4amBrm (95)
into the last equation, we obtain
1 M
s=u<C—;2 R,,,N,,,)
=
1 M
m=1
M Nn

Therefore, for a given integer vector
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k:[kl, kz,"',kM] (97)

we uniquely determine the corresponding eigenvalue s
as a function of u, and the associated eigenvector Vi (z;
u), which takes the form Eq. (92).

Now we write the multi-dimensional z-transform
of the kth eigenvector as

Vk(z; u):ﬁl Vk,,,(z,,,; u), (98)
where
Vi (2, u)=(z—zmi (22)) " (2 —zma () ) ¥ "7,
(99)

Once the right eigenvector, denoted Vi, is
obtained, the corresponding left eigenvector Ui is
given by

Ue=(Q7HVs, (100)

where ( is a diagonal matrix that transforms the
tridiagonal matrix 4{ into a symmetric matrix. It is not
difficult to show that

Q=000 Q0w (101)

where & represents Kronecker product and the j
element of the diagonal matrix @ is given by

N i)

which transforms #{» into a symmetric matrix.
We normalize these eigenvectors so that

Ui V=0, (103)

where Su is the Kronecker delta. We find that the
projection operators & 4 is representable, in its matrix
interpretation, as

Therefore, from Egs. (85) and (87), we obtain the
following:

P** (s, u) =2 {G**(z; 5, u)}

=§:s€_*sk[P*(o, u) + 9 P*(s,0)],

(105)
where Z ! is the inverse z-transform. Thus the P** (s,
M
u) is the probability vector of dimension L= HI(N,,,
m=

+1), and its kth element is the coefficient of z{*'zf2---
zy™ term in G**(gz; s, u), and is equivalent to £, £«
{P(k; 1,x)}.

Taking the inverse Laplace transform of Eq. (105)
with respect to the variable s, we obtain the following
time-dependent solution:

PX(t, u) =L:{P** (s, u)}
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—_—g €k[exp{sk [} e'u”x" P (0, +0)
_1f P*(s5,0)
+DLs {?Ssk}]’ (106)

where x, is the initial buffer content, and the marginal
(in the sense that it is independent of the variable x)
distribution, P (0, + o0), represents the initial distribu-
tion of the “on” sources. In other words P (0, + ) is
the distribution of the vector Eq. (69) at r=0, and is
explicitly given, whereas the boundary condition
P*(s,0) is unknown. The above summation should
be taken over only those values of k for which s =0,
since positive eigenvalues would yield unstable solu-
tions. Then taking the inverse Laplace transform of
Eq. (106) we finally obtain

P(t,x)=L{(P*(t,u)} (107)

In many practical problems we need to resort to
numerical methods to perform the inverse Laplace
transform. (see, for example, Kobayashi®, pp. 73-74
and references therein.) Abate and Whitt"” give an
extensive discussion on the Fourier-series method for
inverting transforms of probability distributions.

3.3 The Boundary Conditions

We now discuss how the unknown boundary
condition P*(s,0) in Eq. (105) should be determined.
First, we need to solve the characteristic equation
det(u O +sI — M) =0 with respect to . This can be
achieved by solving Eq. (96) with respect to w.
Unfortunately, however, « cannot generally be given in
an explicit form, because D, in Eq. (96) includes u.
Hence u must be solved numerically. For the integer
vector k of Eq. (97) we denote the corresponding
eigenvalue by wu.

We denote Vk, U, and € to represent the right,
left eigenvectors and projection operators, respectively.
Note that they should be distinguished from Vi, Us
and & defined in Sect. 3.2, corresponding to the
eigenvalues s;. We can show (Kobayashi and Ren‘'®)

Ui=(Q™)* Vs (108)
and

Ui Vi=Su. (109)
The corresponding projection operator € & is given by

ew=V.Ui (110)

Therefore, alternative to Eq. (105), we find the
following expansion:

Eu
s’k —
P (S, u) ;u—uk

[P*(0, u) +D P*(5,0)]

(111)
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Then by taking the inverse Laplace transform with
respect to the variable u, we have

P*(s, x) =3 6’~k[exp{w‘ x}D P*(s,0) U (x)

_ pUuf(x—x0)
_ A= ek} b0 o)

Uk

U= | (112)
where U (x) is the unit step function.

The eigenvalues w ’s have the following properties
(see Kobayashi and Ren!® for the proof)

M
- There total number of eigenvalues is HI(N,,,—F 1).
e

- The number of nonnegative eigenvalues (i.e.,
Re{wu} >0 for Re{s} >0) is equal to the number of
integer vector k’s that satisfy

M
Zl Rakn< C. (113)
m=

We denote these eigenvalues by .

When the number of “on” sources is such that

M

23 RmJn(t) >C, the buffer cannot be empty at time ¢.

m=1
Therefore,

P (t,0)=0 (114)

M
for such j that 2_1 Rnjn> C. Hence, the number of

non-zero functions {P¥(s,0)} in P*(s,0) is equal to
the number of integer vectors j’s that satisfy

M

2 Rajn< C (115)

m=1

Therefore, from Egs. (111) and (112) and by
extending the analysis in Ren and Kobayashi®®, the
unknown boundary condition P* (s, 0) can be unique-
ly determined by the following linear constraint equa-
tions

« Infinite Buffer Case

—uUr*Xxo
e

‘7'*[ py

P(0, +0) +D P*(s,O)]=o (116)

for each nonnegative eigenvalue #. The number
of constraint equations is the number of k’s that
satisfy Eq. (113).

Finite Buffer Case

e—u.xo
P (0, +o0)
Uk

g ijﬁi exp{uk X}[

+2 P*(5,0)|=0 (117)

where X represents the buffer capacity, and Vk, is
the j-th entry of vector V., which has dimension L
and whose entries are lexicographically ordered by
the M dimensional vector j. The number of
constraint equations is equal to the number of j’s
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that satisfy Eq. (115).
See Kobayashi and Ren"® for an illustrative case,
where N=2, with Ny=1 and N,=1.

4. Conclusion and Further Discussion

In this paper we developed a general theory
related to the transient analysis of teletraffic, especially
the characterization of the so-called on-off source
models, and the statistical multiplexer for multiple
types of traffic. First we reviewed several mathematical
techniques: the z-transform, matrix representation,
spectral analysis, and the Laplace transform. We
clarified the relationship between these different
methods.

In dealing with the multiple type case, we showed
how the linear operator interpretation of the partial
differential equation in the z-transform domain leads
to a natural matrix representation, involving the
Kronecker sums and products of the components
matrices and vectors. We then derived general exact
expressions for the non-stationary behavior of the joint
distribution of j, the vector variable representing the
numbers of on sources of different types, and x, the
buffer content variable, as a function of time 7. We
also derived two different spectral expansion represen-
tations: one in terms of the eigenvalues w4 ’s, the other
in terms of the eigenvalues si’s.

The general results we have obtained are given in
terms of the Laplace transforms, and the joint proba-
bility distribution must be obtained by using the
numerical inversion method. Ren and Kobayashi®
report some preliminary results on numerical examples
for a single type traffic model.

Once the joint distribution is obtained, a number
of performance measures are directly obtainable.
Among them is the probability of cell (or packet)
blocking, which is of significant importance in design-
ing a multi-media high-speed networks. A cell loss
occurs since the multiplexer capacity is, in reality,
finite. The cell loss probability due to buffer overflows
is often approximated by computing the tail end of the
marginal distribution of x that exceeds the buffer
capacity. In this paper, however, we obtained an exact
solution of the probability distribution for a finite-
capacity model as well as for the infinite-capacity
model.

From an application viewpoint, it is important to
address the computational complexity aspect of this
result. Certainly computational complexity grows
exponentially as the size of the problem becomes large,
but in practice it should be sufficient to compute the
first few dominant exponential terms in Eq. (112) that
correspond to those negative eigenvalues w which are
close to zero. Kobayashi"” discusses a simple method
to identify dominant types of traffic that provide a
tight bound on the probability of cell blocking due to
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buffer overflows. His analysis was done, however, for
the steady-states solution in multiple types of traffic
source, where each type is represented by the infinite
source model, as discussed at the end of Sect. 2.2. Such
analysis should be extended to the time-dependent
behavior with finite sources, as well.

The multiplexer transient analysis presented in
this paper should be useful in formulating flow control
models, such as admission control. In a high-speed
network, the conventional feed-back control scheme
based on the steady state analysis will fail, since by the
time some information on traffic congestion (such as
cell blocking at the multiplexer level or call blocking
at the network level) is detected and sent to the
originating sources, it will be too late for the network
to take corrective actions. Thus it is clear that some
type of predictive control must be formulated, and our
result of transient analysis is expected to be valuable in
developing such design and control procedures.

There are a few other important areas for further
investigations: One such area is to generalize the traffic
source model. Elwalid, Mitra and Stern®, and Stern
and Elwalid®® discuss a Markov model with many
states. Zhang® discusses some general properties of
the time-dependent solution for such a traffic source
model.

In order to cope with the computational complex-
ity issue, a general theory of asymptotic approxima-
tions and bounding arguments should be explored.
Alternatively we may be able to formulate the multi-
plexer model based on the diffusion approximation as
has been discussed by Kobayashi’ in dealing with
multiple access protocols.
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