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Abstract 

We introduce a diffusion model to  approximately character- 
ize a statistical multiplexer for a heterogeneous set of traffic 
sources, which is a basis for ATM (asynchronous transfer 
mode) fast packet switching in the future B-ISDN (Broad- 
band Integrated Services Digital Networks). Under a reason- 
able set of assumptions, this diffusion process can then be 
approximated by a multi-dimensional Ornstein-Uhlenbeck 
process, which is a Gaussian Markov process. The packet 
arrival process is shown to be a Gaussian (but not Markov) 
process, which adequately captures the correlated nature of 
packet arrivals and determine the statistical behavior of the 
buffer content. We apply our analytical results to  evaluate 
the multiplexer’s dynamic behavior, i.e., the transient packet 
loss probabilities at the cell and burst levels. 

1 Introduction 

In our earlier work [B], we developed a diffusion-process ap- 
proximation model for an ATM statistical multiplexer with 
multiple types of information sources (i.e., multimedia-voice, 
data, image and video etc.). Essentially an aggregate “on- 
off” behavior of many sources of each traffic type can be 
approximately modeled in terms of a diffusion process -a 
continuous-time, continuous-path Markov process. 

Furthermore, under a reasonable set of assumptions 
the diffusion equation becomes the one for the Ornstein- 
Unlenbeck process [2, 51, a refined model of the Brownian 
motion. The reader is referred to  our forthcoming paper [12] 
in which we present some simulated sample paths to illus- 
trate that the aggregate traffic are well approximated by an 
0 - U  process. The 0 - U  process is a Gauss-Markov process, 
therefore the aggregate packet traffic from different types of 
sources can be also approximated by a Gaussian (but not 
Markov) process. The behavior of the multiplexer buffer is 
closely related to  the multi-dimensional 0 - U  process, and 
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the analysis of buffer behavior is reduced to  the well studied 
differential equation for Weber’s parabolic cylinder function. 
The joint probability distribution of the buffer content and 
“on-off’’ sources, in their equilibrium-state, is then given in 
terms of the corresponding eigenvalues and eigenfunctions, 
which are Hermite functions. For the derivation of our diffu- 
sion approximation model and its steady-state analysis, the 
reader is referred to  [8] and references therein. 

In present paper we extend the earlier result and derive 
time-dependent (i.e., transient) solutions of the underlying 
diffusion equation, then discuss its applications to  perfor- 
mance analysis of an ATM network. In optical communica- 
tion networks the transmission speed is so high that  the ratio 
of propagation delay to  packet transmission time becomes 
much greater than unity. This implies that the conventional 
steady-state analysis of network congestion may not apply in 
this case, since by the time information is provided to  a net- 
work controller, the congestion situation may have changed 
significantly. Therefore, some kind of predictive or preven- 
tive control scheme must be developed, and better under- 
standing of the transient behavior of network dynamics will 
be essential in developing such control algorithms. 

2 Diffusion Approximation Model 

Let there be Nk sources of type IC, where k = 1,2, e ,  K ,  
and let J k ( t )  denote the number of type IC sources in “on” 
(or “burst”) state: the remaining i V k  - J k ( t )  sources are 
“off” (or “silent”). We assume that  successive “on” and 
“off)) periods of each source form an alternating renewal 
process. Let Y k ( t )  be the diffusion process approxima- 
tion of J k ( t ) ,  the number of type IC sources that  are “on” 
( J k ( t )  = 0,1,2,...,Nk;l 5 IC 5 K ) .  While a type IC source 
is on, it generates R k  [packets/sec.]. The average “on” and 
“off” periods of a type IC source are & and 5,  respectively. 
Let Q ( t )  be the fluid approximation for the number of out- 
standing packets in the multiplexer output. Then Q(t )  in- 
creases or decreases, depending on whether the aggregate 
packet arrival rate 

K 

R(t)  = & Y k ( t )  (1) 
k = l  
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exceeds the multiplexer output link capacity C [packets/sec.] 
or not. Thus Q ( t )  depends on the multi-dimensional diffu- 

then the multi-dimensional diffusion equation (7) can be split 
into K independent diffusion Drocess eauations: 

sion process Y(i).= { Y k ( t ) ;  1 5 k 5 K }  only through R(t) ,  

- { R(t)  - C, when R(t)  > C or Q(t) > 0, dQ(t) - 

i.e., __ d.fk at - - b k - [ ( Y k - Y ; ) . f k ] f D k - -  a 2 d  k : = l , ’ * * , K ,  (10) 
a 

a y k  all: 

(2) The solution of Eq.(lO) has a Gaussian distribution with dt  0, otherwise. 
mean m k  ( t )  and variance af(t), respectively, i.e., 

1 
Although neither R(t)  nor Q(t )  is a Markov process, 

the multivariate process (Y(t) ,  Q(t ) )  is Markovian, and its 
stochastic behavior is governed by the following transition 
probability density function 

1, (11) . f k ( Y k , t l Y k o )  = 

where 

Then we can show (see [8]) that the above function should 
satisfy the following partial differential equation: 

t ~ oo, the mean tends to y *  and the variance to k k 
It is known that the 0 - U  process defined by Eq.(7) is the 

only Gauss-Markov process with stationary transition prob- 
abilities. Therefore, the autocovariance function of the 0 - U  - af + ( x R k Y k ( t ) - C ) - &  af = Lf, at 

k = l  process Y k ( t )  is given by 
(4) 

where we write, for brevity of notation, f instead of 

of the multi-dimensional diffusion process Y ( t )  defined by 

K 

(14) C o u k ( 7 )  = Dke--bbr.  
f ( y ;  z, tlyo, 20) and L refers to the infinitesimal generator b k  

It is worthwhile to  point out that the covariance function 
of J k ( t )  has exactly the same expressiLon as Eq.(14) if we as- 

ods. In the forthcoming paper [12], we present the empirical 
m k ( y k ,  t )  f] + - - a y : [ V k ( y k ,  1 a2 t )  f] . (5) sume exponential distributions on both “on” and “off” peri- 

k = l  

data  of the autocovariance functions of J k ( t )  and Y k ( t )  to be 
compared with the analytical expression (14). 

Note that the aggregate process R(t) is a weighted sum of 
the K independent Gaussian processes { Y k ( t ) ;  1 5 k 5 K } ,  
thus it is also a Gaussian process, which has the distribution 

where m k ( Y k , t )  = N k f f k  - ( f f k  + P k ) Y k ,  and ‘ U k ( Y k , t )  iS aSS0- 

ciated with the second order statistics of 12-type sources. 

multivariate diffusion process Y (t) .  
Let us first consider the limit z + 00, and focus on the 

By defining 

where the transition probability density function of f ( y ;  tlyo) = 
limz-w f ( y ;  tlyo, 20) satisfies the following forward diffusion K 

equation: mR(t) == x R k n q k ( t ) ,  (16) 
k = l  

where ;I is the operator defined by 

( 7 )  
K 

&(t)  = C R : u : ( t ) ,  
k = l  
K 

CO’UR ( T )  R; CID’Uk (T) .  (18) 
k = l  

d K 

k.f c { b k d Y h [ ( y k  - Y ; ) . f ]  + D k < . f } .  ( 8 )  
Now let us return to the generalized diffusion process equa- k = l  a y k  

Equation (7) represents the multi-dimensional Omstein- 
Uhlenbeck process, which is obtained by assuming the linear 
drift coefficient m k ( Y k , t )  = - b k ( y k  - y ; )  and the constant 
diffusion coefficient V k ( Y ; ,  t )  = 2 D k  in Eq.(5). 

tion (4). We approximate L by its 0 - U  process operator 
and take the Laplace transform with respect to time t, i.e., 
f * ( Y ;  2,  SlYo, 20) = &{f(Y; z, t lyo,  20)). Then Eq.(4) be- 
comes 

af* If we express the joint density function f in a product form 

f”(y;tlyO) = n f k ( Y k r t l Y k 0 ) r  (9) 

K 

K Sf’ - b(Y - Yo)b(X - 20) + R k Y k  - c ) ~  
k = l  

= Lf*.  (19) k = l  
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We assume that buffer is initially empty ( E O  = 0) and con- 
sider the non-empty buffer ( Q ( t )  > 0) case by using the 
separation of variables technique, i.e, 

f * (y ;  2, SlYOl 0) = q s ,  E )  * g * ( s ,  Y )  
K 

= h(s1 E )  g ; (s i  Y k ) .  (20) 
k = l  

By substituting Eq.(20) into Eq.(19), we have 

where U(.) is a function of s and will be determined later. 
From the first and the last terms in Eq.(21) we readily find 

h(s ,  z) = eu(s)'m. (22) 

For arbitrary s, we partition the link capacity C as 

k = l  

then from Eqs.(20) and (21) we can write separate differen- 
tial equations for the individual Y k ' s  as 

- [ s k  + u ( S ) ( R k  - C k ( S ) ) ] g ; ( S , Y k )  = 0 ,  = 1 , . - . , K .  (24) 

where y; is defined by Eq.(6) and s has a partition of 

K 

S 1 c s k .  (25) 
k = l  

Equation (24), after some changes of variables, becomes 
a parabolic cylinder function (or Weber's function). Its el- 
ementary solutions which have the appropriate behavior as 
Y k  4 i c o  require (see [3, 81) 

where ik = 0,1 ,2 ,  + - being a nonnegative integer. 

by 
Then the solution of Eq.(24), corresponding to i k ,  is given 

where H i k ( . )  is the Hermite polynomial of order i k .  

From Eqs.(23), (25) and (26) we can see that ~ ( s )  must 
satisfy the following quadratic equation for each integer vec- 
tor i = (il, iz,.. . , ZK): 

Since all the components i k  are nonnegative and the Laplace 
transform variable s should be considered in the stable right 
half plane (i.e. Re{s}  2 0), Eq.(28) yields two roots: one 
positive denoted U?(.) (i.e., Re{u:(s)} > a), and one neg- 
ative denoted u ; ( s )  (i.e., Re{u;(s ) }  < 0). Needless to say, 

the explicit expression for U; (s) is readily available by solv- 
ing the quadratic equation (28). Note that the corresponding 
roots in the exact transient analysis [6, 7, 121 are only nu- 
merically available as functions of s, whereas the diffusion 
approximation analysis gives closed form expression for the 
roots UT (s). This significantly reduces our computation ef- 
forts. 

We assume that the capacity of the statistical multiplexer 
output buffer is infinite and the system is stable. Then 
Eq.(22) suggests that an inclusion of any d ( s )  would lead to 
an unstable solution. Thus, the general solution of Eq.(20) 
is represented as 

1 

1 k = l  

Then the transient probability distribution function that 
the buffer content exceeds z is given by 

1 

3 Applications and Discussion 
We now consider two cases where we compute the packet loss 
probabilities by applying the approximate transient analysis 
method developed in Section 2. 

First, we consider the case where there is no buffer or only 
a small amount of buffer available at the multiplexer to ab- 
sorb fluctuations a t  the cell level. If there is no buffer (i.e., 
a "loss system"), the cells are lost, whenever the aggregate 
arrival exceeds the output link capacity C. The loss prob- 
ability Prob(R(t) > C) can be calculated using the error 
function defined by e r f c ( z )  = & s,'" e dx: 

where 

k = l  - - - \  I 
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Using the inequalities (for z > 0): 

we obtain the following bounds on Prob(R(t) > C), which is 
the probability that the aggregate packet arrival rate exceeds 
the multiplexer output capacity momentarily: 

LB(t )  < PTob(R(t) > c) 5 U B ( t ) ,  mR(t )  < c, (34) 

1 - L B ( t ) ,  m R ( t )  2 q 3 5 )  1 - UB(t )  < PTOb(R(t) > c) _< 

where 

Type 2 Sources : Nz = 50, a2 = 0.6, & = 0.75, Rz = 1 . 
In Figure 1, the transient upper and lower bounds of 

Prob(R(t) > C) (see Eqs.(34) and (:35)) are shown for two 
cases: The first is a case where the system is overloaded-we 
assume that  20 Type 1 sources (out of 25) and 30 Type 2 
sources (out of 50) are initially “on”, i.e., Yl(0) = 20, and 
YZ(0) = 30. The second is a case in which the system is 
initially underloaded, i.e., Yl(0) = 10, and Yz(0) = 10. In 
both cases both upper and lower bounds of Prob(R(t) > C) 
approach their steady-state values well before t = 4. The 
time-constant (or relaxation time), which characterizes the 
convergent rate of 6 ( t )  (thus the transient loss probabil- 
ity Prob(R(t) > C)), is closely related to  the inverse of 
mink{bl, bz ,  . . . I  b ~ }  (see Eqs.(6) and (18)). In this exam- 
ple, it is b z l  = (02 +PZ)-’ = 0.74. 

In Figure 2, we show that buffer overflow probability (in 
logarithm scale) vs. the buffer capacity B,  by taking the 
inverse Laplace transform of Eq.(39).. The initial condition 

These bounds are asymptotically tight, hence Prob(R(t) > we set corresponds to  the second case in Figure 1, i.e., the 

further assume here that the buffer is initially empty. The 
different curves correspond to  different time instants. Unlike coincides with the one obtained by applying the theory of 

large deviation [I, 21. Note that {R(t)  > cl imp1ies { Q ( t )  > the result of Figure 1, however, the s;teady-state cannot be 

constant of buffer overflow probabi1it:y is almost an order of bound on Prob(Q(t) > 0), if no or small buffer capacity is 
available: magnitude larger than that  of the on-off source behavior. 

C) 1 e-e2( t ) ,  when e( t )  is large. The  latter quantity case (y l (o)  = lo, ‘ Z ( O )  = lo)* we 
W W t )  

o } ~  thus from Eqs*(34) and (35) we Obtain the lower achieved until time t > 40 elapses. In other WO&, the time 

Prob(Q(t) > 0) 2 Prob(R(t) > C )  

(38) 
m ( t )  < c, { ; P”k(t),  mR(t) 2 c. 

Next, we consider the case where a medium or large buffer 
capacity is available. We can evaluate the transient loss 
probability a t  the burst level by using Eq.(30). Here we 
assume that the buffer has an infinite capacity and the cell 
loss probability for a system with a finite buffer capacity 
B is approximated by Prob(Q(t) > B ) .  Unfortunately, 
there is no simple way to  determine the unknown coefficients 
&i(s) of Eq.(30). However, the asymptotic behavior (i.e., 
for sufficiently large B )  is characterized by the exponential 
term that has the largest negative (i.e., dominant) root. In 
our case, this dominant root is u g ( s )  which corresponds to 
i = ( O , O , .  . ., 0). Thus, we find 

for large B.  (39) 

The unknown coefficient of the exponential term is estimated 
from loss probability at B = 0, which we find in Eq.(38). 

In order to  obtain transient loss probabilities Prob(Q(t) > 
B ) ,  we need to  numerically invert the Laplace transform 
F * ( s ,  B )  back to the time domain. 

Some numerical examples are given as follows: 
We choose the following parameters, which are same as 

the ones discussed in Kosten [lo] and our previous paper [8]: 
i.e., K = 2, C = 38, 

Type 1 Sources : NI = 25, 01 = 0.4, DI = 1.5, RI = 2 . 

This significant difference between the time constants of the 
two probability functions (associated with the diffusion pro- 
cess R(t )  and the fluid approximation Q ( t ) ,  respectively) is 
certainly attributable to  Eq.(2), i.e., the process Q(t )  is an 
integration of R(t). 

4 Conclusion 

To summarize, we have developed a multi-dimensional diffu- 
sion model to  characterize the transient behavior of an ATM 
statistical multiplexer with multiple types of traffic. The 
time-varying aggregate traffic is approximated by a Gaus- 
sian process, which adequately captures the essence of the 
correlated nature of the bursty arrival process. The diffusion 
approximation method that we have introduced can apply to  
more general source models, i.e., the exponential distribution 
assumptions on “on’’ and “off” periods are not necessary in 
our analysis [5, 81. The transient cell loss probabilities are 
evaluated a t  both cell and burst levels in our examples. 

Through these examples, we have found that  while the 
time constant for the transient behavior of the on-off sources 
can be estimated from those of the covariance function of 
R(t)  (see Eq.(18)), the behavior of the buffer overflow prob- 
ability (i.e., packet or cell loss probability) is governed by 
the transient behavior of the dominant root U,(.). We are 
currently investigating to obtain an even simpler characteri- 
zation of the transient dynamics of the statistical multiplexer 
so that the result may be applicable to such control policy 
as admission control. 
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