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Abstract 
The cell loss probability is a major performance factor in de- 

signing an ATM (asynchronous transfer mode) network for broad- 
band integrated services of multi-media communications. The dy- 
namic behavior of an ATM network needs to be well understood 
because of its extremely high speed and diversity of traffic. We 
analyze the transient buffer overflow probability of a statistical 
multiplexer with muZtiple types of traffic by taking a spectral r e p  
resentation approach. The joint distribution is obtained in the 
Laplace transform domain in analytic form. An asymptotic be- 
havior is characterized by simple parameters of what we term the 
“dominant” type traffic. 

Summary 

We assume that there are M types of sources, and the traffic of type m 
is characterized by the arrival of “bursts” with Poisson rate Am. The 
burst length is exponentially distributed with mean &, and each burst 
generates cells at the rate of R, [cells/sec]. The output link capacity 
i s  denoted by C [cells/sec]. To make the system stable, we require 

Let Jm(t )  be the number of type m burst at time t .  The aggre- 
gate rate of cell arrivals at the multiplexer is then given by R(t) = 
CEzl R,J,(t). When R ( t )  exceeds C [cells/sec], all the cells cannot 
be handled immediately. Let Q ( t )  denote the number of cells outstand- 
ing in the output buffer, and define 

P j ( t , z )  = Prob{Jm(t) = j,, 1 5 m 5 M ;  and Q ( t )  5 x} .  ( 1 )  

Let P(t ,z)  be the column vector that  consists of all the Pj(t,z). Fol- 
lowing [l], we can derive a matrix differential equation for P ( t , z ) :  

C,M,l* < c. 

where 

M = M ~ $ M ~ $ . . . @ ? M M  
2, = @? E(’) @? . . . @? X ( M )  - c . I .  

Here ‘8 and @? represent Kronecker product and Kronecker sum, respec- 
tively, and I is the identity matrix of infinite dimension. And 

... 0 

. . .  
- ( A m + W m )  . . .  

’. 1 
R(m) = diag[O, Rm, . . . , jmRm, .  . .]. 

In order t o  solve Eq.(2), we first take the double Laplace transform 
( t , z )  H ( s , u )  on P(t,z), i.e., P ( t , z )  c) P**(s,u),  and use P*(s,O) 
and P*(O,u) to denote the Laplace transforms of P(t,O) and P(O,z), 
respectively. Equation (2) then becomes 

P**(s,u) = ( u D + s I - M ) - ~ [ P * ( O , U ) + Z ) P * ( S , O ) ] .  (3)  

Let us solve the eigenvalues with respect t o  U ,  i.e., u D V ( s )  = ( M  - 
s I ) V ( s ) ,  and let V ( s )  and V ( z ;  s) be the corresponding right eigenvector 
and its generating function. we assume that V ( z ;  s) can be decomposed 
as V ( z ;  s) = nz=l V,(z,; s), then it follows 

C,M_1[(uRm + Pm)zm -PmI&{lnVm(zm;s)} 
-S + uc + cZ==, Xm(zm - 1). (4) - - 

The solution of Eq.(4) should have the following form: 

(5) 

where km is the mth  element of an integer vector k = [kl,. . . , k ~ ] :  
km = 0,1 ,2 , .  . . and m = 1 ,2 , .  . ., M .  

The eigenvalue u ( s ) ,  involved in the above equation, is given by 
solving 

If we denote U k ( S )  the eigenvalue for the integer vector k, and let vk (S )  
and & ( S )  be the corresponding right and left eigenvectors, respectively, 
then they can be represented as 

(7) 

It can be shown from [4] that the number of the positive eigenvalues, 
denoted by uk+(s) and derived from Eq.(6), is equal to the number of k’s 
that  satisfy 

M 

Rmkm < C (8) 
k=l 

Thus, the unknown transient boundary condition P*(s,O) can be deter- 
mined by a set of linear constraint equations 

u;(s)[P*(o,u;(s))  + VP”(s,O)] = 0 (9) 

Since the dimension of this matrix equation is infinite, we should be 
interested in the most dominant (largest negative) eigenvalue ud-(s), 
which is obtained by setting k = 0 in Eq.(6). This dominant term 
will be of practical importance when we consider an asymptotic buffer 
behavior, i.e., when x is large enough. The transient probability that 
the buffer content Q ( t )  exceeds some predetermined buffer capacity B 
[cells] is approximately given, for larger B, by 

G*(s, B )  !Ef Lt{PTob{Q(t) > B } }  M b ( s ) e z p { u h ( s ) B }  (10) 

We can show that the dominant eigenvalue u h ( s )  lies between 
where b ( s )  = -U~(s)[P*(O,udm(s) )  + DP*(s,O)]V~(l;  8). 

ma%{-&} and 0 for all s 2 0. 
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