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A model to analyze the buffer behaviour in a multiplexor is
derived, based on the analogy between the buffer occupancy in
a discrete time model of multiplexing and the waiting time of a
GI1/G/1 queueing system.

The bounding techniques developed earlier by Kingman
and Ross are extended to the discrete time model. Simple and
useful bounds are obtained for the buffer overflow probabilities
under general assumptions concerning incoming message traffic
characteristics. Numerical examples are presented and com-
pared with other methods.
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1. Introduction

The streams of messages generated from termi-
nals or data from computers are usually not steady
flows: they are quite often sporadic or ‘bursty’. In
order to enhance the utilization of communication
links, such techniques as statistical multiplexing,
concentration and packet-switching multiplexing
are commonly adopted in a majority of tele-
processing systems and computer communication
networks [2].

In such devices several independent arrival
streams with large variation in time are combined
to form a single outgoing flow of a more regular
nature. This transformation can be accomplished
by interposing buffer storage between the set of
incoming links and the output link (Fig.1). The
buffer space should be sufficiently large to accom-
modate a large backlog of messages or data units
which may occasionally develop. The buffer’s
capacity and its allocation strategy are important
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to the cost-performance tradeoffs in designing such
a communication system. Therefore, the analysis
of buffer behavior, particularly of the buffer over-
flow probability, 1s of considerable importance.
There are a number of papers reported (see, for
instance, [2, Chapter 8] and the references therein).
But the traffic assumptions are overly restrictive —
arrivals are Poisson, or the output link capacity is
constant — and the solution usually involves a
large number of system equations to be solved
numerically.

In this paper we present very simple upper and
lower bounds of the buffer occupancy distribution
under fairly general assumptions concerning the
characteristics of incoming traffic and the output
rate of the multiplexor. An upper bound on the
buffer overflow probability is also derived. These
probabilities all take a simple form zj. where z; 1s
the root of the characteristic equation determined
by the input and output statistics.

Our model formulation follows that of Wyner
{3]. We derive very simple and useful upper and
lower bounds based on the results of Kingman [4]
and Ross [5]. In Section 2 we briefly review the
Kingman-Ross bounds and their discrete time
analogues. In Section 3 we derive the fundamental
inequalities for buffer analysis by using Wald’s
identity of sequential decision. Applications of the
Kingman-Ross results to the buffer problem were
earlier reported by Kobayashi and Konheim [6]
and Kobayashi [1], but the rigorous derivation of
the discrete time analogue of the Kingman-Ross
bounds is given here for the first time. In Section 4
we discuss some numerical examples and compare
them with earlier work by Wyner [3] and Chu [7].

2. Statement of the problem
2.1. The Kingman—Ross inequality

The mathematical formulae describing the
behavior of a buffer are analogous to equations for

the waiting time in a GI /G /1 queueing system, as
will be shown in Section 2.2. Therefore, we briefly
review some of the GI/G /1 results pertinent to
the present paper.

Lindley [8] showed that the waiting time se-
quence {w,} satisfies the following recurrence
equation:

w, =max{0,w,_, +u,} (2.1)
where

w, = waiting time of the k th customer (w, =0),
U, =X, |~ .

x, = service time of the k th customer

and

t, = interarrival time between (k — 1)st and the
k th customer.

Starting with relation (2.1), Lindley found the
stationary waiting time distribution

Fn,(x):klirr:o P{w, <x) (2.2)

as the solution of a Wiener-Hopf type integral
equation. Solving this equation generally requires
techniques from the theory of complex variables
and contour integration. Therefore, we cannot ob-
tain an analytic expression in terms of known
quantities for the waiting time distribution or even
for the mean waiting time in a GI /G /1 queueing
system. For this reason, there is an increasing
interest and need for developing approximations
and bounding techniques [4,5,9, 10]. The follow-
ing results obtained by Kingman [4] and Ross [5]
have a fundamental bearing upon the present
paper. Kingman proved, by using Kolmogorov's
inequality for martingales, that the tail of the
waiting time distribution

F (¢)= lim P{w, >t}
k—aoc
is bounded by
ae M<F (1)<e % (2.3)

Ross improved the Kingman’s upper bound by
applying Wald’s fundamental identity of sequen-
tial analysis, and obtained

ae P <F (1)<be ¥ (2.4)

where the parameters a, b and 6, in (2.3) and (2.4)
are given by

a = inf D(s), (2.5)

s=0
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b=supD(s), (2.6)
520
D(s)=1/E[e%“ ) |u>s], (2.7)

o0
6, is the characteristic root of f e dH(y)=1

such that § >0 (2.8)
where
H(s)= lim P{u, <s}. (2.9)
k— o0

2.2. The buffer behavior model

In this paper we assume that the time axis is
divided into a sequence of ‘slots’ or ‘intervals’.
This 1s certainly a proper model to assume when
the communication system is synchronous, i.e., all
events are allowed to occur only at definite, regu-
larly spaced time points. Examples are synchro-
nous time division multiplexing and the slotted
ALOHA multiplexing scheme [2,10]. Even for
asynchronous systems we often find it computa-
tionally convenient to deal with discrete time sys-
tems, when we must eventually numerically
evaluate the performance. The size of the slot
certainly affects the accuracy of the model, but
here we simply assume that this time unit is prop-
erly chosen.

Let a, be the total number of messages or data
units arriving to the multiplexor in the kth time
slot, and b, be the maximum number of data units
that can leave the multiplexor in the kth time slot.
Here {a,} and {b,} are random variables. Ordin-
arily b, is a constant parameter determined by the
link capacity of the multiplexor output. But in our
model it is not necessary to assume that b, is
constant. A possible application of such a model
will be the multiplexing operation performed in a
satellite ground station that accesses the satellite
transponder based on the demand assigned TDMA
(time division multiple access): The satellite chan-
nel is dynamically partitioned among ‘traffic bursts
of variable durations transmitted from different
earth stations. Hence the output bandwidth al-
located to the multiplexor of a given earth station
varies in time. Another example of the variable b,
will be found when the multiplexor combines dif-
ferent types of traffics, say voices and data. De-
pending on the priority assignment, the net output
rate of the multiplexor of data channels may vary
with the voice traffic level.

Let us assume that the sequence of differences
{c,} defined by

co=a,—b,, k=1273,.. (2.10)

are independent, identically distributed (i.i.d.) ran-
dom variables. Let y, denote the buffer occupancy
at the end of the kth time slot, and let L be the
capacity of the buffer. Then the sequence {y,}
satisfies the following relation [3,6]:

0, Y1t ¢, <0,
V=2 Vi1 T ¢ O0<y,_,+e <L, (2.11)
L, L<y,_,+te.

Now consider the limit case where the buffer
capacity is infinitely large. If we denote the corre-
sponding buffer occupancy by {x,}, we obtain

(2.12)

Note that (2.1) and (2.12) take exactly the same
mathematical form except that the variables {x,}
take on only integers, whereas {w,} is a sequence
of real variables. Kobayashi and Konheim [6] ap-
plied the Kingman-Ross inequality to derive lower
and upper bounds on

x, =max{0,x,_, +c.}.

F;(n)zklim P{x,>n}, n=0,1,2,.... (2.13)
The discrete analogue of (2.4) should be !
Az, "<F.(n)<Bzj" (2.14)
where
A= inf D(m), (2.15)
m=0
B = sup D(m), (2.16)
m=0
D(m)=1/E[z5 ™|c,>m], (2.17)
z, is the characteristic root of H(z) =1
such that z,> 1 (2.18)
and
H(z)=E[z]. (2.19)

Using the upper bound of (2.14) and the relation

oc
lim P{y,=L}< ¥ lim P{x,=n}
k— o0 n=y1 k—oo

(2.20)

! There is an error in equations (129) and (130) of [6]: the
condition a=n should be a>n.
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we obtain
P {The buffer of capacity L is full} < Bz5 '+~ P,
(2.21)

As mentioned earlier, these results were not ex-
plicitly proven in [6] and therefore require formal
derivations. By doing so we have in fact discovered
some minor erros in the formulae presented in [6].

3. Derivations of the bounds
3.1. Model assumptions and preliminaries

In our model the variables {c,} where ¢, =
a, — b, are assumed to be i.i.d. random variables.

In order for a system to be stable the following
condition must hold:

E[c.]<O. (3.1)
We also assume
P{c, >0} >0, (3.2)

which means that sometimes the amount of arriv-
ing data, a,, exceeds the system capacity, b,.
Otherwise there would be no need for buffering.
We assume that the buffer is initially empty, i.e.,

xo=0. (3.3)
The buffer occupancy at the end of the first time
slot is (assuming an infinite buffer capacity)

x, =max{0,x,+ ¢,} =max{0,c,}. (3.4)

By repeating the recurrence relation (2.12) we write
x, in terms of ¢, ¢,,...,c; [8]:

x,=max{0,c.c. e q,nn,
TR SRR SRR SN Pl (3.5)

Since all ¢;’s are i.i.d., we replace ¢, by ¢, _; and
obtain the following expression, which is stochasti-
cally equivalent to (3.5):

x,=max{0,¢c,,c; t ¢y, ¢, + ¢, +oy,nn,
c,tey, e ). (3.6)

Thus the complementary distribution function of
X, 1s given by

ka(n)IP{xk>n}

j
:P{ > ¢,> n for some j = 1,2,...,k}.
i=1

(3.7)

In the equilibrium state, i.e., in the limit k — co the
last expression becomes

J
E(n):P{ S ¢,> n for some j = 1,2,...}. (3.8)

=1

Recall that the random variables {c,;} are integer-
valued. The right-hand side of expression (3.8)
suggests us to investigate a discrete-valued version
of the theory of sequential analysis [11].

3.2. Wald’s fundamental identity

Let us first examine roots of the equation
H(z)=1 (3.9)
where H(z) was defined by (2.19). From the defi-
nition of the generating function we readily see
that z; =1 is one of the roots. In Appendix A we
show that under the assumptions (3.1) and (3.2)
there is exactly one root z, > 1 that satisfies H(z,)
= 1. The next step is to apply the following iden-
tity, which is an integer-valued version of Wald's
fundamental identity:

E[-¥enm(2) 7] =1 (3.10)

for all z such that H(z)=>= 1. Here the integer j is
the variable that signifies the time that the running
sum

S=c tey+ -+ (3.11)

falls outside of some prefixed interval, say [S, 5],
for the first time, i.e.,

j=min(i: S, &[S.S]}. (3.12)

In the theory of sequential analysis the variable j is
called the ‘stopping time’, because the sample size
is not fixed, but in step / a new data c, is taken and
examined to test whether a given hypothesis should
be accepted or rejected, or whether the test is to
continue. In Appendix B we derive the equation
(3.10). Note that Wald’s identity was originally
derived for continuous variables [11,12].
By setting z =z, in (3.10) we obtain

E[z3]=1. (3.13)
In our problem we choose the prefixed interval as
[S.5]1=(~00,n] (3.14)

where n is a fixed positive integer. Thus, the
stopping time j is a variable that i1s determined by
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the threshold value n and the observed data {c,}.
Noting that at time j the running sum S; exceeds n
for the first time, we can rewrite (3.13) as

1 :E[zgf|SJ>n]P{S}>n}

=20E[z57"1S,> n| F(n) (3.15)

where the last term was obtained by using (3.8).

In order for Sj > n to hold, there must be some
integer m >0 such that

S,—n=c,—m. (3.16)

Since the conditional distribution of S, —n given
that j=k, S,=n—m and §,>n is just the condi-
tional distribution of ¢, —m given that ¢, >m, it
follows by conditioning on j and S, — 1 that

inf E[z5 e, >m] <E[z57"|8,>n]

< sup E[z(‘)""'"|c] >m].

m=0
(3.17)
Hence from (3.15) and (3.17) we find
E(n)zy inf E[z5 ™|, >m] <1
m>0
<F(n)zlsup E[zy "|c,>m], (3.18)

m>0

from which we finally derived inequality (2.14),
1.e.,

Azg"<F(n)<Bz," (3.19)

where

A= inf 1/E[z§ ™|c,>m] (3.20)
m=>0

and

B=sup 1/E[z§""|c, >m]. (3.21)
m=0

By following the argument similar to Ross [5],
we can derive a somewhat weaker but probably
more computable inequality. For this purpose we
write

E[z5 "¢, >m] = E[zg "™ |a, > b, + m]

=E[z87" |a,>m]. (3.22)
Thus, we find
A*zy"<Azy"<F/(n)<Bzy"<B*z," (3.23)
where
A* = inf 1/E[z& ™|a, > m] (3.24)

m=>0

and

B*=sup 1 /E[ 28 "|a, > m].

m=>0

(3.25)

3.3. Finite buffer capacity

So far we have assumed the infinite buffer case.
For the finite buffer case we denote the buffer
occupancy sequence by {y,}, as defined in (2.11),
and compare it with {x,} of (2.12). From the
recurrence (2.10) we have

yy =min{ L, max{0, ¢} } <max{0,¢,} =x,.

(3.26)
If we assume that
ye<x, forsomek, (3.27)
then for k + 1
Yoy =min{L, max{0,y, + ¢} }
<min{L, max{0, x, + ¢, ,}}
<max{0,x, +c ) = X400y (3.28)

Thus we have shown by mathematical induction
that

»n<x, forallk. (3.29)

Then the distribution of the variables {y,) and
{x,} are related as follows:

P{y, =0} <P{x,=n} forallk. (3.30)

Since the maximum value that y, can take is L, it
must follow that

P{y,=L)<P{x,=L} forallk. (3.31)

Let us denote the distributions of the random
variables y, and x, in the limit k = o by p,(n)
and p_(n), respectively. Then the last equation
becomes

p(L)< S p(m)=F(L-1).

n=1L
Hence, using (3.23) and (3.32) we obtain an upper
bound for the probability that the buffer of capac-
ity L becomes full:

(3.32)

p (L)< BzyE V< Bz -7, (3.33)

Now we define the quantity P . .. (L) as the
percentage of lost data due to overflow [3,7]):

Poverflow( L) =
_ offered load — carried load
offered load

Q(L)/E[a,]

(3.34)
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where Q(L) is the expected amount of data lost
per time slot, i.e.,

Q(L)Zéoh(")( S Koo

k=0

(3.35)

Here 4, is the coefficient of the term z/ in the
polynominal H(z) of (2.7), that is to say

h;=P{c, =/} (3.36)
Using the upper limits
pu(n)< 3 p()=E(n—1) forn=1 (3.37)
and
p,(0)<1, (3.38)
we obtain an upper bound on Q(L):
Q(L)<Q.(L)
0 L o
= 2 khy . .+ 2 Bzy "D 2 khy .k
k=0 n=1 k=0
(3.39)

Thus from (3.24) we find that
Poverﬂow(L)<Q+(L)/E[ak]' (340)

3.4. The function D(n)

In order to evaluate the constants 4 and B of
(3.20) and (3.21) we must find the infimum and
supremum of the following function:

1

D :——————. 341
O e (341)
We rewrite this equation as
1
D(n)= (3.42)

ZOE[ZS*7"71|Ck2n + l] '

from which we readily find an upper limit on
D(n):

D(n)<~l-<l.
20

(3.43)

A similar argument can be applied to bounding B*
of (3.25); indeed B* is also bounded by z; ', i.e.,

B<B*<z'<1, (3.44)
which in turn implies
F(n)<zy"th. (3.45)

Hence, from (3.33) we find
L)<zt (3.46)

In order to establish a lower bound on A4 (or
A*) it is necessary to make some assumptions
concerning the distributional form of the random
variables {c,} (or {a,}). Therefore, we make the
following definition of an IFR (increasing failure
rate) and DFR (decreasing failure rate) discrete
distribution function. ?

Definition 1. The distribution of a discrete random
variable z is called IFR ( DFR) if and only if

F(m+n)/F(n)
is nonincreasing (nondecreasing) in » for all m =0,
where F(n)=1— F(n)=P{z>n)}.

Now, for any function u(z) such that E[u(z)] <

oo, and for the discrete distribution F(m) (with
the underlying variable z), we find the formula

Bl = 3 (ulmt D)= u(m)F(m).
(3.47)
Then it is not difficult to show that
B[z, > 7] =
=zy+ ; (z(’)"*l—zo )%—) (348)

Since z, > 1, the above expression is a nonincreas-
ing (nondecreasing) function of » if F.(n) is IFR
(DFR). Hence, if F/(n), the distribution of the
random variables {c,}, is IFR, then we find that

A= infOD(n) =D(0)=1/E[z5*]c,>0]  (3.49)
and

A=supD(n )—hmD( )

n=0

(3.50)

where N is the maximum possible integer that the
random variables {c,} can take on, i.e.,

N =sup{n: F(n)>0}. (3.51)

The same arguments apply to the DFR case just
be replacing ‘decreasing’ by ‘increasing’. Then we

2 Note that our definition is somewhat different from the
definition in [13]. We assume that z is an integer-valued
variable, but not necessarily non-negative.
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obtain for F.(n) being DFR:

A= ingD(n) = lirr:/D(n) (3.52)

and

B=supD(n)=D(0)=1/E[z{*|c,>0]. (3.53)
n=0

It goes without saying that the same techniques
can be applied to the computation of A* and B*,
when the arrival distribution 1s either IFR or
DFR.

4. Examples
4.1. Poisson arrivals and constant rate outputs

Suppose that the arrival process is Poisson with
rate A (data units/time slot), and that the con-
centrator sends out g (data units /time slot). * Then
the distributions of the random variables {a,} and
{b,} are given by the following {f,} and {g,},
respectively:

f,,Z%e*A foralln=0 4.1)
and
1 forn=uyp,
= 4.2
Bn {0 forn=*p. (4.2)

The corresponding generating functions are ob-
tained as

F(z)=E[z%] =€V (4.3)
and

G(z)=E[z"] =z (4.4)
Thus,

H(z)=F(z)G(z ") =eMemDz7x, (4.5)

From (4.5) and assumption (3.1) we find that H(z)
has a negative derivative at z = 1, 1.e.,

H(1)=X—p=E[c,]<0. (4.6)

To calculate z, we set H(z;) to unity, and we
define the traffic intensity p =\ /p. Then we find

eflio™ D=7, (4.7)

Thus, the root z; depends on A and p only through
the traffic intensity p. As no analytic solution® is

3 u is a positive integer, but A does not need to be an integer.
4 [6, Eq. (144)] is incorrect: it gives a root less than unity.

found for (4.7), a numerical root finding algo-
rithm, such as Newton’s iteration algorithm, should
be applied.

It is not difficult, although somewhat tedious,
to show that the Poisson distribution { f,} of (4.1)
is indeed IFR. Therefore, the distribution {h,},
which 1s a shifted version of {f,} (ie. h,=f, .
n= —u), is also shown to be IFR. Hence, the
function D(N) is monotone nondecreasing in n,
and we find

e’ _E’::O'A;
A=D(0) =zt —— (4.8)
oSl
and
B=lim D(n)=1/z,, (4.9)

n-—oc

where the expression (4.8) is obtained by using
(3.48). Similarly we obtain

e —1
A* = 4.10
S (4.10)
and
B*=1/z,. (4.11)
T ] T ] T ] T ‘1

A=04, =2
/IT-#fl | ! | P.l

0 10 20 30

Fig. 2. Poisson arrivals and constant output. The function D(n)
(bounded by 1/z4) vs. n for various values of A and u.
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|
20

Fig. 3. Poisson arrivals and constant rate output. Upper and lower bounds on P{x, >n) vs. n for various values of the traffic

intensity: p =0.2, 0.5, 0.8 and 0.9. (a) u =1; (b) p=3.

Fig.2 shows the curves of D(r) and the corre-
sponding upper limits 1/z, for three different
examples. The lower and upper bounds on F.(n)
are plotted in fig. 3(a) and (b) for various values of
traffic intensities when the output trunk capacity
p =1 and p = 3, respectively. Note that the distri-
bution F(n) depends primarily on p=A/p, as
does z,. More details concerning the computation
of z, and D(n) can be found in [14].

4.2. Geometric arrivals and constant rate outputs

Let the number of arrivals per time slot be
geometrically distributed with parameter r < 1, 1.e.,

f,=Pla,=n}=(1—r)r". (4.12)

The corresponding generating function is given by

l__
F(z)=1— Zoz1<1yr

rz

(4.13)

We assume, as in Section 4.1, that the concentrator
sends out data with rate p (data units /time slot).
Then we obtain

H(z )—((1 ))z bo0<|z|<1/r,

from which the characteristic equation for z; can
be written as

(4.14)

1—r

=0. (4.15)

1
+1
z8" — ;ZO +
It can be easily shown that there exists a unique
root z, such that

1<z,<l1/r. (4.16)

1
23+723+

By referring to (3.24) and (3.25) we evaluate
(1— r)zo

l—rz0

E[z§+""|a,>n] = : (4.17)
which is independent of n. This surprisingly simple
result is due to the memoryless property of the
geometric distribution. Note also that this distri-
bution i1s both IFR and DFR. Therefore, the
supremum and infimum of (4.17) are equal, and
we find 4* = B*, which in turn implies that the
function D(n) is also independent of n, i.e.,

1—rz,
(1-r)zg

We therefore have the following exact expression
for F(n):

B*=B=A=A*= (4.18)

—rZy 7(n+l)
—

Note that the simple form of (4.19) holds, even
when the output sequence {b,} has a general
distribution. That is, the multiplexing system with
geometric arrivals and variable output has the
buffer occupancy distribution also given by (4.19).
Of course the distribution of the b,’s influences
the characteristic root z,,. It will be also worthwhile
mentioning that this constant value of D(n) is
strictly smaller than 1/z,.

Fig.4(a) and (b) shows F(n) for transmission
rates p=1 and n=3. The z,’s were derived as
follows. For p =1, we readily obtain z, =
(1 —r)/r. In case of u =3 the characteristic equa-
tion becomes

F(n)= hm P{x,>n} = (4.19)

1—r

=0. (4.20)
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Fig. 4. Geometric arrivals and constant rate output. P{x, > n} vs. n for various values of the traffic intensity: p =0.2, 0.5, 0.8 and 0.9.

@p=1;(b)p=3.

Table 1
zy for p =3 and various values of r

p r 2y

0.2 2 2.56825
0.5 H 1.4463
0.8 i 1.12045
0.9 a 1.0546

Dividing by (z, — 1) leads to
1 1
(zo— 1)(2(3)+ (1 —7)25-%— (1 ——;’)20
+(1——1—)):0. (4.21)

Since (1 — 1/r) is negative, the polynomial of third
degree has one real and two imaginary zeros. By
means of numerical iteration the real root can be
found rather fast. Table1 shows the results for
various r, where the traffic intensity is given by

p=1/((1=np).
4.3. Comparison with other results

In this section we compare our results with
earlier work reported on the same subject. As
mentioned earlier, Wyner {3] had formulated, prior
to Kobayashi and Konheim [6], the buffer behav-
ior problem as GI/G /1 system. He obtained the
following results based upon quite elaborate argu-
ments, which will not be reproduced here: If E[c, ]

[y

<0, then for some K,, K,>0 and z, as defined
above

Poverﬂow(L)%Klz(;L (422)
and
pL(L)SKzz(;L. (4.23)

Although our upper bound on P n..(L) given
by (3.40) does not directly imply the geometric
form of (4.22), numerical evaluations of our
P, . .now(L) clearly indicate this property, as il-
lustrated in Fig. 5(a) and (b). The agreement of
our results with Wyner’s results is of course not
unexpected, but is a welcome confirmation of our
bonding method.

Chu [7] discusses the buffer problems for the
Poisson arrival and constant output case. He
expressed the probability of the number of units at
the end of the time slot in terms of the probability
of the number presented at the beginning of the
slot. Then a set of linear equations was solved
numerically with the aid of the computer. The
numerical results presented by Chu look similar to
those of our study. Fig. 5 shows the upper bound
(3.40) on P, q.. together with Chu's P g ..
However, a complete agreement is not found. This
discrepancy is a consequence of the difference in
the model formulations. In Chu’s model the
incoming data stay in the buffer at least until the
next time slot begins, whereas in our model the
arriving data may instantly flow through as long
as there is no blocking. Chu’s formulation led to a
recursive relation, which is equivalent to the im-
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Fig. 5. Poisson arrivals and constant rate output. The upper bound on the overflow probability (

Poverflow (L

) compared with Chu’s

overflow probability (- - --- - ) for various values of the traffic intensity: p =0.2, 0.5, 0.8 and 0.9. (a) p=1; (b) p =3.

bedded Markov chain analysis (see, e.g., [10,15])
developed for the M/G /1 queueing model. This
difference between the two models is reflected in
the numerical results plotted in Fig. 5 (for further
details concerning the behaviour of the two models
and the consequences thereof, see [14]). In a recent
paper [16] Kobayashi shows that the characteristic
equation that governs the asymptotic form of
buffer overflow in the M/G/1 model is closely
related to the characteristic equation (2.18) of the
GI1/G /1 model.

Appendix A
A.l. The characteristic root z,> 1
Let ¢ be an integer-valued random variable with

probability distribution {4,}. By H(z) we denote
the generating function

H(z)=E[z]= E h,z" (A1)
n=-—o

where h, = P{c = n}. Then under the assumptions

E[c] <0 (A2)

and

P{c=1}>0, (A3)

the function H(z) has exactly one real root z,> 1
that satisfies H(z,) = 1.

A.2. Proof

Since H(Z) contains terms z_ " (n= 1), we have
that
limH(z)=cc. (A4)
z—0
The so-called Markov inequality states that any
non-negative random variables Y satisfies the rela-
tion

KP{Y=K)<E[Y] forany K>0. (AS)
By setting ¥ =z¢ and K = z we obtain
zP{z°=z} <E[z‘] = H(z) forz>0. (A6)
If we assume z = 1, then

zP{z°=z} =zP{c=1}. (A7)

Then letting z approach infinity we obtain from
(A3)

lim zP{c=1} = c0. (A8)
F-Aandie o}
Since all the coefficients of H(z) are non-negative,
H"(z)>0 for all real z>0. Therefore H(z) must
have exactly one minimum z* in the interval (0, co).
Because of the property (A2)

H'(1) = E[c] <0, (A9)
the minimum point z* must be located in the

region z* > 1, thus there must be a real number z,
such that z,>z*>1 and H(z,)= 1.
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Appendix B

B.1. Wald’s fundamental identity for random
variables with discrete distributions

Let {x,} be i.i.d. integer-valued random varia-
bles and Y, denote the sum of the first / elements

of {x,}:

Y=x,+x,+ - +x,. (B1)
Let j be the stopping time corresponding to the
interval [b, a], i.e.,

J=min{i: Y,<bor Y,>a}. (B2)
Assume that the random variable x satisfies the
following conditions:

(1) The mean and vanance of x both exist and
the variance is strictly positive.

(2) P{x>0}>0and P{x <0} >0. (B3)
(3) For some r> 1 the expectation
E[z*]=G(z) (B4)

exists for z such that 0 <z <r.
Then, the following equality holds for all z such
that G(z) = 1:

E[z%G(z) 7] =1. (BS)
B.2. Proof

Let J be a positive integer. Then for any stop-
ping time j > 1

E[zV+ (Y] = E[z%]

= E[zntattu]

=G(z). (B6)
Let us define
P,=P{j<J}, (B7)
E,[u] =E[u]j<J] (B8)
and
E;[u] =E[u|j>J]. (B9)

Then, we obtain from (B6)

E[ZY’] = PJEJ[ZY’HYJ‘Y’)] +(1- PJ)EJ[ZYJ]
=G(z)’. (B10)

The fact that the stopping time ;j implies that the

variables x,, x,,...,x, are no longer independent,
since they must satisfy ¥, >a or ¥, <b. If j</J,
then Y, — Y, =x,,,+x,,,+ - +x,, is indepen-
dent from ¥, =x, + x, + - - +x,, s0 we can write

E [0 0= E[276(2) 7] (B11)
Therefore (B10) becomes
G(z) = PE[2G(z) | + 1 = P)E[2"].

(B12)

Dividing both sides by G(z)” leads to
_ E,

PE[27G(z)7] + (1~ )——[5—] 1. (B13)
Now, obviously,
lim P, = hm P{j<J}=1 (B14)
J— o0
Hence,
lim (1—P,)=0. (B15)
J— o0
Since j>J only if b<Y,<a, we find that for
=1
sh<zV <z, (B16)

Hence, E,[z"] is finite for any J, and using the
assumption that G(z) =1, we obtain

E,[z"] _

lim (l—P) (B17)
J— o0 G( )
Furthermore,

E[z7G(z)7].  (BI8)

Thus, from (B13), we obtain the desired identity
(BS).

lim P,E[25G(z) 7] =
J— oo
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