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Abstract 
We consider a statistical multiplexer model, in which each of N 
sources is a Markov modulated rate process (MMRP).  This formu- 
lation allows a more realistic source model than the well studied 
but simple “on-off) source model in characterizing variable bit rate 
(VBR) sources such as compressed video, whch is of increasing 
importance to ATM networks. In our model we allow an arbitrary 
distributionfor the duration of each of M states (or levels) that the 
source can take on. We formulate Markov modulated sources as a 
closed queueing network with M infimte-server stations. By ex- 
tending our earlier results [13, 191 we introduce an M-dimensional 
diffusion process to approximate the aggregated traffic of such 
Markov modulated sources. Under a set of reasonable assump- 
tions we then show that this diffusion process can be expressed as 
an M-dimensional Ornstein-Uhlenbeck (0-U) process. 

The behavior of buffer content is also approximated by a d f -  
fusion process, which is characterized by the aggregated traffic 
process and the output process. 

We show some numerical examples which illustrate typical sam- 
ple paths, and auto-correlations of the aggregated traffic from the 
Markov modulated sources and its diffusion process representa- 
tion. Simulation results are provided to compare with our diffusion 
model for queueing analysis. 

1 Introduction 

In the future B-ISDN (Broadband Integrated Services Digital Net- 
work), multiple types of information (e.g. video, image, voice 
and high-speed data) services will be provided by means of fast 
packet switching with statistical multiplexers. The traffic into a 
statistical multiplexer is a superposition of packet streams from a 
large number of sources of differing types. 

There have been a nuniber of noteworthy efforts to character- 
ize multiple “on-off” sources that are statistically multiplexed in a 
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packet-switching node. A jluid-flow model with single type “on- 
off’ sources was formulated by Hashda and Fujiki [61 and Kosten 
[ 151. Anick, Mitra and Sondhi [ 13 present a comprehensive analy- 
sis of tlxs fluid model. Kosten [ 161 extends [ 11 to multiple types of 
traffic. The “ ~ n - o f f ~ ~  source model will be an appropriate model, 
when the source is a voice or data source. As an altemative ap- 
proach to model voice and data traffic in packet-switching envi- 
ronment, Heffes and Lucantoni [7] and others discuss applications 
of a Markov Modulated Poisson Process (MMPP) representation 
for the superposed traffic. The Markov modulated source model 
discussed by Elwalid, Mitra and Stem [5] is a generalization of [7] 
with multiple Markovian states for each source. 

In the B-ISDN environment, however, video traffic will make 
a significant part of the network traffic. Unlike voice and data 
sources, the well studied two-valued “on-off’ representations will 
not be appropriate to characterize variable bit rate (VBR) traffic 
such as compressed video. It has been known [17, 181 that video 
traffic can be modeled more appropriately as a multi-valued rate 
process. 

The traffic model we propose in th s  paper is distinct from the 
previous work in two ways. First, we are introducing and consid- 
ering Markov Modulated Rate Process (MMRP) as source model. 
Second and more importantly, we introduce a diffusion process 
approximation for the superposition of such Markov modulated 
rate processes. Thls approach has an advantage that the model is 
not restricted to cases with the exponential dstribution as for the 
duration of each state. The diffusion approximation model also 
allows us to obtain the transient solution as well as the steady state 
solutionmore efficiently than the previous solutionmethods, where 
computational complexity grows exponentially as the nuniber of 
states and the number of multiplexed sources increase. 

The diffusion process model we present in this paper is a multi- 
variate Omstein-Uhlenbeck (0-U) process, whch was originally 
introduced as a refinement of the Brownian motion (see e.g. Feller 
[4]). Kobayashi et al. [lo] dscusses the 0-U representation of 
the multiple access scheme of the ALOHA channel. In our recent 
[13,19] work, wehaveshownthattheo-Uprocessprovides agood 
approximation to characterize the superposition of traffic from a 
heteroEeneous set of “on-off” sources. - grant. 
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observing that the behavior of the superposition of the N Markov- 
modulated rate processes with M states can be represented as a 
closed queueing network with N customers and M stations with 
each station being represented by mfimte servers (or equivalently 
N parallel servers). We then further to approximate the buffer 
content process by a diffusion process as in [14] and analyze its 
queueing behavior. 

2 Formulation of the Model 
The system is composed of a statistical multiplexer and N indepen- 
dent homogeneous sources (Figure 1). Each source is govemed 
by an M-state Markov chain P = {pl,}, I ,  m = 1 , 2 , .  . . , M .  
When a source is in state m it generates packets at rate R, [pack- 
ets/second]. The duration or burst period of state m has a general 
distribution with mean a;’ and vaniance ~7;. When the source 
exits state I, it moves to state m with probability pt,. Figure 2 
depicts state transition diagram of a single source, and data stream 
from such source. 

Let us define an M-dimensional process n(t) 

n(t) = [n l (q l  n2(t), . . ’ ,  n M ( t ) l T ,  (1) 

where n,(t) denote the number of sources in state m at time t ,  
m =  1 , 2 , . ” , M .  Clearlywehave 

M 

m=l  

The superposed traffic to the multiplexer input at time t can be 
defined as 

(3) 

The transmission link has a constant capacity C [packets/second]. 
Hence the change of the buffer content Q(t)  can be represented as 

(4) R(t) - C, when R(t) > C or Q(t) > 0, 
d t  0, otherwise. 

As discussed in [121, a source in state m can be viewed as a 
customer attended by one of the N parallel servers at “station” 
m with mean service time a;’. In h s  closed queueing network 
representation, there will be no queue at any station, since, N ,  
the number of parallel servers is the same as the numbers of the 
customers in the network. This is depicted in Figure 3, in wluch 
A ,  ( 1 )  and D, ( t )  are the arrival and departure counting processes 
to station m (i.e. the total numbers of arrivals at and departures 
from station m up to timet) of the queueing network. The queueing 
network of Figure 3 is a variant of the machine servicing model 
well-discussed in the literature (see e.g. [ll] pp.144). When there 
are n, “customers” at “station” m, the mean rate of departure is 
given by Qmnm. 

Upon the completion of “service” at “station” 1, customers route 
to state m withprobabilityp I,, m = 1 2, . . . , M .  Thus the arrival 

process at station m, A,@),  is the aggregation of those departures 
from other stations whch route to station m. 

Let Dl,,(t) represent the counting process of customers which 
move from station 1 to station m. Clearly 

M 

1=1 i=l  

Let an M-dmensional process 

X(t) = [Xl(t), X2( t ) ,  ’ ’ ’ ,  X M ( t ) l T  

be a continuous-state Markov process approximation of the 
bscrete-level function n(t) = [nl(t), n2(t), . . . , n M ( t ) l T .  The 
process X ( t )  must satisfy the same constraint equation as Eq.(2), 
i.e., X,(t) = N .  When X,(t) = x,, its mean departure 
rate is given by 

(6) 

We denote the variance of departure rate as &(xm), and its co- 
efficient of variation as c,(z,) = a ~ ( z , ) / u ~ ( x , > .  Then the 
infimtesimal mean vector b(x) of the vector process X(t) is given 
by 

M 

-1 
U m ( Z m )  = 

b(x) = 

(7) 

- (3) pmm/  - (*) (x m/ ) pmim.  (8) 

Note that in the Markov modulated source, we have p,, = 0 
for m = 1, . . . M .  In other words, when the holding time in one 
state expires, the source always shfts to a different state. Then the 
expression for d(x) can be simplified: 

where vI is an M-dimensional column vector whose 2-th element 
is unity and the m-th element ( m  # 1) is --plm, i.e. 

T VI = [-pr1, . . . , 1, . . * ,  -PlM] . 
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Matrix W ( x )  is an M x M matrix whose element is 

M 

wmml(X) = [pim(Smmt - p l m ' ) / ~ I ( ~ l ) ]  
1=1 

for 1 5 m, m' 5 M .  It is easy to show that W is nonnegative- 
defimte. 

Note that W(x)  depends only on the Markov chain P = { p i m } ,  
the mean burst periods a;', 1 5 m 5 M ,  and the system state x. 

For more detailed derivations of the above arguments, readers 
are referred to [9] and references therein. 

3 Derivation of the Diffusion Approxima- 
tion Model 

With the formulation given in Section 2, we can show that the M-  
chmensional diffusion process X ( t )  is govemed by the stochastic 
differential equation 

d X ( t )  = B . X ( t ) d t  + m. d W ( t ) ,  (10) 

The solution for Eq.(15) has a multi-chmensional Gaussian dis- 
tribution with mean %(t) = x* + etDxo and variance E@) = Jot e ( t - T ) B A e ( t - . r ) a T d r .  In steady state, we have 

x =  x* , 
t o o  

(16) 5 - = e B t d e B T t d t ,  

BE + 8BT + A = 0, 

with E satisfying 

(17) 

whch is a special case of Lyupunov equation [2]. 
As we noted earlier, I3 is a singular matrix, thus E is not the 

unique solution of Eq.( 17). To overcome this problem, we con- 
sider (A4 - 1) free variates z1,22, . . . , Z M - ~  and find the follow- 
ing relationship between the density functions using the in&cator 
function X I . }  : 

f(Zl,...,ZM) = f(Zl,...,ZM-l) .x {"M=(N-C::ll z m ) } .  (18) 

Thus l? andd inEqs.(7) and (13) are modified to ( M -  1) x ( M  - 1) 
matrices B1 = {&,} and A1 = { a k n } ,  where 

where W(t) is an M-dimensional Brownianmotion withzero mean PLLn = P m n - P m M ,  m,n= l , . . . , ~ -  1; (19) 
I 

- a m n ,  m , n =  l , . . . , M -  1. (20) and the covariance (matrix) function IS ( t ) ,  where I is the M x M 
identity matrix and S ( t )  is the impulse function. 

Both L? and d ( x )  are singular matrices due to the fact ?en we have a unique solution of a symmetric positive-defhte 
Em=' X m  = N .  By definition, A(x )  is a positive semi-definite 5 for f (21 , . . . , " M - I )  from Eq.(17). 
matrix. Hence 

Let x* = ("7 ,  "3, . . . , z h )  be the equilibrium state of process 
X ( t )  such that 

amn - 

M 

always exists and is uniquely defined. 

4 Aggregated Traffic Process 

b(x*)  = 0. 

Then we can write 

b(x )  = B . ( x - x * )  

As we have assumed earlier, a source at state m generates packets 
at constant rate Rm. So we can deline the superposed traffic to the 
multiplexer input at time t as 

m=l 
If we consider a narrow region around x = x* , we can approximate 
A(.), the h i t e s i m a l  variance matrix, by its value at = x*:  Without loss of generality we can further assume RM = 0 (i.e., a 

source is always off at state M )  so that we only consider processes 

(13) def A(.) M A(x*)  - A. 

With the linear infhtesimal mean b(x )  of Eq.(12) and the 
approximated constant infinitesimal variance A of Eq.( 13), the 
stochastic differential equation (10) becomes 

d X ( t )  = l?. (X(t) - x*)dt + J3?. dW(t), (14) 

whichis a multi-variate Urnstein-Uhlenbeckprocess, leading to the 
following differential equation for f ,  the conditional probability 
density function of X(t): 

xl(t), " ' , X M - l ( t ) .  
Note that E' is a symmetric positive-definite matrix, thus it can 

be diagonalized as E' = QTAQ, where A is a diagonal matrix with 
element A i ,  i = 1, . . . , M - 1, being the eigenvalues of E', and the 
row vectors of matrix Q consist of the correspondmg orthonormal 
eigenvectors . 

Define Z ( t )  = &X(t), then Z ( t )  is a Gaussian pro- 
cess with mean &x* and covariance matrix A, which implies 
Z,( t ) ,  2 2 ( t ) ,  . . . , Z ~ - l ( t )  are orthogonal (hence independent) 
Gaussian processes. Therefore the superposed traffic 

M-1  

~ ( t )  = R m X m ( t )  = [ R I ,  ~ 2 ,  * * ' ,  ~ M - 1 1 '  ~ ( t )  
m=l 

[ R I , .  . . , R M - ~ ] & ~  . Z( t )  = 
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where Rk = Cy-' z=1 RiQmi. R(t) is a weighted summation of where a and b are constants defined as 

b = Rmxl*,, Gaussian process, whose mean and variance are 
independent Gaussian processes, therefore it is also a stationary M-1 

m=l 
M-1 

(32) 

From Eq.(4) the output process c ( t )  for transmission can be 

I T  T lim E [ R ( t ) ]  = RmXk, a = Rl?;'dl(Z?, R . 
t-m 

m=l  
M - l  

lim V a r [ R ( t ) ]  = AmRz. (23) approximated by 
t-03 

(33) = { v d t ,  otherwise, 

We define A(t)  as the accumulated amval process for the ag- where 7 is an unknown constant and may be approximated by 
ECRlR < C] as suggested in [14]. 

The diffusion process q(t)  therefore satisfies the following 

m=l Gdt; when Q(t) > 0 or R(t) > C,  

But generally R(t) is no longer a Markov process. 

gregated traffic R.(t): 

t stcchastic differential equation' 1 M - 1  

A( t )  dgf 1 R(t)dt = R, / X,( t )dt ,  (24) 
m=l 0 d q ( t )  = dA(t) - d c ( t )  

def and Y ( t )  dAf [ X l ( t ) ,  . . . , X ~ - i ( t ) ] ~ ,  y* = [xT, ' . , x ; ~ - ~ ] ~ .  
Then, from Eq.(14), Y( t )  satisfies the following stochastic differ- 
entia1 equation It can be shown [14] that the statiomyprobability Prob[q > x ]  

(= limt,, Prob[q(t) > X I )  is given by 

(35)  

The exponent approximates the tail-end distribution (i.e., for a 
large value of x) of Prob[Q > x ]  and the coefficient 2 is used 
to approximate Prob[Q > 01. As discussed in [131, Prob[R > C] 
can serve as a lower-bound approximation of Prob[Q > 01. 

b -  C - b  d Y ( t )  = Bl(Y(t) - y* )d t  + &dW(t). ( 2 3  

We can show that for a sufficiently large t , the mean and variance 
Prob[q > x]  = -3ezp[ -2 - - z ] .  c-r! a 

of Y(t)dt 

(26) 

(27) 

E [ l  Y ( t ) d t ]  y*t + o ( t ) ,  

t 
V a r [ /  Y( t )dt]  N B ; ~ A I ( B ; ' ) ~ ~  + o ( t ) ,  

0 6 Numerical Examples and Simulation Re- 
which implies sults 

We give some numerical examples to illustrate and verify our 
modeling and analysis methods. The simulations are conducted for 
both the superposed (or aggregated) traffic of Markov modulated 
sources and its corresponding diffusion process approximation. 

We consider the superposed traffic of 100 independent four- 
state Markov modulated sources, i.e. N = 100 and M = 4. The 
Markov generator for each source is given by 

5 A Diffusion Model for Queue Process 
Q (t> 

In this section we form a diffusion process q(t)  to approximate the 
buffer content process Q(t )  by using the approach in [141. 

From Eqs.(28) and (29) we approximate the accumulated arrival 
process A(t )  by a diffusion process whch is still denoted as A(t)  
for convenience. By doing so, the underlying diffusion process 
captures the original process through its first and second order 
statistics in equilibrium, which are given in Eqs. (28) and (29), 

Let 

R1 = 1.4, Rz = 5.0, R3 = 2.7 and R4 = 0.0; 
"1 = 1.0,  CY^ = 3.0, a3 = 2.0 and a 4  = 7.0, 

and we assume that the burst periods are exponentially distributed 
(with means CY;*, CY;', a;' and a,', respectively). 

'Note that q ( t )  is a diffusion approximation of Q ( t )  and can take negative 
values. 
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Figure 4 shows a simulated sample path of a typical packet gen- 
eration process from a single source as defined above. Figure 5 
shows a simulated sample path of superposed traffic stream from 
100 independent sources, each of whch generates the four-level 
bursty traffic similar to Figure 4. Figure 6 shows a simulated 
sample path of the diffusion process (as defined in Eq.(14) with 
correspondmg B and A), whch is an approximation of the super- 
posed traffic in Figure 5. The distributions of the superposed traffic 
from the Markov modulated sources and its diffusion process rep- 
resentation are plotted in Figure 7. They are compared with the 
Gaussian distribution whch we have obtained analytically from 
Eq.(23) and has a mean of 260.06 and a variance of 228.65. Figure 
8 shows the auto-correlations of the superposed traffic from the 
Markov modulated sources and of its diffusion process representa- 
tion. Figure 9 provides some simulation results of buffer overflow 
probabilities from the 100 MMRP sources with their parameters 
given as above. They are compared with the tail-end distributions 
obtained from the diffusion approximation by using Eq.(35). 

In Figure 10 we plot buffer overflow probabilities of MMRP 
sources (from simulations) and compare them with the ones by 
using diffusion approximations (from Eq.(35)). In addition to the 
case of exponentially distributedburst periods, we show the results 
for two other holding-time distributions: (1) 2-stage Erlangian 
distribution; (2) 2-stage hyper-exponential distribution, with same 
means N;’, ay1 ,  and aT1 as the exponential case. 

7 Conclusion and Discussion 

We have formulated diffusion process models to analyze the su- 
-perposed traffic streams from many MMRP sources in a statistical 
multiplexer and then analyze its queueing behavior. Our source 
model is more general than those assumed by most of the previous 
studies: each source has a finite number of states whch are gov- 
emed by a discrete Markov chain. At each Markovian state, its 
duration (i.e., burst period) has a general dstribution and packets 
are generated at the constant rate determined by that state. We 
showed that the total number of multiplexed traffic sources, N ,  
introduces no extra computational complexity (compared with a 
single source model). Furthermore, the accuracy of the diffusion 
process model will improve as N becomes larger. 

Although we treated the case of single type homogeneous 
sources, our approach can be generalized directly to a system with 
multiple types of traffic - each type of traffic is modeled as treated 
in this paper and the overall process is simply a sum of these com- 
ponents, i.e., the quantities in (28) and (29) for the heterogeneous 
case can be represented as the sums of the corresponding quantities 
for each single type traffic case. 
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of sources in state m. 

Transmission 

Link Buffer 
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Sources A S a m e  Path of the traffic from a Sin& Markw modulated Sourm 
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Figure 1: A buffered statistical multiplexer and N homogeneous 
sources. 

Figure 4: A sample path of the traffic process from a single 4-state 
Markov modulated source with the parameters provided in Section 
6. 
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A sample path of the aggregated traffic of Markov modulated sources 
310 

300 

I 
2 4 6 8 10 

l i m e  t 

Figure 5:  A sample path of the aggregated traffic process of 100 
Markov modulated sources, of whch has a pattem statistically 
similar to the one depicted in Figure 4. 

A sample path of the diffusion IO-U) process 
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230 
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Figure 6: A sample path of the diffusion process, whch approxi- 
mates the aggregated traffic stream depicted in Figure 5. 
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Figure 7: The cumulative distribution functions of the aggregated 
traffic process of Markov modulated sources (‘*‘), its diffusion 
process representation (‘+’) and the analytically derived Gaussian 
process (solid line). 

Autocorrelabon Fundons of Aggregated Traffic 
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Figure 8: The auto-correlation functions of the aggregated traffic 
process (‘*’) and its bffusion approximation process (solid line). 
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Figure 9: The buffer overtlow probabilities Prob[Q > z]: diffu- 
sion approximation of tail-end distribution from Eq.(35) vs. simu- 
lation results with 100 MMRP sources in Section 6 under different 
link capacities, i.e., C = 265,270 and 285. 

0.0 I 

t 
.1.0 

F -2.0 
A 

B 
g 

-3.0 - 

-4.0 

I 
0.0 5.0 10.0 1 5.0 xI.0 

BufferThreshold x 

-5.0 ‘ 

Figure 10: The buffer overflow probabilities Prob[& > 21: &&- 
sion approximation of tail-end distribution from Eq.(35) vs. simu- 
lation results with 100 MMRP sources in Section 6 under different 
holding-time distributions: 2-stage hyper-exponential, exponen- 
tial, 2-stage Erlangian. Link capacity C = 285. 
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