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Abstract

We develop a general theory to derive the non-stationary
(or transient) behavior of a statistical multiplexer , which
combines data that are generated from a heterogeneous set
of information sources. The problem is motivated by per-
formance analysis and control of a multi-media commu-
nication network in the future B-ISDN (Broadband Inte-
grated Services Digital Network) environment, where mul-
tiple types of information traffic will be integrated and
transported over high speed links.

Our work extends earlier results by Kosten [1984] and
others by solving the general non-stationary behavior of
the multiplexer, whereas the earlier work dealt with only
the equilibrium solutions, and in most cases, for a single
type of traffic. The transient solution will be useful to
better underatand various performance problems that may
arise in future high-speed networks which will carry bursty
traffic of various types.

Our analysis is based on & linear operator theory and
its spectral expansion method applied to the transform do-
main (the joint s-transform and double Laplace transforms)
of the partial differential equation that governs the stochas-
tic behavior of the statistical multiplexer. Computational
aspects of this method is left for a further investigation.

1 Introduction

With recent progress in optical fiber and related technologies, the
architectural design and prototype implementation of broadband
ISDN (B-ISDN) are actively pursued on the international level.
In such future broadband networks, multiple types of communi-
cation media — voice, data, graphics, image, video and TV (high.
definition TV in the future) — will be integrated and transmitted
over high speed links, by using a new type of digital switching and
multiplexing technique, known as fast packet switching in asyn-
chronous transfer mode (ATM). The basic principle of this fast
packet switching scheme is statistical multiplezing.

There have been a number of studies that report analytic
model of statistical multiplexing, but most studies have been lim-
ited to models with one type of information source (e.g., voice
sources) or two types of sources (e.g, voice and data).

Anick, Mitra and Sondhi [1982], Cohen {1974], Hashida and
Fujiki (1973], Kosten [1974], Mitra {1988], Stern [1984] and others
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discuss fluid approzimation models that are relevant to statistical
multiplexing systems and obtain the equilibrium state solutions
for single type of traffic sources. For an expository treatment of
these earlier results, the reader is referred to Kobayashi [1990a).
Ren and Kobayashi [1992] recently obtained transient solutions

“for such statistical multxplexors by using the double Laplace trans-

form method.

Kosten [1984] presents some analytic and simulation meth-
ods to derive the equilibrium solution for multiple types of traffic.
Kobayashi [1990b, 1991] discusses the case of infinite sources with
multiple types, and characterizes an asymptotic behavior of the
buffer contents in terms of simple parameters of what he terms
the “dominant” type traffic. Elwalid, Mitra and- Stern [1991] and
Stern and Elwalid [1991] discuss equilibrium state solutions when
the sources are modeled as Markov modulated sources, and derive
both theoretical results and computational methods.

Our paper presents a general theory to deal with the transient
analysis of multiple types of traffic. Our analytic results will be
useful to understand dynamic behavior of statistical multiplexors
in high-speed ATM networks, which will carry bursty traffic of
various types. The non-stationary solution will also provide a
mathematical basis for formulating preventive congestion control

algorithms.

2 A Mathematical Formulation of Multi-
ple Types of Sources
2.1 A Finite Source Model with Multiple Types

Let there be N,, sources of type m, where m = 1,2,..., M, and

let Jm(t) denote the number of types m sources in “on” state (or -

in “burst”, or “talk spurt” mode in the case of voice sources).
Therefore, there are Ny, — Jp,(£) sources which are in “off” state
(i.e., “silence” mode).

We assume that successive “on” and “off” periods of each
source form an alternating renewal process. For mathematical
simplicity, we further assume that the “on” and “off” periods of
type m sources are both exponentially distributed with parame-
ters a,, and B, respectively:

a;;! = The mean off period of a type m source; 1)
! = The mean on period of a type m source. (2)

Let j be a vector defined by
j= [jl:jﬁv"rjM]) (3)

where jp, is an integer that J,(2) can take on. Let us define the
time-dependent probability distribution

P(it) = PIn(t) = jm 1 Sm < M) ()




Then by applying the well known birth-and-death process model
(see e.g. Syski [1960, 1986], Kobayashi [1978]), we obtain
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where 1,, is a vector that has unity in its mth entry and is zero
elsewhere.

We define the following M-dimensional Z transform or prob-
ability generating function:

Z2{P(j; 1)}

N N,
Z pIRE E PGty ¥, (6)

1=05=0 ju=0

G(z; t)

Then Eq.(5) can be transformed into the following partial differ-
ential equation with respect to time ¢ and the variable z:

8 .
56 = MG, )

where we drop, for the sake of notational brevity, the arguments
z and ¢ in the function G(z;t). The symbol M represents a linear
operator defined by

MG = E(z...—l)[Nma...G (a...z...+ﬂ...)8 ¢ ®

m=1

We choose the simple representation of equation (7) because the
operator M can be interpreted as a matrix operated on vector G.
We will use the symbol M to represent the linear operator of (8)
and the corresponding matrix interchangeably. If we interpret the
operand G as a vector of dimension L, where L = [[2_, (N +1),
then the operator M of (8) should be interpreted as the following
matrix that acts on the vector G:

M= MBM3®--- &My, ()

where @ represents Kronecker sum (see e.g., Bellman {1960}, Neuts
[1981]) and will be explicitly shown in the example of Section 4.
Lexicographical ordering of the elements of vector G and those
of M should be chosen consistently and the example will clarify
this point. The matrix My, is an (Nm + 1)x( N,y + 1) tridiagonal
matrix whose elements M,y,; are given by

M (Nm = 5+ 1)Bm,
Mm;; —(Nm = j +1)am = 5Bm,
M"‘:':'M = (j+1)Bm for j=0,1,...,Nm, (10)

and My,; =0 for all other i and j,

By generalizing the birth-and-death process model of one di-

mension (see e.g. Syski [1960]) we can derive the following product
form solution:

M
G(zit) = IJ lam(t)(zm — 1) + 1),

m=1

(11)

where we assume that the system is in state 0 at time t = 0. The
function gm(t) is the binomial distribution parameter and is given

by

am(t) = [1 ~ e~(omtame), (12).

Hence we find that the joint probability is the product of M bi-
nomial distributions.

P(j;t) = H

me=1

im (13)

N, s
( i ) G (1)1 = gm ()N,
In the limit t — oo, the above distribution converges to the
equilibrium distribution with the constant binomial parameters
Om = am/(am + Bm)-

2.2 A Statistical Multiplexer Model for Multiple Types
of Traffic

Now we analyze the behavior of a statistical multiplexer in fast
packet switching. Each source of type m in its burst state gener-
ates packets {or cellsin the ATM terminology) at the rate of Ry,
[packets/unit time]. The aggregate rate of packet arrivals at time
t is therefore

M

R(t)= 3 Rmdum(t). (14)

m=1 .
Suppose that the buffer content is initially empty. Then while
R(t) < C, the link capacity of the multiplexer output, the arriving
packets are processed immediately, thus no queue of packets will
develop in the buffer. Once R(t) exceeds C, however, the output
link can no longer handle all the packets instantaneously, and
buffer contents will grow or deplete at the rate R(t)—C, depending
on whether this quantity is positive or negative at a given instant.

Let us define Q(t) as the total amount of packets found in the
buffer of multiplexer output link. Strictly speaking, Q() is an
integer-valued function, but we approximate it by time-continuous
function, assuming that a series of packets arrive like fiuid flows.
This assumption is well justified in modeling a multiplexer for a
high speed link.

By extending Eq.(4) we define the following probability dis-
tribution function:

P(5;t,2) = P[Im(t) = jm,1 Sm < M; and Q(t) <z]. (15)

Then by generalizing the differential-difference equation (5), we
obtain the following partial differential equation:

BP(,;: ,z) +(§_:1R".Jm -0)8 P(3;t,2)
Z {(Nem — 3m)am + jmpm]PG; t,z)
m=1
M
+ E(an'jm + DamP(j - 1m;t,z)
m=1
M
+ Y (Gm+ 1)BmP( + 1mit,2), (16)
m=1
Similarly we generalize Eq.(6) and define
G(z;t,z) = Z{P(j;t,z)}
M " Ny . N
= T3 PGad (D)
H1=0 Far=0
Then Eq.(16) can be transformed into
gtc + va—c MG, (18)
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where we now drop the arguments z, ¢ and z in the function
G(z;t,z). M is the linear operator defined by Eq.(8) and operator
D is defined as

DG = Z(zm—l) Rvnzm"—G CG]. (19)

m=1
The matrix interpretation of the operator D is given by the fol-
lowing diagonal matrix of dimension L:
D = diag{< j,R > -C] (20)

where < j,R > is an inner product of the vector of Eq. (3) and
the packet generation rate vector defined by

R= [RI)RZP--:RM] (21)

The elements of R. are arranged in such a way that lexicographical
ordering of the diagonal matrix D and the operand vector G are
consistent. Note that D is a natural generalization of the matrix
D discussed by Kosten [1974], Anick et al. [1982] and others.
We define the Laplace transform of G(z;t,z) with respect to
time t by
G*(z;8,2) = L{G(2; ¢, 7)}. (22)

Then Eq.(18) can be transformed into

3G*(z;3,2) - G(z;0,2) + D;;G‘(z; 3,2)
= MG*(z;s,z). (23)

We then take the Laplace tra.nsform of G*(z; s, z) with respect to
the buffer content variable z:

3G™(z;s u) G*(z 0,4) + D{uG**(z; s, u) G‘(z s,0)}
= MG*™(z;s,u), (24)
from which we obtain
[sT + uD — M]G™(z; 3,u) = G*(z; 0, u) + DG*(z;5,0). (25)
" We formally define an operator R(s) by
R(s) = [sI + uD - M]™?, (26)

which can be viewed as a resolvent defined in the theory of semi-
groups (see e.g., Friedman [1956], Feller [1966] and Syski [1960]).
The inverse operator (26) exists for those s which are not equal to
eigenvalues of the operator M —uD. The set of all s for which R(s)
exists is called the resolvent set. The set of eigenvalues {s;;0 <
Jj € L -1} is called the spectrum. Then by using the spectral
expansion method (see e.g. Syski [1960]); we can represent the
operator R(s) as follows:

L-1 E:
R(s)= ), —-, (27)
o
where the operator £; is called a projection operator, and is ob-
tained as

£ = lim (s - 5 Re). (28)

As we discuss later, however, the operator £; can be often more
easily obtained, once we find the jth left and right eigenvectors
associated with the eigenvalue s;.

Let 3 be one of the eigenvalues and let V(z; x) be the associ-
ated right eigenvector. Then V(z;u) should satisfy the following
characteristic equation:

sV(z; u) = [M — 4D}V (z;u) (29)

or

Z[amz + (uRem + Brm ~ Qm)2zm ~ ﬂm]

m=1

T V(zu)}

M
=-s+uC+ Y [Nmam(zm —1)). (30)

m=1
Let zm1(u) and zm2(u) be two roots of the quadratic equation
amzy + (URm + B — Crm)2m — fm = 0, (31)
which leads to the following product form for the eigenvector
V(z;u):
M
I1 (2 = 2m1(w))*"(2m = zma(w))¥m~2=,  (32)

m=1

V(z;u) =

where k,, is an integer parameter between 0 and N,,,. Then taking
the logarithm of Eq.{32), and substituting it into Eq.(30), we ﬁnd
the following exphcxt formula for the eigenvalue:

s =uC - 2 [N — kmzma() = (Nm = km)zm1(w)].  (33)

m=1

By substituting
—(URm + fm —am) \/D...(u

Zmi(u) Zma(w) = Far (34)
Dm(u) = (6Rm + Bm— am) + 4amfBm, (35)
into the last equation, we obtain
= u(c-- Z RuN,, )—— Z(am+ﬂ,,.)N
m—l m=1
= 3" VDl = ), | (36)

m=1
Therefore, for a given integer vector
= [k1, kay .. ., k] (37)

we uniquely determine the corresponding eigenvalue sy as a func-
tion of u, and the associated eigenvector Vi (z; u), which takes the
form (32).

Now we write the kth eigenvector as

Vi(ziw) = ﬁ View (2m; %), (38)
where
Vi (2%) = (2 = 2m1 ())*(2 — zZma(w))¥m"m. (39)

The coefficient of 27 term, 0 € j < Ny, can be obtained by
enumerating the z term in (2 - Zma ()Y for the range j-
min{j, N = km} < h < min{j,kn}) and 27°* term in (z -

zmz(u))Nm—hm( for the Tange J_mln{J7 km} S J—h _<. min{]: Nm"

km}). Because we can represent

ke
(2 = zma(u)m = 3 ( o ) Aoz, (40)
h=0

and
(2 = zma(u))Nm=bm (41)

T ( e ) M= ma (W) Y hn I,
§~h=0
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the coefficient of 29 = z29~P term is computed as

wo = D (5) ()

h=max{0,j+km—Nm}
= (W)=~ () ¥R

min{j, km}
=y (B) (42)
h=max{0,5 +km=Nwm}

.(Nm"km

TR ) il R (A,

Once the right eigenvector, denoted Vy, is obtained, the cor-
responding left exgenvector Uy is given by

Uy = (Q71)*Vy, . (43)

where Q is a diagonal matnx that transforms the matrix M into
a symmetric matrix. It is not difficult to show that

Q=012:9---® 2uM, (44)

where ® represents Kronecker product, and the j element of the
diagonal matrix Q,, is given by

v (") )

which corresponds to 7; defined by Anick et al {1982].
We normalize these eigenvectors, which are orthogonal to each
other, so that

Uka, = byxrs (46)

where 6§y is Kronecker delta. We find that the projection oper-
ators £y is representable, in its matrix interpretation, as

- &= : Vi U (47)
Therefore, from Eqs.(25), (27) and (47) we obtain the following:
P*™*(s,u) = Z~YHG"(z;s,u)} (48)
VUi
= X kip*(0,u) + DP*(s,0)),
el

where 21 is the inverse Z transform. Thus the P**(s,u) is the
probability vector of dunenslon L= IIM_I(N 'm + 1), and its kth
element is the coefficient of z¥ M term in G**(z; s, u), and
is equivalent to £:L.{P(k;¢, z)}

In Eq.(48) the initial condition P*(0,u) is known. For ex-
ample, if the system is initially empty, then all the entries of
P*(0,u) are zero except for the first term, which is 1/u. The
boundary condition P*(s,0), on the other hand, is unknown, and
must be solved by finding a proper set of constraints. Ren and
Kobayashi {1992] discuss the single type traffic case, and show

that the method developed by Kosten {1974, 1982], Anick et al’
[1982) and Mitra [1988) is generalizable to determine the unknown’

boundary condition. The solution technique discussed with nu-
" merical examples in Ren and Kobayashi [1992] can be extended
to the muitiple type case under discussion.

Taking the inverse Laplace transform of Eq.(48) with respect
to the variable s, we obtain the following time-dependent solution:

P*(t,u) L7H{P"™(s,u)} (49)
¥ lexp{ut}*(0) s R °’}1

The above summation should be taken over only those values of k
for which sy < 0, since positive eigenvalues would yield unstable
solutions. Then taking the inverse Laplace transform of Eq.(49)
we finally obtain

P(t,2) = L{P*(t,u)} (50)
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In many practical problems we need to resort to numerical
methods to perform the inverse Laplace transform. See, for ex-
ample, Kobayashi [1978] and references therein that discuss the
numerical inversion methods.

3 Special Cases
‘We now discuss three special cases of the above model and the cor-

responding solution and illustrate how they reduce to previously
known results.

3.1 Equilibrium State Solution
If we define
G*(z;v) = lim L7Y{G™(z;s,u)} = lim sG™(z;5,u)  (51)

and substitute it into Eq.(25) and let s approach zero, we obtain

[ul — DIMIG*(2;u) = G(z;0). (52) -

We now take the spectral expansion with respect to the variable
u, and write .

G*(z;u) = Z

1—0

G(z;0), (53)

where {u;;0 < j < L — 1} are eigenvalues of the operator D~IM -

and £;'s are the corresponding projection operators.

The characteristic equation that the eigenvalues u must satisfy

is obtained by setting s = 0 in Eq.(36).

C ~ a Z RmNm) (54)

m-'l

P32 ):(am+ﬂ...)N + Z \/B;(km——

m=1

Kosten [1984] showed that’

1. There are exactly L(= [J¥_,(Nm + 1)) eigenvalues, all real.

2. One eigenvalue is zero, which corresponds to the vector k =
0 N +

3. The number of positive eigenvalues is one less than the num-
ber of mteger vectors k that satisfy

2 Rpkm < C. (85)

m=1

If we further specialize in this model and set M = 1, then the
model reduces to the case discussed by Anick et al [1982]. A minor
difference from their characteristic equation, which is a quadratic
equation in u (or z in Equation (20) in Anick et al [1982]), is that
the characteristic equation (54) relates the integer vector k and
the eigenvalues {uy} one to one.

3.2 Multidimensional Birth-and-Death Process

If we just focus on the c;n-oﬂ' behavior of the traffic sources, and

ignore the buffer content of the multiplexer, the problem reduces -

to the model discussed in Section 2.1. Noting that the probability
distribution (4) is the limiting case of (15), we define

G*(z;8) = im L3HG™(z;8,u)} = ‘l‘i_%uG‘*(z; s,u). (56)
Multiply Eq.(25) by u and let w approach zero, then we obtain
[sI — M|G*(z; 3) = G(z;0). (57)




Then the quadratic equation (31) yields

Zmi; Zma = 1, —E'E'- (58)
am
The eigenvalue sy is then
M .
sx==3 km(am +B8m)=—<ka+tf>, (59)

m=1

where <, > represents an inner product of M dimensional vectors.
The associated right eigenvector is obtainéd from Egs. (32) and
(58). Equation (48) then becomes

VUL

P.*(s)=za+<k,a+ﬁ>

k

P(0), (60)

where P(0) is the value of the probability vector process P(t) at
t=0.
Thus

P(t)= Y apexp{- <k,a+ 8> t}Vy, (61)
k

where
ay = ULP(0). " (62)
It should not be difficult to reduce the above to Eq.(13), when the
" system is initially empty, i.e. P(0) = [1,0,...,0], although this
closed form expression is more directly derivable by solving the
differential equation (6) in the z — ¢ domain, instead of dealing
with the matrix representations. .

3.3 Infinite Source Models

We now consider the limiting cu‘e, where
Np — 00, @y =0, while Npam — Am, (63)

form=1,2,.---,M.

_ Then each traffic type becomes an infinite source model, and type
m bursts arrive according to a Poisson process with rate A, and
lasts on the average for 1/8, seconds. The marginal probability
vector in the product solution (13) now takes the form

’ M
PGit) = I Pulimit)
m=1
Aﬂ — e"ﬂmt ! Jm ]
Pm(jm;t) = M—;,:!——;)—}—exp{_ﬂﬁm(]__e'h‘)},

m = 1,2,...,M and jn=0,1,....

The last expression represents the probability that jm bursts of
type m traffic are found at time ¢, and it is equivalent to the
time-dependent solution for an M/M /oo queueing system. Using
a result in Takaés [1962], we can assume that the burst period
of type m traffic has a general distribution Gu(t), and find the
following transient solution:

, s Goa(y)dy}m ¢
Pu(imit) = Lm Gl oo, [ G )i,
where G¢,(t) is the complement of the distribution function Gym(t).
Now returning to the original statistical multiplexer specified

by (63), we can show that the analysis for each traffic type reduces
to the case originally discussed by Kosten [1974] for a single type.
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The operator M, represents an infinite matrix given by

-Am Bm 0 e ...
Am "(Am + ﬁm) 2ﬂm 0
Mm = 0 Am —(Am +26m) O

0 0 Am 0

Then the mth component Vin(2m; u) of the eigenvector should
be of the following form ( Kosten [1974]):
AmZ

Vin(ziu) = exp{m}[ﬂm(l - 2) = zRpul*~,  (64)

where k,, is an integer: ky = 1,2,...

4 Further Discussion

The main contribution of this paper is that we developed a general
theory to derive exact expressions for the non-stationary behav-
jor of the joint distribution of j, the vector variable representing
the numbers of on sources of different types, and z, the buffer

" content variable, as a function of time ¢. Once the joint distribu-

tion is obtained, a number of performance measures are directly
obtainable. Among them is the probability of cell (or packet)
blocking, which is of significant importance in designing a multi-
media high-speed networks. A cell loss occurs since multiplexer
capacity is in reality finite. The cell loss probability due to buffer
overflows can be approximated by computing the tail end of the
marginal distribution of z that exceeds the buffer capacity.
Certainly computational complexity grows exponentially as
the size of the problem becomes large, but in practice it will be
sufficient to compute the first few dominant exponential terms

in (49) that correspond to those negative eigenvalues sy which
are close to zero. Kobayashi [1991b] discusses a simple method
to identify dominant types of traffic that provide a tight bound
on the probability of cell blocking due to buffer overflows. Such
procedures should be extended to deal! with the time-dependent
case as well.

The maultiplexer transient analysis that we obtained in this
paper should be useful in developing a mathematical basis for
formulating flow control models, such as admission control. In
a high-speed network, the conventional feed-back control scheme
based on the steady state analysis will fail, since by the time some
information on traffic congestion (such as cell blocking at the

. multiplexer level or call blocking at the network level) is detected
. and sent to the originating sources, it will be too late for the

network to take corrective actions. Thus it is clear that some
type of predictive control must be formulated, and our result of
transient analysis will be valuable in developing such design and
control procedures.

There are a few important areas for further investigations
which are necessary to make our results useful to practical ap-
plications. One area is computational complexity aspects: e.g.,
to efficiently identify the dominant terms to compute a given per-

- formance measure. The second area is a generalized traffic source

model instead of the simple exponential model that we have dealt
with. Elwalid, Mitra and Stern [1991}, and Stern and Elwalid
{1991] discuss a Markov model with many states. An extension
of our time-dependent solution technique to their source model
should be of significant value. In order to cope with the computa-

" tional complexity a general theory of asymptotic approximations

and bounding arguments should be explored.
Another promising avenue will be to formulate the multiplexer
model based on the diffusion approximation as has been discussed




by Kobayashi {1983]in dealing with muitiple access protocols such
as Aloha random access protocol.
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