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.. Abstract

We present time-dependent (or transient) solutions for a
mathematical model of statistical multiplexer. The problem
is motivated by the need to better understand the perfor-
mance of fast packet switching in asynchronous transfer mode
(ATM), which will be adopted in the broadband ISDN. The
transient solutions will be of critical value in understanding
dynamic behavior of the multiplexer, and loss probabilities-
at the cell {or packet) level.

‘We use the double Laplace transforms methed, and reduce
the partial differential equation that governs the multiplexer
behavior to the eigenvalue problem of a matrix equation in
the Laplace domain, We derive important properties of these
cigenvalues, by extending eatlier results discussed by Anick,
Mitra and Sondhi [1982] for the equilibrium solutions.

A most critical step in our analysis is to identify a set of
linear equations that uniquely determine the time-dependent
probability distributions at the buffer boundaries. These
boundary eonditions are in turn used to solve the general
transient solutions.For the infinite buffer case, we show that
a closed form solution is given in term of explicitly identified
cigenvalues and eigenvectors. When the buffer capacity is fi-
nite, the determination of boundary conditions requires us to
solve a matrix equation.

‘We present some numerical results to illustrate our solu-
tion technique. A potential application of the time-dependent
solution is in the area of preventive congestion control in a

high speed network.

1 Introduction

There have been a number of studies reported on queueing the-
oretic models of statistical multiplexing. As for earlier results, the
reader is referred, for example, to Hayes [1984] and Kobayashi and
Konheim [1977]. Fluid fiow model for the buffer behavior analysis,
which can be viewed as a generalization of the birth-and-death pro-
cess model, has been discussed by Hashida and Fujiki [1973], Cohen
[1974), Kosten [1974,1984], Anick, Mitra and Sondhi [1982], Mitra
[1988], Morrison [1989], Kobayashi [1990], Elwalid, Mitra and Stern
[1991], Coffman, Igelnik and Kogan [1991], and others. This class of
probabilistic models, often referred to as data handling systems in
deference of Kosten’s series of papers on the subject, is recognized
increasingly important, because it provides a practical mathemat-
ical framework to analyze the buffer behavior of statistical multi-
plexing, which is the basic principle of fast packet switching or ATM
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(asynchronous transfer mode) switching in the B-ISDN (broadband
integrated services digital network) environment.

All of the above studies, however, have exclusively dealt with
the steady-state solutions of the fluid model, whereas the present
work is, to the best of the authors’ knowledge, a first result on
time-dependent solutions. .

The dynamics of this statistical multiplexer is characterized bya
linear partial differential equation. Although the initial condition is
always clearly known, the transient behavior at the buffer bound-
aries are unknown functions of time. Amick, Mitra and Sondhj
(1982] and Mitra [1988) presented the elegent ways to treat the
boundary conditions for the steady-state case solution. By gener-
alizing their approach, we develop a procedure to determine the
time-dependent boundary functions.

2 Analysis of a Fluid Flow Model

We assume that there are N statistically independent and in-
dentical sources and each source alternates between the on (or
burst) state and the off (or silence) state. We also assume that
successive burst and silence periods of a source form an alternating
renewal process, and their durations are exponentially distributed
with mean $~? and o™, respectively. If a source is in the on-state,
it will generate packets (or cells in the ATM terminology) and its
Tate is assumed, without loss of generality, to be one packet per unit
second. While a source is in the off-state, it generates no packet.

Let C [packets/sec.] denote the multiplexer’s output link ca-
pacity, and Q(t) the total amount of packets outstanding at the
multiplexer output link at time t. Let J(t) denote the number
of sources in the on-state at time ¢t (see Figure 1). Then, while
J(t) < C, all arriving packets are transmitted immediately over
the output link, thus there will be no packets left in the output link
buffer, whereas in the period when J(t) exceeds C, a quete will
develop at the rate of J(t)— C. Although Q(t) is, strictly speaking,
an integer-valued function, we approximate it by a time-continuous
function, assuming that a series of packets arrive as a continuous
stream of bits. In other words, we represent the stream of packets
as a time-continuous fluid flow:

ﬂ(t_)_{ J(t)-C HQ(t)>00rJ(t)>C, )
d |0 otherwise.

A typical behavior of the random process J(t) and the correspond-
ing Q(t) are depicited in Figure 2.

We assume here that the buffer capacity is either infinite or
finite with upper limit X, and the following stability conditon is

tisfied: :
satisfie w Na

P = Cha+p
where p is the traffic intensity.

<1, (2)
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In order to analyze the behavior of the buffer content Q(2), we
consider the pair process {J(t),Q(t)} and define

Pi(t,2) E Prob{J(t) = 5,Q(1) < <), (3)
for0<j<N,t>20,z20.
By extending the birth-and-death process model equation (see, for
example, Kobayashi [1978] p.130 ), we can derive the following set
of equations that the joint probability function P;(t, z) must satisfy:

0P (t z) + (G- C)aP,(t ,Z)
= —[A(J) + B(7))Pj(t,z) + A(J 1)Pj(t, )
+p(]+1)PJ+1(t,3), for0<j<N,z>0, 4)
with ’
P_(t,2) = Py4i(t,z) =0, for all ¢ and z.

In our multiplexer model, the birth and death rates are given
by

A(#) = (N = j)a, p(4) =3B (8)
Writing Eq.(4) in matrix form, we obtain:
apg, 2, DBP(‘ 2) = MP(,2), (6)

where
P(t,z) = [Po(t,z), Pi(t,z), -+, Plt,2)]%, %)
and D is an (N + 1) x (N + 1) diagonal matrix defined by
D = diag[-C,1~C,--+,j—C,---,N=-C). (8)

We assume that the link capacity C is a non-integer number be-
tween 0 and N, and satisfies the stability condition Eq.(2).

The matrix M, an (N + 1) x (N + 1) tridiagonal matrix, is an
infinitesimal generator of the Markov process J(t).

3 Transient Analysis:

3.1 Double Laplace Transforms:
Let us first apply the Laplace transforms defined as follows

LdPa) = [
+00

L.AP(t,2)} = /;
+00

P*(s,u) = L {P*(s,z)} =-/o

P*(s,z) e " P(t,z)dt, 9)

P*(t,u) e *P(t,2)dz, (10)

e P*(s,2)dz. (11)

Then Eq.(6) will be transformed into the following matrix equation:

(4D + oI — M)P**(s,u) = P*(0,u) + DP*(s,0), (12)
where I is the (N + 1) x (N + 1) identity matrix.

The boundary value P*(s,0), which characterizes the time de-
pendent behavior of the empty buffer case (z = 0), is unknown, but
will be determined later. On the other hand, we assume, without
loss of generality, that the buffer is empty at ¢ = 0. Thus the initial
condition P*(0,u) is given:

1
P*(0,u) = L {P(0,2)} = ? . (13)
0
“Therefore Eq.(12) yields
P**(s,u) = [uD + oI — M|7}[P*(0,u) + DP*(s,0)]
-'g;g-:-’-l‘lB(a,u), | (14)

where
A(s, u) is the (N +1)x (¥ +1) adjugate matrix of [uD+sI— M],

in which each of its element is a polynomial in both s and u with
degrees up to N.

B(s,u), which is P*(0,u) + DP*(s,0),is an (N+ 1) x1 column
vector.

C(s,u), the determinant of [uD + sI — M],isa polynotma.l of
degree (N + 1) in both u and s.

Let uo(s), u1(s), -, un(s) be the N + 1 roots of the character-
istic equation C(s,u) = 0.

Note that B(s, u) contains a facter u in its denominator, as given
by Eq.(13). Thus the denominator of Eq.(14) is an (N + 2)-degree
polynomial of u: the first (N + 1) roots are the characteristic roots
defined above, and the (N + 2)-th root is

un4i(s) = 0 - (15)

We can show (see Appendix A) that these (N +2) roots are distinct.
By partial fraction, we can write Eq.(14) as

Hy41(s) + f: Hq(s)

- -
P (3’1‘) - % k=°u - uk(s)’

(16)
where

Hy(s) = lm [u - w(P(s,u), 0< k< N+1 (17)

By taking the inverse Laplace transform of Eq.(16), we obtain

N
P(s,z) = Hyyi(s) + 3 Hy(s)ers(?)=. (18)

k=0

3.2 Properties of Characteristic Eigenvalues and Eigen-

vectors

The problem of finding the roots of C(s,u) can be reduced to the
one of finding eigenvalues of the following matrix equation:

(M — aI]V(s), (19)

where u is an eigenvalue of D~![M —sI}, and V(s) be the associated
right eigenvector, whose j-th element is denoted by V;(s), 0 < j <

uDV(s) =

N. .
' Then the generating function defined by
N o
V(z,8) = Y Vj(s)#* (20)
=0
satisfies
ian(z,s) - 4C + Na(z-1) — s

8z az? + (u+f—-a)z - 8

K N-K

=z—z1+z—zg’ (21)
which is equivalent (except for a scaling constant) to
Viz,s) = (2 - 2)( - a)F, (22)
where
- - — o)
nz = (v+f-a) \/2(u+ﬂ a)l + 4af (23)
a
2ad C + Noa(zn -1
K = ¥+ a(z;—)—s (24)
a(z; - 22)
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Observe that by its definition of Eq.(20), V(z, s) is a polynomial
in z of degree N. Since z; and 2, are distinct, this is possible if and
only if K is an integer between 0 and N.

Then for a given integer K (0 < K < N), the Eq.(24) yields,
after some algebraic manipulation, the following two roots:

‘ln(K, ‘)v “’(Kn') (25)
- o —ﬂ e

L Ot (N = C)atCp) & 1 - LIVAED)
&-kr - (F-cy ’

where

A(K,s) = {s+(N~C)a+CB) (26)
+4aB(K - C)(N - K - C)

‘We now obtain the following theorem, which is a generalization
of the main theorem in Anick et al. [1982].

Theorem 1:

1. As K varies from 0 to N, Eq.(25) produces a total of N +1
non-zero and distinct roots.

2. The N + 1 roots can be classified as follows:

e There are N — [CJ‘negative roots, i.e., Re{ux(s)} < 0
for all Re{s} > 0 , and denoted by {us(s) ;1 < k <
N—|C] }. Each {ux(s)} is a strictly decreasing function
ofs > 0.

o There are |C] positive roots, i.e., Re{ux(s)} > 0 for
all Re{s} > 0, and denoted by {ux(s); N-{C] +1 £
k < N }. Each {ux(s)} is & strictly increasing function
ofall s > 0.

® ug(s), the remaining root, is a strictly increasing function
of s > 0 and is positive, i.e., Re{uo(s)} > 0 for all
Re{s} > 0, but uo(0) = 0.

The proof of the theorem is given in Appendix A.

For each u(s), the corresponding right eigenvector, denoted
Vi(s), can be obtained by its generating function Eq.(22), and the
corresponding left eigenvector, denoted by Ui(s), is given by

Uils) = (Q-1)*Vi(s), @7)

where Q is a diagonal matrix that transforms the matrix M into a
symmetric matrix, and the j-th element of Q is given by

()

‘We normalize these eigenvectors, which are orthogonal to each
other, so that ‘

Ui(s)Vi(s) = bu, , (28)

where 6y is Kronecker delta. We find (see Friedman {1956]) that
the inverse matrix [uD + sI — M]™! in Eq.(14) can be represented
as

Ll L : S
[WD+ sl - M| = é—__—-‘:f(_{zg))v‘l, (29)

or

k=0

[P*(s,0)+ D71P*(0,u)]  (30)
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3.3 Transient Boundary Conditions
3.3.1 Infinite Buffer Case: z =10

If we assume the buffer capacity to be infinite, the unknown bound-
ary condition P*(s, 0) or L;{P(t,0)} characterizes the transient be-
havior of the empty buffer. Although it does not affect the roots
uk(s), it influences Hy(s)'s of Eq.(18) as is evident from Eq.(17).
Therefore we need to solve P*(s,0) in conjunction with the stable
solution.

From Eq.{18) and Theorem 1, we find that the solution is stable,

0
0
Hk(‘) =11 = o, (31)

0
fork=0and N-[C]+1 <k< N.

From Eqs.(17) and (14) we see that the above condition is equiv-

alent to
A(s, ur(s)) - B(s,ux(s)) = 0 (32)
fork=0and N- |[C|+1 <k< N.

Now we make the following observation regarding the empty
buffer, by generalizing the properties discussed by Kosten [1974]
and Anick et al. [1982].

When the incoming traffic rate is greater than the network link
capacity at any time , i.e.,J(t) > C, the buffer content necessarily
increases and the buffer cannot stay empty. Thus it follows that,

P;(t,0) =0, (33)
for [C]+1 £j< N andforallt >0,
which also implies
P*(s,0) = [P3(s,0), P(s,0),- -+, Plg)(5,0),0,0,--,0]T.  (34)

A total of |C|+1 unknown elements Pg(s,0), Py(s,0),- -, P¢)(s,0)
must now be determined.

We state as a theorem the following property which is critical
in determining the unknown boundary conditions P*(s,0):

Theorem 2 :

For each ux(s), k=0or N-|C]4+1 <k <N,
Eq.(32) gives exactly one (instead of N + 1) linear con-
straint equation of variables Pg(s,0), P{(s,0), -, Pfcj(s, 0).

By setting k equal to 0, N ~ |C| +1,--,and N, we
obtain from Eq.(32) |C| + 1 distinct linear constraint
equations, which uniquely determine |C] + 1 unknown
variables, i.e., PJ(s,0), P{(s,0),-- “+Plg) (s,0).

The proof is given in Appendix B.

3.3.2 Finite Buffer Case: z=0and z=X

If we assume the buffer to be finite with its upper limit X, we may
not have the constraint equations, analogy to the infinite buffer
case, on the unknown boundary conditions P*(s,0) and P*(s, X).
By generalizing observations made for the steady-state case, i.e.,
Mitra [1988], we have the following two sets of equations on the
buffer boundaries:

1. Forz=0: .
When the incoming traffic rate is greater than the network
link capacity at any time ¢, i.e., J{t) > C, the buffer cannot
stay empty. Thus it follows that

P}(s,0) = 0, .(35)
for [C]+1<j<N.




2. Forz = X:
When the incoming traffic rate is less tha the network link
capacity at any time %, i.e., J(t) < C, the buffer cannot stay
at its upper limit. Thus it follows that

Pi(s,X) = hny15(s),

where 0 < j < [C] and hyy1,i(s) is the (§ + 1)-th entry of
column vector Hy41(s). :

(36)

4 Solutions and Discussion -

4.1 Infinite Buffer Case: Closed Form Solution

From Eq.(18) and section 3.3.1, our transient solution is given in
the form of Laplace transform with respect to the time domain:

[;g{P(t,t)}
N-|C]
Hya(s)+ Y Hi(s) )=,
k=1

P*(s,z) =

(37

Although the above solution requires us to solve a matrix equa-
tion as stated in Theorem 2, we now derive a closed form solution
by extending Anick et al. [1982]. v

From Eq.(30) we find that P*(s,z) can be represented as

N-|C]
P'(s,z) = Hypa(s)+ 3, [HE(s)+ ax(s)Va(s)e(=  (38)

k=1
where
HD(s) = [A{Ms) -, hEk()]
= Vi(s)U(s)D~P*(0, ur(s)) (39)
Hy(s) = [hN+1.o(~’),'",hN+1.N(3)]l
N '
= -3 Vel o1 (ypx(0, u)fumo)  (40)
k=0 ui(s)
ax(s) = Ui(s)P*(s,0) (41)
Define )
c(s) = KEN(s) + ar(s)Van(s) (42)
c(") = [cl(’)x"'!"’»cN—[C'j], (43)

and observe the last entry of [-th derivatives of P*(s,z) at 2 = 0,
ie., il)%f'ﬁllﬂo, 1=0,---,N—|C] -1, we have

Te(s) = —hnsn(s)e, T (44)

where Tj; = (ux(8)),i=0,---,N~[C|-1,and e = [1,0,-- -0
Note that T is a Vandermonde matrix, the matrix equation (44),
after some algebraic manipulation, gives us

N-|c]

- i(8)
cx(s) = ~hn41,n(s) .'=H:¢kM' | (48)
for1<k< N -|CJ. '
And then , from Eq.(42)
() = S Pkl

Vien(s) _ (46)

4.2 Finite Buffer Case

For the finite buffer case, the positive eigenvalues, i.e., {ur(s);k =
0, N ~|C]+1,-++,N} can be allowed. Thus our transient solution
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- linear equations in Eq.(32). This in turn gives

is given from Eq.(14) as:

N
P*(s,2z) = Hysa(s)+ Hi(s)e* ()=
k=0

(47)

or

N
P*(s,2) = Huya(s)+ T HD(8) + ar(s)Va(s)le ¥,  (48)
k=0

where Hy41(s), Hg)(s) and ax(s) are the same as those in Eqs.
(17), (40) and (41) except that k ranges from 0 to N instead of
1<k<N-|C]

Note that the two set of equations found in section 3.3.2 gives
exactly N + 1 linear constraint equations on {ax(s);0 < k < N}.
Thus, ax(s) of Eq.(41) for 0 £ k¥ € N can be uniquely determined
by solving a matrix equation of dimension N + 1.

4.3 Discussion

We have obtained the trasisient solutions of Eq.(6) for both infi-
nite and finite buffer cases. Qur final solution P*(s,z) is given in
the form of Laplace transform with respect to the time domain.
A numerical-inversion method of the Laplace transform must be
applied to obtain P(t,z) = L;1{P*(s,z)}.

For the infinite buffer case, our solution is given in a closed
form as evident from Eqs.(38) and (46); for the finite buffer case,
the solution is also represented by a closed form Eq.(48) except that
a matrix equation needs to be solved as given in section 3.3.2.

Although we assume, for simplicity, that all sources are initially

. off and the buffer is empty at ¢ = 0, our analysis can be easily

extended to an arbitrary initial condition. Namely, we can assume
that jo(0 < jo < N') sources are on and the buffer content Q(t) = zo
at t = 0. Essentially the same steps given in Sections 3 , 4.1 and 4.2
carry over, resulting in a slightly complicated versions of the final
solutions Eqs.(38) and (48).

5 Numerical Examples

- We present here some numerical results for the case of N = 2 to
.illustrate our solution technique.

First we obtain transient boundary condition P*(s,0) by solving the
*(s,z) by Eq.(37).
We then apply the numerical-inversion method of the Laplace trans-
forén tbo P*(s, ) with respect to s (see Kobayashi [1978Tpp.73-74),
and obtain

et Foo :

P(t,2) = S GRAP" (e, )} + f‘;f Re(P*(c + T )eos T,
where 7 is the finite range over which we wish to evaluate P(¢,z),
and c is an arbitrary number in the convergence region of P*(s,z).

It should be noticed from Eq.(34) that the time-dependent bound-
ary condition P*(s,0) are different, depending on whether ¥ <
C <lorl < C < 2 The parameters used here are given by
a~! = 650ms, 8~ ~ 352ms which correspond to the single-source
model used in Sriram et al {1986].

6 Conclusion

‘We have presented mathematical results on the time-dependent be-
havior of the fluid flow model of statistical multiplexer. From The-
orem 1, Theorem 2 and Section 3.3.2, we can uniquely determine
the time-dependent boundary conditions by solving a set of linear
equations, and then obtain solutions in the form of Laplace trans-
form. Our final solutions are given in closed form with almost no
computational complexities.

By extending our analysis, we should be able to develop a new
method to predict the metwork load in real time. A prediction




model will help us gain some insight into the design and analysis
of network congestion control. We expect that in a high-speed
network, most existing control strategies will fail due to its large
propogation delay as compared with the small transmission time.
An accurate prediction of the transient network load will enable
us to develop a preventive control of network congestion at the
cell level by regulating traffic, or dynamically assigning the link
capacity.

Appendix A: Proof of Theorem 1

1. Note that u; (X, s), u3(X, s), as given in Eq.(25), depend on X
only through (¥ — K)? or | ¥ — K|. Thus we need to consider
only 0 < K < 3 (Anick et al.[1982]). Foreach 0 < K < N,
there are two different roots. In total we have N 4 1 distinct
roots as K varies from 0 to | ¥ .

None of the roots is zero because |sI — M| # 0 for some s.

2. The region of convergence of Laplace transform is a strip par-
allel to the imaginary axis in the s-plane. In order to show
Re{ur(s)} > 0 or Re{ur(s)} < 0 in the right half plane, i.e.,
Re{s} > 0, it is sufficient to consider them along the nonneg-
ative real axis.

In the case s = 0, u;(K,0) and up(K,0) (0 < K < N) re-

duce to those of the steady-state case discussed by Anick et
al.[1982).

¢ Consider those roots which are negative at s = 0. There
exist N — |C] such roots, which we denote by u(s),---,
un_|c)(s). Their derivatives i‘%ﬂ are always negative.

¢ Consider those roots which are positive at s = 0. There )

exist | C] such roots, which we denote by upy_|c+1(8), -+ ,'

uN(s). Their derivatives 5"-5;(5) are always positive.
¢ The root that corresponds to K = 0 intersects the origin
ats=0:
‘u1(0, 0) = 0. (49)
Let uo(s) denote this root, and we find ‘4'3;(5) > 0.

" 'This concludes the Part 2 of Theorem 1.

Appendix B: Proof of Theorem 2

First we need the following lemma:
Lemma

For two N X N square matrices, A and B given;
if AeB =0, then

Rank(.A) + Rank(B) < N.
In our case, from the definition of Eq.(14) we have
[uD + oI — M} A(s,u) = det|uD + sI - M|-I = C(s,u)l.

Since each ux(s),0 < k < N, is one of the N + 1 distinct roots of
C(s,u), the above equation implies

[uk(s)D + oI — M)A(s,ui(s))=0, 0<k<N. (50)
, We also find
(51)

Rank[uy(s)D+sI - M]=N, 0<k<N.

By applying the above lemma, we can claim:
Rank[A(s,ur(s))] 1,0k < N.
Note that A(s, ui(s)) is not a zero matrix, thus it follows that

Rank[A(s,ur(s)))=1,0<k< N

(52)
Since Rank[A(s,ui(s))] = 1, all the rows are a multiple of each
other. Thus we need to select any non-zero row vector, say the first
row [Afy(s), Ak (s),- -+, AsN(")]

Therefore the matrix equation (32) is equivalent to

[ u—:ﬁj - CPD.("vO) ]
(1-C)Pi(s,0)

[4h(s), 48:(0), -, A (2)]- | (LC] - OVPigy(5,0) | =0, (53)
0

I o ]
which is & linear constraint equation for Fg(s,0), P{(s,0),---, PL.CJ (s,0).
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Figure 2: The Total Number of Active Sources J(t) and the Number

of Queued Packets Q(t).
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Figure 3: Transient overflow probabilty with z = 1. For
C = 0.76,0.80,0.86,1.1 and 1.2, the traffic intensity p is
0.92,0.88,0.82,0.64 and 0.59, respectively.
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Figure 4: Transient overflow probability with C = 0.8 (or p = 0.88).
For z = 0,1,2 and 3.
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Figure 5: Probabilty of overflow vs buffer size with C = 0.8 (or
p = 0.878). At time ¢ is 20,30, 50, 70,100,150 and 250.
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Fjigure 6: At time ¢ = 30, probabilty of overflow vs buffer
size. For C = 0.8,0.9,1.1,1.2 and 1.5, the traffic intensity p is
0.88,0.78,0.64,0.54 and 0.47, respectively.




