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Abstract 

In this paper we present time-dependent (or transient) solutions for a mathematical model of statistical 
multiplexing. The problem is motivated by the need to better understand the performance of fast packet 
switching in asynchronous transfer mode (ATM), which will be adopted in the broadband ISDN. The transient 
solutions will be of critical value in understanding dynamic behavior of the multiplexer, and loss probabilities 
at the cell (or packet) level. 

We use the double Laplace transform method, and reduce the partial differential equation that governs the 
multiplexer behavior to the eigenvalue problem of a matrix equation in the Laplace transform domain. We 
derive important properties of these eigenvalues, by extending earlier results discussed by Anick, Mitra and 
Sondhi (1982) for the equilibrium solutions. 

A most critical step in our analysis is to identify sets of linear equations that uniquely determine the time- 
dependent probability distributions at the buffer boundaries. These boundary conditions are in turn used to solve 
the general transient solutions. For the infinite buffer case, we show that a closed form solution is given in 
terms of explicitly identified eigenvalues and eigenvectors. When the buffer capacity is finite, the determination 
of boundary conditions requires us to solve a matrix equation. 

We also observe that the statistical multiplexing not only achieves the effective bandwidth gain (i.e., a 
multiplexing gain), but also reduces the system’s packet loss probability and shorten transient periods. 

We present some numerical results to illustrate our solution technique. A potential application of the time- 
dependent solution is in the area of preventive congestion control in a high speed network. 
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1. Introduction 

There have been a number of studies reported on queueing theoretic models of statistical multi- 
plexing. As for earlier results, the reader is referred, for example, to [ 8,101. The fluid flow model 
for buffer behavior analysis, which can be viewed as a generalization of the birth-and-death process 
model, has been discussed by Hashida and Fujiki [ 71, Cohen [ 41, Kosten [ 15,161, Anick et al. [ 21, 
Mitra [ 181, Morrison [ 191, Kobayashi [ 121, Elwalid et al. [5], Coffman et al. [ 31, and others. 
This class of probabilistic models, often referred to as data handling systems in deference of Kosten’s 
series of papers on the subject, is recognized increasingly important, because it provides a practical 
mathematical framework to analyze the buffer behavior of statistical multiplexing, which is the basic 
principle of fast packet switching or ATM (asynchronous transfer mode) switching in the B-ISDN 
(broadband integrated services digital network) environment. 

All of the above studies, however, have exclusively dealt with the steady-state solutions of this 
fluid model, whereas the present work is, to the best of the authors’ knowledge, a first result on 
time-dependent solutions. Simonian and Virtamo [22] obtained the transient distribution of queue 
size with continuous input process by using Benes’ method, but their transient solution is given in an 
implicit form. Zhang [ 251, independent of our work, formulated a time-dependent solution for the 
statistical multiplexing, where he assumes a continuous flow Markov modulated source model, and 
discusses general properties of the solution for an infinite buffer case. 

The dynamics of the statistical multiplexer are characterized by a set of linear partial differential 
equations. Although the initial condition is clearly known, the transient behavior at the buffer bound- 
aries are unknown functions of time. Anick et al. [ 21 and Mitra [ 181 presented elegant ways to 
treat the boundary conditions for the steady-state case solutions. By generalizing their approach, we 
develop a procedure to determine the time-dependent boundary functions. 

2. The model of mathematical analysis: fluid flow model 

We assume that there are N statistically independent and identical sources and each source alternates 
between the on (or burst) state and the off (or silence) state. We also assume that successive burst and 
silence periods of a source form an alternating renewal process, and their durations are exponentially 
distributed with mean p-’ and (Y-I respectively. If a source is in the on-state, it will generate packets 
(or cells in the ATM terminology) and its rate is assumed, without loss of generality, to be one 
packet per unit time. While a source is in off-state, it generates no packets. 

Let C [packets/unit time] denote the multiplexer’s output link capacity, and Q(t) the total amount 
of packets outstanding at the multiplexer output link at time t. Let J(t) denote the number of sources 
in the on-state at time t (see Fig. 1). Then, while J(t) < C, all arriving packets are transmitted 
immediately over the output link, thus there will be no packets left in the output link buffer. When 
J(t) exceeds C, a queue will be built up at the rate of J(t) - C. Although Q(t) is, strictly speaking, 
an integer-valued function, we approximate it by a time-continuous function, assuming that a series of 
packets arrive in a continuous stream of bits. In other words, we represent the stream of packets as a 
fluid flow. This should indeed be an excellent approximation, when Q(t) represents the unprocessed 
amount of data residing in the output buffer of fast packet switching in an ATM network, in which 
packets or cells are on the order of several hundred bits: the cell transmission time will be of the order 
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Fig. 1. The statistical multiplexer and the source model. 

of a few microseconds or less over the link capacity of a B-ISDN network, and will be negligibly 
small compared with a typical burst period of the source. 

Then we can write 

de(r)= J(t) - c, if Q(t) > 0 or J(t) > C, 
dt 0, otherwise. 

A typical behavior of the random process J(t) and the corresponding Q(t) are depicted in Fig. 2. 
Thus while Q(t) > 0, it is the integral of the process J(t) - C: 

Q(t) = ]J(u) du - C(t - to), 

to 

where to is the most recent moment when Q(t) = 0. 

We assume here that the buffer capacity is either infinite or finite with the upper limit X, and that 
in the infinite buffer case the following stability condition is satisfied: 

def Na 

p = C(a+P) 
< 1, (3) 

where p is the traffic intensity. 
The probabilistic behavior of J(t) can be characterized by a well-studied birth-and-death process 

model, in which the birth rate and the death rate are set as A(j) = (N - j) LY and ,x(j) = j/3, 
respectively, where j is the system state that J(t) can take on, 0 5 j 5 N. 

In order to analyze the behavior of the buffer content Q(t), we need to consider the pair process 

{J(t),Q(t)} and thus we define 

Pj(t,x)~fPr[J(t)=j,Q(t)<x], Olj<N, t>O, x20. (4) 

The transient behavior of the pair process {J(t) , Q(t) } depends on its initial value { J( 0) , Q (0) }, 
but we omit this in the notation. 



68 Q. Ren, H. Kobayashi/Pe$ormance Evaluation 23 (1995) 65-87 
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Fig. 2. The number of “on” sources J(t) and the number of queued packets Q(t) . 

By extending the birth-and-death process model equation, we can derive the following set of 
equations that the joint probability function Pj( t, x) must satisfy: 

apj(t, X> apj(t9 X> 
dt 

+ (j-C> ax =-IA(j) +PL(j)lPj(t,X) + A(j- l)Pj-l(t,X) 

+ P(J’ + l)Pj+l(t,X) for 0 5 j 2 N, X > 0, 

with 

P_l(t,x) =PN+l(t,x) =0 for all t and x 

where in the multiplexer problem, the birth and death rates are given by 

A(j) = (N - j)a, Aj) = jP . 

If we write Eq. (5) in matrix form, it becomes 

a?Yt, x) 
dt 

+ #-VA) 
dX 

= MP(t,x), 

where 

Po(t, x> 

fT(t, XI 
fYt,x) = . 

i : 1 

7 

pN(tv x> 

and D is a (N + 1) x (N + 1) diagonal matrix defined by 

(5) 

(6) 

(7) 

(8) 

(9) 

D = diag[-Cl-C ,..., j-C ,..., N-C]. 

We assume that the linkcapacity C is a non-integer number between 0 and N, and satisfies the stability 
condition Eq. (3) for the infinite buffer case. The matrix M, an (N + 1) x (N + 1) tridiagonal 
matrix, is the infinitesimal generator of the Markov process J(t) : 
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-Na P 
Na -(N-l)a-/3 2P 

M= 
(N- I)(Y -(N-2)cu-2P *.. 

-a-(N-l)P Nfl 
Ly -NP 

It will be instructive to remark that the limiting case of Eq. (S), as x + +oc , corresponds to the 
differential equation that governs the birth-and-death process [24]. Similarly, the equilibrium state 
of Eq. (8) where t --f +oo corresponds to the steady-state of statistical multiplexing, which was 
thoroughly analyzed by Anick et al. [ 21: 
(1) The time-dependent birth-and-death process model, i.e., x = +oo, [ 241, 

dP( t, +m> 
dt 

= MP( t, +co>. 

(2) The steady-state statistical multiplexer model, i.e., t = $00, [ 21, 

D dP( +m xl 
dx 

= MP(+cq x). 

3. Tkansient analysis 

3.1. Double Luplace transforms 

Let us first apply the Laplace transform to P( t, x) with respect to the time variable t: 

+oO 

= Lc,{P(t,x)} = .I e-“P( t, x) dt. 

Then Eq. (8) can be transformed into 

D dP*(s,x) 
dx 

= (M -sZ)P*(s,x) + 

where I is the (N + 1) x (N + 1) identity 
We then take the Laplace transforms of 

variable x: 

(10) 

(11) 

(12) 

P(O, x> f 
matrix. 

(13) 

P( t, x) and P* (s, x) with respect to the buffer content 

P*( t, u) = &{P( t, x)} = 1 eC'P( t, x) dx, 
0 

P**(s,u) =&.{P*(s,x)}= TeeUXP*(s,x)dx. 
0 

(14) 

(15) 
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Then Eq. ( 13) will be transformed into the following matrix equation: 

(0 + SZ - M)P**(s,u) = P*(o,u) + DP*(S,o). (16) 

The boundary value P* (s, 0) , which characterizes the time-dependent behavior of the empty buffer 
case (X = 0), is unknown here, but will be determined later. If we assume that j0 (0 2 j0 5 N) 
sources are on and the buffer content Q(t) = x0 ’ at t = 0, the initial condition P*(O, u) is given as 

P*(o? u> = C,{P(O,X)} = =ejO, 
U 

(17) 

where ejO is a unit vector with its (jo + 1)th entry being 1 and all other components being zero. 
Then Eq. ( 16) leads to 

P**(s,u)=[uD + sl - Ml-‘[P*(O,u) + DP*(s,O) ] 

(18) 

where 

A( s, u) = Adjugate matrix of [ uD + sl - M 1, (19) 

B(s,u)=P*(O,u) + DP*(s,o), (20) 

C(s,u)=det[uD + sl - M]. (21) 

Let UO(S),UI(S), . . ., UN(s) be the N + 1 roots that can be obtained by solving, with respect to u, 
the characteristic equation 

C(S, u) = det[uD + SZ - M] = 0. (22) 

Note that B( S, u) contains a factor u in its denominator, as given by Eq. ( 17). Thus the denominator 
of Eq. ( 18) is an ( N + 2)-degree polynomial of u: the first (N + 1) roots are the characteristic roots 
defined above, and the (N + 2)th root is 

uN+l(s) = 0. (23) 

We can show (see Appendix A) that these (N + 2) roots are all distinct. 

3.2. Properties of eigenvalues and eigenvectors 

The problem of finding the roots of the characteristic equation (22) can be reduced to the one of 
finding eigenvalues (or spectrums) of the following matrix equation: 

uDV(s) = [M - sZ]V(s) . (24) 

The Laplacian variable u introduced in Eq. (14) is now interpreted as an eigenvalue of the matrix 

’ Note that the following arguments hold for both the infinite buffer case and a finite buffer case. If the buffer capacity 
is finite with its upper limit X, then obviously Q(t) 5 X and xg 5 X. (See Section 3.3.2 for detailed discussions on the 
finite buffer case.) 
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D-’ [M - sl] , and V(s) is the associated right eigenvector, whose (j + 1) th element is denoted by 
Y(s), 0 2 j < N. 

Then the generating function, defined by 

V(z, s) = &(S)Z’¶ (25) 
j=O 

satisfies 

&lnV(z,s)= 
UC + Ncu(z - 1) - s 

az2 + (u+P-~>z - P 

K N-K 
=-+-. (26) 

2 - Zl z - z2 

The last equation is obtained by substituting Eq. (25) into Eq. (24). Equation (26) readily leads to 
the following solution (except for a scaling constant) : 

V(z,s) = (z - zd”(z - z2F, (27) 

where 

-(U+P-a) % J(u+P-a>2 + 4@ 
Zl, z2 = 

2ff 
(28) 

and 

K= 
UC + Na(zl - 1) - s 

4Zl - z2) * 
(29) 

Observe that by its definition of Eq. (25), V( z, s) is a polynomial in z of degree N. Since z1 and 
z2 are distinct, this is possible if and only if K is an integer E [ 0, N] . 

From Eqs. (28) and (29), we obtain the following quadratic equation: 

a(K, s>u* + b(K,s)u + c(K,s) = 0, (30) 

where 

a(K,s)=(;N-K)’ - (;N-C)2, 

b(K,s)=2(8_a)(;N-Kj2 - 2(;N-C)[s+;N(oi+/Q], 

c(K, s) = (cu + p)2( ;N - IQ2 - [ ;N(n + p) + s12. 

Then for a given integer K E [0, N], the above quadratic equation yields, after some algebraic 
manipulation, the following root: 

u(K,s) = a-P + 
(+N-C)[s+(N-C)(Y+CP] + (;N-K)Jm 

(iN - K)* - (;N - C)2 
7 (31) 

where 
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UK,s)=[s+(N-C)a+CP]2 + 4a/I(K-C)(N-K-C). (32) 

we now obtain the following theorem, which is a generalization of the main theorem in [ 21. 

Theorem 1. 
(I) As K varies from 0 to N, Eq. (31) produces a total of N-t 1 non-zero, distinct roots { u( K, s) ; K = 

091,. . . , N}. 
(2) Among the above N + 1 distinct roots above: 

l There are N- [C] negative roots * , which we relabel and denote { uk ( s) ; 1 5 k < N - LC] }, 
i.e., Re{uk( s)} < 0 for all Re{s} >_ 0. Furthermore, each uk( s) is a strictly decreasing 
function of s 2 0. 

l There are [C] positive roots, denoted by { uk( s) ; N- [C] + 1 5 k 5 N}, i.e., Re{ uk (s)} > 
0 for all Re(s} >_ 0. Furthermore, each uk( s) is a strictly increasing function of ah 
s 2 0. 

l uo(s), the remaining root which corresponds to u( 0, s), is a strictly increasing function of 
s 2 0 and is strictly positive, i.e., Re{%( s)} > 0 for all Re{s} > 0, but uo(0) = 0. 

The proof of the theorem is given in Appendix A. 
For each uk (s) , the corresponding right eigenvector, denoted by vk (s) , can be obtained from its 

generating function Eq. (27). The corresponding left eigenvector, denoted by uk( s) and defined by 
&(s)u;(s)D = Uh(s)(M - sl), is given by 

u,(s) = (Q-'>*Vk(d, (33) 

where &, denoted as 7 in [ 21, is a diagonal matrix that transforms the tridiagonal matrix M into a 

symmetric matrix, and the (j + 1) th element of & is given by ,,/m. 

We normalize these eigenvectors with respect to uk( s) , which are orthogonal to each other via 29, 
so that 3 

u;(s)D%(s) = akl, 

where Sk! is Kronecker delta. 

(34) 

We find (see [ 61) that the inverse matrix [ UD + sl - M ] -’ in Eq. ( 1 S) has the following spectral 
expansion : 

n vk(du;(s) [uD+sl-Ml-’ = c 
kg, u-uk(s) ' 

Equation ( 18) can then be equivalently written as 

P**(s,u) = 
N vk(s)u;(s> c 

kr$) u- uk(s) 
[p*(O,u) +zJP*(s,O)l. 

(35) 

(36) 

By taking the inverse Laplace transform of P** (s, u) with respect to Laplacian variable u, we obtain 

*We let [Cl denote the integer part of C. 
3 Equations (28)-( 30) in our earlier paper [ 211 arc incorrect and should be replaced by Eqs.( 39)-(41) given here. 
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where U( .) is the unit step function. 
Note that all the terms in Eq. (37) are known except for P*(s, 0) which is the boundary value of 

P*( s, x) at x = 0. We will focus on the derivation of P*(s, 0) in the following section. 

3.3. Transient boundary conditions 

3.3. I. InJinite buffer case: x = 0 
If we assume the buffer capacity to be infinite, the unknown boundary condition P*( s, 0) or 

C, { P( t, 0) } characterizes the transient behavior of the empty buffer. We now solve P* (s, 0) by using 
conditions required for the stable solution. 

From Eq. (37) and Theorem 1, we find that the solution is stable, if 

u;b)[p*(o&k(d) +Dp*(s,o)l = 0 fork=OandN-[CJ+l Sk< N. (38) 

Now we make the following observation regarding the empty buffer, by generalizing the properties 
discussed by Kosten [ 151 and Anick et al. [ 21. 

When the incoming traffic is greater than the network link capacity at any given time t, i.e., 
J(t) > C, the buffer content necessarily increases and the buffer cannot stay empty. It follows that 

F’;(t,O)=O for[CJ+I <j<N, andt>O. (39) 

The last equation implies 

P&&O) = 0, for LCJ + 1 5 j 5 N. 

Now we can write 

(40) 

P”(s,O)= [Pd*(s,o),P;(s,o),...,Pi,,(s,o),o,...,o]'. (41) 

A total of [Cl + 1 unknown elements Pz( s, 0), P;( s, O), . 
the [CJ + 1 linear constraint equations given in Eq. (38). 

. . , P,$ (s, 0) can now be determined by 

After we determine P*( s, 0) by solving the matrix equation of dimension [C_/ + 1, we can then 
obtain the final solution Eq. (37). But as we shall discuss in Section 4, we find computationally 
convenient formulae to obtain the time-dependent solution. 

3.3.2. Finite buffer case: x = 0 and x = X 
We now consider the case where the buffer is finite with its upper limit X. By generalizing 

observations made for the steady-state case by Hashida and Fujiki [ 71 and Mitra [ 181, we have the 
following two sets of linear constraint equations on the buffer boundary conditions, i.e., P* (s, 0) and 
P”(s,X). 
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( 1) For x = 0: When the incoming traffic rate is greater than the network link capacity at any time 
t, i.e., J(t) > C, the buffer cannot stay empty. Thus it follows that 

Pi*(s, 0) = 0 for [Cl + 1 5 j 5 N. (42) 

(2) For x = X: When the incoming traffic rate is less than the network link capacity at any time t, 
i.e., J(t) < C, the buffer cannot stay at its upper limit. Thus it follows that 

P;(& X) = P,*(s,+co) for0 5 j 5 LC]. (43) 

Pi* (s, +cm) here is the Laplace transform of Pj (t, +co), the probability that j sources are on 
at time t. It can be easily obtained in closed form from the time-dependent solution for the 
birth-and-death process model, which we referred to by Eq. (10). In fact, Pi* (s, +co) is the 

(j + 1)th entry of -Ch(Vk(s)U;(s)/uk(s))ejO in Eq. (37). 
A total of [C j + 1 unknown elements P,* (s, 0) , P;( s, 0)) . . . , PicJ (s, 0) can be now uniquely 

determined by [Cl + 1 linear constraint equations given at the upper boundary x = X, i.e., Eq. 
(43). This in turn gives the complete solution which is represented by Eq. (37). 

4. Transient solutions 

4. I. Infinite buffer case: closed form solution 

Although the solution in Eq. (37) requires us to solve an ( [Cl + 1 )-dimensional matrix equation 
as stated in Section 3.3.1, we now derive a closed form solution by extending [2]. 

From Eq. (37), we can see that P*( s, x) can be represented as 

N- LCJ 

P*(s,x) = { HN+I(s) + c [ak(s) + bk(s)lVk(s)eU*(“)“} U(x- x0) 
k=l 

+~a,(s)V,(s)eU~‘S’X[U(x) - U(x - x0)], 
k=o 

where 

N vkwu;w 
HN+IfS) = [hnr+1,o(s)7 *. -thN+l,Nwl’ = -c 

uk(s) 
ejo 3 

k=O 

ak(s) = u;(S)DP*(S,o), 0 5 k 5 N, 

b(S) = o < k < N - - . 

Note that from Eq. (38)) the stability condition, we find 

ok(S) = -bk(s) fork = 0 and N - [Cj + 1 2 k 2 N. 

Thus only {ak(S); 1 < k 5 N - LCJ} are left as the unknowns to be determined. 

(4-4) 

(45) 

(46) 

(47) 

(48) 
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Define 

a(S)=[al(s),...,aN-,c,(s)l’, 

h(s) = [~o(w+f-~cJ+d~)~ *. .JNWl’ 

and observe the last entry of the Zth derivative of P*(s, x) at x = 0 

d”)P* (s, x) 

dx(‘) 
X=0, 

for 1 = 0,. . . , N - [Cl - 1. From Eqs.( 13) and (44) (see Appendix B), we have 

la(s) = Q(s) Ef C(S), 

where 

(49) 

(50) 

(51) 

(52) 

(53) 

and 

1 

uo(s) 
z= . 

i: 

1 . . . 1 

w-[cJ+1(s) * a. UN(S) 

(u&s))N-‘C’-l ;U&lC,+I(S))N-~CJ-l . * * ;UN(s)pCI-I I* 

(54) 

Note that 7 is a Vandermonde matrix, the inverse matrix I-’ can be represented as (see [ 91) 

where L:“(y) = d”)Lk(y)/dy(‘), 1= 1,. . . , N - [Cl - 1, k = 1,. . . , N - [Cl. And 

(55) 

(56) 

are Lagrange interpolating polynomials. 
Thus the N - [Cl unknowns of Eq. (49), can be uniquely determined by the following closed 

form expression 

a(s) = 7%(s) = 7=‘l;h(s). (57) 
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For a special case where x0 = 0 and j. < C, we have from Eqs. (44)) (55) and (57) 

N- 1CJ 

aktS) = -bk(S) - hN+l,NcS) n 
UjCs> 

j=l j+k uj(s> - uk(s) ’ 
(58) 

for 15 k< N- LC]. 

4.2. Finite bufSer case 

For the finite buffer case, the positive eigenvalues, i.e., { uk (s) ; k = 0, N - [Cl + 1, . . . , N} can be 
allowed. Thus our transient solution is given from Eq. (36) as 

P*(s, x) = HN+r(S)U(X--0) + 5 [&(S) $bk(s)U(x-x0)] Vk(s)eU’(S)XU(x), (59) 
k=o 

where HN+, (s), ak( s) and bk( s) are same as those defined in Eqs. (45), (46) and (47). 
Note that the two sets of equations (42) and (43) give exactly ( N + 1) linear constraint equations 

on {&(s) ; 0 2 k < N}. Thus, the N + 1 unknown ak (s) ‘s of Eq. (46) can be uniquely determined 
by solving a matrix equation of dimension (N + 1). 

4.3. Computational complexity 

We have obtained the transient solutions of Eq. (8) for both the infinite and finite buffer cases. 
Our final solution P* (s, x) is given in the form of Laplace transform with respect to the time 
domain. A numerical-inversion method of the Laplace transform must be applied to obtain P( t, x) = 

Lc,‘{P*(s,x)}. 
For the infinite buffer case, a closed form solution is given by Eqs. (44)-( 57). The complexity of 

main computations (i.e., solving Eq. (57) ) is at most of the order of N2 when C is comparable with 
N. This is a significant saving compared with the computation method suggested in Section 3.3.1, 
which is of the order of N3 by standard Gaussian elimination. The latter case has an advantage only 
when C << N, because its actual computational complexity is of the order of (C + 1) 3. 

For the finite buffer case, the solution is also represented in a closed form, i.e., Eq. (59), except 
that a matrix equation needs to be solved as given by Eq. (48) in Section 3.3.2. The computational 
complexity is of the order of (C + 1) 3, if we apply the standard Gaussian elimination method to 
solve that matrix equation. 

5. Asymptotics and time scales of transient periods 

In this section we examine the behavior of the buffer overflow probability G( t, x) zf Pr [ Q ( t) > x] 
for a large value of x. This quantity is often called the tail-end distribution. 

From Eq. (44) and the Theorem, we can see that G* (s, x) (= C,{G( t, x) }) will be dominated by 
the term with the largest negative exponent uk( s). This dominant root is given by setting K = N in 
u(K, s) of Eq. (31) and is denoted here udom(s). Hence, 
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G*(s,x) zgN(s)e”bm(s)x 

where 

gN(s) =-taN(S) + bN(S)) [l - zlt~domt~))lN. 

In the steady state, we have 

G(+co,x) M [s~gN(s)]s_oeudo-(o)x 

N-l 

=( aIN J-J ujtO) 

ff+P 
--[I - ~l(udom(0))lNeud~m(o)x, 

j=N_,C~+l Uj(O> - Udom(“) 

with 

udom(q=_(~+P)(l -PI 
1 - C/N 

(60) 

(61) 

(62) 

(63) 

It is instructive to note that the dominant exponent ~~~~(0) remains unchanged, as we change N, the 
degree of multiplexing insofar as cy, p and p are kept constant, hence the ratio C/N stays constant. 
This means that the asymptotic decay of the overflow probability, i.e., G( +co, X) as x -+ +oo, is 
independent of N, as long as the traffic intensity remains unchanged. 

Now we examine how the convergence time scale of G( t, x) varies as the total number of sources 
changes, that is, how fast the system will reach its steady state under the same traffic intensity but 
for different values of N. 

Denote by Z.&~(S) the dominant eigenvalue when N = 1 (single source case) and by uifi (s) the 
dominant eigenvalue when N = M. Then we have from Eq. (31) 

(64) 

For large values of x, the exponential term in Eq. (60) dominates the transient behavior of G( t, X) . 
Then we obtain the following approximate relationship between Gc”) (t, x) and G(‘)( t, x) 

Gc”) (t, x) N L;l{g(M) ( s)e”~(“)‘} 

N &‘{p( 2_JeULwM)~} 

N G"'( Mt a-) 9 * (65) 

From (65) we can make the following important observation: the total traffic load fixed, the more 
sources (hence the less traffic per source) are multiplexed, the faster the system will reach its steady 
state, and its convergence rate is proportional to M, the number of multiplexed sources. Thus, we can 
predict asymptotically (i.e. for a sufficiently large buffer threshold X) the transient period of a system 
with a large number of sources by examining a system with a relatively small number of sources. 
The numerical examples we discuss in the next section support this key observation. 
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Traffic Intensity J 0.878, N=2 

.a I 

0 2 4 6 8 10 

buffer content x 

Fig. 3. log,,Pr[Q(t) > x] versus x. C =0.8 (or p=O.878). t=20,30,50,70,100,150 and 250. 

6. Numerical examples 

We present here some numerical results to illustrate our solution technique. The numerical-inversion 
method of the Laplace transform used here is given by (see [ 11, pp. 73-741) 

(66) 

where (0, T] is the finite range over which we wish to evaluate P( t, x), and c is an arbitrary number 
in the convergence region of P* (s, x), which is the entire open right-half plane, i.e., Re{s} > 0, to 
be shown in Appendix A. 

Abate and Whitt [ l] give an extensive review and discussion on the above Fourier-series method 
for inverting transforms of probability distribution functions. 

The parameters used here are given by cy-’ x 650ms, p-’ M 352ms which correspond to the 
empirical values of a voice source model discussed by Sriram and Whitt [ 231 except that in Figs. 5 
and 6, we choose (Y = 0.4 and p = 1.0 to compare our transient results with the steady-state results 
in [2]. 
( 1) znfinite bufS er case. We show some numerical results for the cases of N = 2, N = 50 and 

N = 100. For simplicity, we assume that all sources are initially off, i.e., j, = 0. 
Figure 3 shows the probability that Q(t) exceeds n at fixed time t. The vertical axis is the 
logarithm with base 10 of the survivor function. The link capacity C = 0.8 is fixed and N = 2. 
The probability is observed at different times t. 
Figure 4 shows how fast Q(t) exceeds x = 2.0 when the initial buffer content x0 takes on 
various values. A heavy traffic intensity p = 0.95 (or C = 0.74) and N = 2 are assumed. 
Figure 5 shows how fast Q(t) exceeds various thresholds x (X = 0, 3.0 and 5.0) with the 
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Traffic Intensity = 0.95. Buffer Threshold X=2.0. N=2 

79 

0” I I I 

0 50 100 150 200 250 300 350 400 

Time t 

Fig. 4. Pr[Q(t) > 2.01 versus t for different values of the initial buffer contents xo = 0.0, 1.0,1.5,3.0,4.0,5.0 and 6.0. 
p = 0.95 (i.e. C = 0.74) is assumed. 

Traffic Intensity = 0.86. N=lOO, C=33.333 
0, I I 1 
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Fig. 5. log,,Pr[Q(t) > x] versus time t for x = 0.0,3.0 and 5.0. 

source number N = 100. The buffer is assumed initially empty. 
In Fig. 6, we keep the traffic intensity constant and show how the time scales of transient 
periods change with the number of sources. N = 2, 10, 50, 100 are considered. These curves 
verify the general observation we made earlier based on Eq. (65). 
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Fig. 7. log,, Pr[Q( I) = X] versus t for X = 2.0 and the traffic intensity p = 0.95,0.88,0.82 and 0.70. xo = 0.5 is fixed. 

(2) Finite bu$&- case. We show some numerical results for the single source example, assuming 
that the source is initially off, i.e., N = 1 and j0 = 0. 
In Fig. 7 we fix the buffer capacity X = 2.0 and the initial value x0 = 0.5 and assume different 
values of the traffic intensity p. 

Traffic Intensity = 0.86, ~~5.0, N=2, 10, 50, 100. 

0, 1 1 I 
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Fig. 6. log,,Pr[Q( t) > 5.01 versus time 1 for N = 2, 10, 50 and 100, with same traffic intensity 0.86. 
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Fig. 8. log,0 Pr[Q( t) > 2.01 versus time for different values of the buffer capacity X = 2.0,2.5,3.0,4.0,5.0 and infinity. 
xo = 0.5 and p = 0.88 are assumed for all cases. 

Figure 8 shows how soon Q(t) exceeds buffer level x = 2.0. The different curves correspond to 
different values of the buffer capacity X. The case with infinite buffer capacity is also shown. The 
initial buffer content x0 = 0.5 and the traffic intensity p = 0.88 are assumed throughout. While 
the cell loss probability decreases as the buffer capacity increases, Fig. 8 shows that a increase 
in the buffer capacity leads to a longer queue, i.e., a larger delay time D(t) ( =def (Q(t) /C) ) . 
In other words, for fixed x or T, Pr[ Q( t) > x(X] and Pr [ D( t) > ~1x1 increase as the buffer 
capacity X increases. These curves show quantitatively the trade-off between the packet loss 
probability and delay time, that is, if a larger buffer is provided to reduce the packet loss 
probability, then the packet delay time wil1 become larger and vice versa. 

7. Conclusion 

We have presented mathematical results on the time-dependent behavior of the fluid flow model 
of statistical multiplexing. In Sections 3.2 and 3.3, we showed how to determine the time-dependent 
boundary conditions by solving a set of linear equations, and then explicitly obtain the solution in 
the form of a Laplace transform. In Section 4, we presented our final solutions in closed forms which 
involve less computational complexity. In Section 5, the asymptotic behavior and transient periods of 
the system were discussed. 

By extending our analysis, we should be able to develop a new method to predict the network 
load in real time. A prediction model will help us gain some insight into the design and analysis of 
network congestion control. We expect that in a high-speed network, most existing control strategies 
will fail due to its large propagation delay as compared with the small transmission time. An accurate 
prediction of the transient network load will enable us to develop a preventive control of network 
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congestion at the cell level by regulating traffic, or dynamically assigning the link capacity. Such new 
control strategies are under our current investigation and will be reported in a separate paper. 

Appendix A. Proof of Theorem 1 

The joint probability distribution function Pj( t, X) (j E [O, n] ) is bounded by 1 for arbitrary 
t 2 0, x > 0. Thus its Laplace transform P** (s, u) defined by Eq. ( 15) must be complex analytic 
for Re( s) > 0 and Re( u)O, which is the region of convergence. On the other hand, the region of 
convergence of the Laplace transform consists of strips parallel to the imaginary axis in the s-plane. In 
order to show Re{ uk( s) } > 0 or Re{uk( s) } < 0 in the entire open right-half plane, i.e., Re{ s} > 0, 
it is sufficient to consider them along the nonnegative real axis, i.e., Re{s} 2 0 and Im{s} = 0. 

In the case s = 0, {u( K, 0) ; 0 5 K 5 N} in Eq. (31) reduce to those of the steady-state case 
discussed by Anick et al. [ 21. 

From Eq. (36) 

u(K, ~1 =a-p+ 
(+N-C){s+(N-C)a+Cp}+(;N-K)i/m 

(;N - K)2 - (;N - C)* 
(A.11 

where 

A(K,.s)={~+(N-C)~+C/~}~ + 4c@(K-C)(N-K-C). (A.2) 

We now define 

du(K, s) = 
(+N _ C) + ($N _ K) s+(N-C)a+C 

v(K,s) = ds 
-+ 

(C-K)(N-K-C) . 
(A.31 

l Case 1: C 5 ;N. When 0 5 K 5 [Cl, the roots {u(K,O); 0 5 K 5 [Cl} are non-negative. 
WefindthatN-K-C >0, C-K >0, iN-K >O, and 

s+(N-C)a+Cfl 

dmm 
> 1 for all s 2 0. 

Then 

v(Ks) 2 
(;N-C) 

(C-K)(N-K-C) > ” 
t A.4) 

When [C] + 1 5 K < N, the roots {u(K,O); [Cj + 1 5 K 2 N} are negative. 
If [Cl + 1 5 K 5 N - \CJ, it follows that N - K - C > 0, C - K < 0, :N - C > 0, and 

o < s+(N-C)a+CP < 1 

- dm _ , for all s 2 0. 

Then 

t$‘-C)+($N-K) 
o(K’s)’ (c-K)(N_K_c) < OS (A.9 
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If N - [C] + 1 < K _< N, it follows that N - K - C < 0, C - K < 0, ;N - K < 0, and 

s+(N-C)a+CP > 1 foralls>O 
J_- -- 

Then 

(;N-C)+(;N-K) 
v(K’s)’ (C_K)(N_K_c) <‘* (A.61 

l Case 2: i N < C < N. When 0 5 K 2 [C], the roots {u( K, 0) ; 0 5 K _< [C] } are non-negative. 
IfO<K<N-[Cl-l,itfollowsN-C-K>O,C-K>O,iN-K>O, and 

s+(N-C)cu+Cp > 1 foralls>O 
&lo- -* 

Then 

(;N-C)+(;N-K) 
O(K’s) ’ (C-K)(N-K-C) > ‘* 

IfN-[Cj SK_< LCJ,itfollowsN-C-K<O, C-K>O,and 

o < s+(N--C)a+CP 
m 2 1 for all s > 0. 

Then 

(;N-C)+(;N-K) 

v7(K’s)’ (C_K)(N-K-C) >‘* 
When LCJ + 1 5 K < N, the roots {u( K, 0) ; LC] + 1 5 K < N} are negative. 

WefindthatN-K-C<O, C-K<O, ;N-K<O,and 

s+(N-C)a+Cp > 1 foralls>O 
Jz(lE)- -* 

Then 

(;N-C) 
v(K3s)5 (C-K)(N_K_C) <O- 

(A.7) 

(A.81 

(A.9) 

The above observations can be summarized in the following: 
l Consider those roots which are negative at s = 0. There exist N - [CJ such roots, which we 

denote by u1 (s) , . . . , UN- Lcl (s) . Their derivatives duk (s) / ds are always negative. 
l Consider those roots which are positive at s = 0. There exist [Cl such roots, which we denote 

by u,v-~cj+1(.&. . -9 u,,,(s) . Their derivatives duk ( s) / ds are always positive. 
l The root that corresponds to K = 0 intersects the origin at s = 0: ~(0, 0) = 0. Let uo (s) denote 

this root, and we find duo(s)/ ds > 0. 
None of them is identical to any other, because they are all distinct at s = 0. None of them is zero 
because (sZ - M 1 # 0 for some s. 

This concludes the proof of the theorem. 
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Appendix B 

From Eq. (41), the last N - \CJ entries of P*( s, 0) are zero. DD-’ (M - sl) is a t&diagonal 
matrix. Note that a multiplication of DD-’ (M - sl) on P*( s, 0) will reduce by one the number 
of entries that are zero, and that each additional multiplication will have the same effect until 
[ 27’ (M - sl) ] N-LcJ-l P* (s, 0) has only its last entry equal to zero. 

The generating function of V,(s) takes the form of Eq. (27) for each k, so the (N + 1) th (or 
last) entry of each Vk (s) is one. 

Since the term P(0, x) makes Eq. (13) a non-homogeneous differential equation, we derive Eq. 
(52) in the following two cases, depending on the value of x0, the initial buffer content. 
( 1) x0 > 0. Taking the Zth derivative of Eq. (13) and evaluating it at x = 0, we find 

d”‘P*(s,x) 
dxc’, J,~=[~-'(M-sz)]'P*(s,O), Z=O,...,N- LCJ -1. 

Similarly from Eq. (44)) we obtain 

d(f)~~j~‘x),~;n=~a*(s)(r,(s)]*vio, Z=O,...,N- lC]-1. 
&=a 

(B.1) 

(B-2) 

Comparing the last entries in the right-hand sides of Eqs.(B.l ) and (B.2)) we have 

-&&(s),u&)]‘=O, I=0 ,.*., N- [CJ - 1, (B.3) 
k=a 

from which and Eq. (48)) we obtain the following expression: 

N- tCJ 

c ~k(~>[~,<~>l’=~o(~)~~(~) + 2 ~&)bk(~>1'9 
k=l k=N-LCjil 

for I = 0, . ..,N- [Cl - 1. 
This in turn gives Eq. (52). 

(2) x0 = 0. In this case, Eq. ( 13) is equal to 

dP*(s, x) 
dx 

=DD-‘(M- SZ)p*(S,X) +DD-'ej,. 

(B-4) 

(B-5) 

Then taking the Zth derivative of the above equation and evaluating it at x = 0, we obtain 

u3.6) 

for Z = 1,. . . , N - LC] - 1, where we denote the last entry of [D-’ (A4 - SZ) ] ‘-ID-’ ej,, as 
cI( s) . From Eq. (44) we have 

P*(sVO) = HN+I(S) + c [G(S) +MS)]Vt(S), 
k=l 

(B-7) 
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d”)P* (s, X) 
dxc’, 

N- LcJ 

(J3.8) 

for z= 1,. . . , N - LCj - 1. Comparing the last entries in the right-hand sides of Eqs. (B.6)) 
(B.7) and (B.8), we have 

N- 1CJ 

c [4(S) +bk(S)l[UL(S)lI=C~(S) Z=O,...,N- [Cl - 1, (B.9) 
k=l 

or 

7a(s> =c(s), 

where the a(s) is modified as 

a(s) = [Q(S) + bl(S), . * -9 aN-[CJ(d + bN-,C, (s) 1’3 (B.ll) 

(B.lO) 

and 

C(S) = [-~N+I,N(S)~CI(S), . . .rC~-L~J-~I’. (B.12) 

When the number of sources that are initially on is less than the link capacity, i.e., j, < C, 
then the last expression is simplified to 

G(S) = [-~N+I,N(s),~, . . .,Ol’. (B.13) 
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