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We present a new computational algorithm for evaluating the queue
distribution in a general Markovian queuing network, based on the
PSlya theory of counting., We formulate queue size vectors as
equivalence classes relative to a symmetric group., The normaliza-
tion constant of the queue-distribution then corresponds to the
pattern inventory in the P8lya theory. A central server model is
discussed as an application example of this new algorithm.

I. INTRODUCTION

A "network of queues' representation provides a basic framework in dealing with
the performance analysis of multiple resource systems, in which different re-
sources process jobs asynchronously to each other. The class of models for which
we find a simple closed solution of the equilibrium queue distribution is the so-
called '"Markovian queuing network’ [1-4], For this class the equilibrium distri-
bution is given in "product" form. This expression, however, includes a normali-
zation comstant, and determination of the normalization constant presents a compu-
tationally nontrivial task,

A number of authors have proposed various algorithms designed to evaluate effi-
ciently the normalization constant, and related performance measures — utiliza-
tion, throughput, moments of queue size, average response time, etc. In the pre~
sent paper we propose a new algorithm that is derived based on the P8lya theory of
enumesation - a well-discussed subject in books on combinatorial mathematics [5-8]
The Pdlya theory of enumeration influenced the research in finding minimal cost
networks for the realization of switching functions, as treated by Slepian [9] and
Harrison [10]. The problem of evaluating the normalization facto; of queue dis-
tribution is a bona fide combinatorial problem, thus it is quite natural to inves-
tigate possible applications of the PSlya theory to queuing theory,

II. STATEMENTS OF THE PROBLEM

Consider a closed* queuing network which consists of N service stations arbi-

trarily connected to each other. Let us define the following set of nomenclature
concerning the analvsis of such network:

]

i
M= {1,2,3,..,,M}: the set of service stations (2.1)

N

L ot the network population (2.2)

*In the original paper [14] a more general class of queuing networks is discussed,
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Fv) = {3}n1>0 for all ieM

and ] n, = N}t the set of feasible queue
ieM * vectors {2.3)
C,(n) = the processing rate of server i, when its local
+ queue size is n, d1eM 2.4
n 1 )
B,(m) = I , leM (2.5
i =1 G )
W, = the expected total work (or service) a job demands from
server 1 during this job's entire life in the network. (2.6)

In order to obtain the equilibrium state distribution of the queue-size vector
p(n), we make a set of fairly general assumptions (see [2,3,4] for details) comn-
cerning (1) the routing behavior, (ii) service (or work) distributiom,

(iii) service (or processing) rates, and (iv) queue disciplines. We can then
obtain the following product form solution:

el £.(n,) if neF (M)
ieM * i -

pl) =

0, 1f néF (V) @2.7)

where the functions fi(ni) are themselves given in the following product form:
=l
fi(ni) = Bi(ni)wi , 1M (2.8)

the scalar constant c¢ of Equation (2.7) is the normalization factor referred to
in Section I and is given by

c=1/gM,N) 2,9
where
Ni
g (M,N) = ) T B,(n )W, 2,10
3;%(N) jeM T i ¢ )

thus the problem is reduced to that of evaluating g(M,N) for a given pair

M,N).

The convolutional algorithm of Buzen [11] and Reiser and Kobayashi [12,13] is
essentially the following recursive formula:

N
gM,N) = ) g(M—l,N-k)BM(k)wk, M21, N2l (2.11)
k=0

with the boundary conditions
gM,0) =1, for M20, (2.12a)

and
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1,  for N=0,
g(0,N) =

0, for Nzl. (2.12b)
for a fixed value of M, the sequence {g(M,1); O<i<N} is the convolutional sum
of the sequence {BM(i)w;; 0<isN} and {gM-1,1); O0<isN}. The co;ﬁ;ti§ion of

+
{g(M,1); 0<isN} given the value of {g(M-1,i); O0<isN} requires —
multiplications and additions., Thus, for a given value of the pair M,N) the
(M—-1)N (N+1) (N+2)
6

N
M-1
evaluation of g(M,N) requires, in total, j—i—l z n'(n'+l) =
multiplications and additiomns, n'=1

Under the special condition of constant service rates of the form for all ieM:

C. for n21
i
€ () =
0 for n=0 (2,13)

we find the following simple recurrence algorithms for the two-dimensional array
{gM,N)}:

g01,N) = g(I-1,N) + T, g(f,-1), M1, N2l (2.14)

with the boundary conditions (2.12). The parameter T is the expected total

service time given to a job by server i during the job's lifetime within the
network, and 1s given by

X

T, =

i .
i EZ , ieM (2.15)

The evaluation of g(M,N) requires, for this special case, (M-1)N multiplica-
tions and additions,

ITI. A NEW COMPUTATIONAL ALGORITHM

We now introduce a new algorithm for evaluating the normalization constant
g(M,N). This algorithm is restricted to a network with exponential servers all
of which have fixed service rates, i.e., the case where Equation (2,13) is true
for all ieM. Then certainly we could use the recursive formula (2,14) through-
out the entire steps, starting with the boundary condition (2,12)., The evalua-
tion of {g(m,n); 1<ns<N, lsmM} would require only M-1)N multiplications

and additions. However, the computational formula to be discussed below is some-
times more convenient, especially when N is small,

The assumption of the constant service rates of (2,13) allows us to write g(M,N)
of (2.10) as

n,
gM,N) = 7§ i * (3.1)
nef (W) ieM

1

where Ti was defined by (2,15)., Let us define the set of stations

M={1,2,...,M} (3.2)
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and the set of N jaobs
N o= {1,2,0..,80 (3.3

Consider then a set of functions that have N and M as their domain and
range, respectively:

F = {f|£:N M} (3.4)

A function f 1in the set F represents a way of placing N jobs into M
service stations. We write, for example,

£f(§) = i, jeN, ieM (3.5)
which implies that job j 1is placed in station 1.

Consider a permutation 7 defined over N, and let SN be the set of all per-
mutations defined over N:

Sy = {m)m:N > N} (3.6)

The elements of SN form a symmetric group of degree N. For a given function

fl ¢ F and permutation T ¢ SN’ we can define another function f2 by

£,() = £, JeN 3.7

Clearly the function f2 is also a member of F. However, such functions f1

and £2 correspond to the same queue size vector n
n = [nl,nz,...,nM] (3.8)

since we do not distinguish the individual jobs, Therefore, we say that the

functions fl and f2 are equivalent relative to the permutation group SN'

Distinct values of n e F(N) correspond to distinct equivalence classes.

We interpret the parameter T

of (2.15) as the weight of element i in the
set M, and thus

i

YT, (3.9)
ieM *

represents the inventory of the set M., If a function f belongs to the equi-
valence class n (3.8), then the weight W(f) of the function f 1is

n
W(E) = T Tii, for all fen (3.10)
ieM
which is called the weight of the equivalence class n. Then the pattern inven-
tory of F - the sum of weights of distinct equivalence classes relative to
the permutation group SN - is
TowE) (3.11)
nefF (N)

which is nothing but g@M,N) of (3.1)! This observation immediately calls our
attention to the celebrated Pélya theorem:
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Theorem (PSlya): The pattern inventory g(M,N) of the set of the equivalence
classes of functions from the domain N to the range M is

2 N
g (M,N) =ZS(Z T4 7 Tireres ) 3) (3.12)

N ieM ieM ieM
where Zs (xl’XZ""’xN) is the cyclic index polynomial of the permutation
N

group SN'

The cycle index polynomial of SN is given from Cauchy's formula

X.
1
g (%)3%pseasxy) = ] m o (3.13)
N u, ! 2 u,! N Ny
1! ol e !

where the sum is taken over the set of distinct M tuples, <Hys i=1,2,...,M>
such that

I du =N (3.14)
ieM

Table 1 tabulates (3.13) for N = 1,2,...,7.

Table 1

Cycle Index Polynomials of Symmetric Groups

SN
1 xy
2
2 1/2(Xl + xz)
3 l/é(xi + 3x1x2 + 2x3)
4 2
4 1/24 (x, + 6x.x 2
1 172 + 3x2 + 8xlx3 + 6X4)
5 3 2 2
5 1/120(xl + 10x1x2 + l5x1x2 + ZOxlx3 + 20x2x3 + 30x1x4 + 24x5)
6 4 2.2 3 3 2 2
6 l/720(x1 + lelx2 + 45x1x2 + 15x2 + 40x1x3 + 120x1x2x3 + 40x3 + 90xlx4
+ 90x2x4 + 144x1x5 + l20x6)
7 5 4 3.2 3 2
7 l/5040(x1 + 21xlx2 + 70x1x3 + lOlex2 + Zlelx4 + 420x1x2x3
3 2 2
+ 105x1x2 + 280xlx3 + 630x1x2x3 + 504xlx5 + 840x1x6
2
+ 210x2x3 + 504x2x5 -+ 420x3x4 + 720X7)
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Thus all that is required is to compute the set of values

x, = J 1%, k=1,2,... (3.15)
k . i
ieM

and substitute them into the polynomial ZS N
N

Alternatively, we recursively compute g{(m,n), 1snsN, 1l<m=<N, We can derive the
following expression for the cycle index polynomials:

1 nil
= x_ 2. (x,,% ,...,xk), for n21
n 420 n~k' Sk 1°72
Zg (xl,xz,...,xn) =
n
1, for n=l (3.16)

which leads to the recurrence relation of the sequence g(M,n), n = 1,2,3,0.0

1 n-1
gM,n) = = kZO X, 8 M,1)
Loy (3.17)
== g M,n-k) .
n Lk

with the initial condition
g(M,0) = 1, M21 (3.18)

Note that Equation (3.17) is also of a convolutional form: we can view the se~
quence {gM,n): n = 1,2,...} as an autoregressive sequence with varying re-

gressive coefficients {% x, k=0, 1. .... n~1},

-k

IV. AN APPLICATION EXAMPLE

The computational formulas presented above will be of practical interest when
there are many servers in the network. The cost of computing the parameters
{xk, k =1,2,...} of (3.15) is insignificant in many cases of practical in-

terest. Consider, for example, a central server model in which the CPU station
is followed by a number of I/0 devices (disks and drums) with a number of inde—
pendent access paths in parallel: if the traffic distribution to different

paths is uniform (which is often assumed in the absence of detailed measurement
data), then the model becomes a closed network with many independent servers, but
with the same parameter value of {Ti}.

For example, a model of an interactive system with multiprogramming in virtual
storage can be decomposed into the outer model ~ a time—shared system model -
and the inner model - a central server model [2,3]. Figure 1 shows a typical
structure of the inner model with M=16: servers 1 through 10 represent magne-
tic drum sectors with independent access paths; servers 11 through 15 are magne-
tic disks with independent channels; and server 16 represents CPU, The multi-
programming level, N, varies as time changes. Usually the value N 1is con-
trolled through the job scheduler. We assume the following workload parameters
per interaction, where an interaction starts when an interactive user creates a
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Figure 1, A Closed Queuing Network
Model With M=16 Stations

request (or job) and it ends when the job is processed by the system and its re-
sponser is received by the user.
Average CPU work per interaction: Wi = 2.0 sec,

Average number of drum accesses (reads)

per interaction: Rd = 80
rm

Average number of disk accesses (reads)

per interaction: Rdsk = 20

Average latency and transfer time per

drum access: 20 msec.

Average seek, latency and transfer time

per disk access: 100 msec.

In the absence of measurement data concerning how these drum reads and disk reads
are distributed among the separate access paths, we assume the uniform distribu-
tions:

R

- _ _ drm
W, = ¢us = WIO = 20 msec x T

o = 0,16 sec;
R
—2E 0,40 sec.

W,p = «os = W, = 100 msec X
Since the service (or work) is represented in time, the processing rate {Ci}

should be set to unity, Hence the parameters {Ti} of (2,15) are the same as
{W.}:
i

Ty T e STy < 0,16 secy
Tip = eee = Ty5 = 0.40 secy
T = 2,0 sec.

16
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We first compute the parameters x,'s of (3.15)

1

X, = 10 % 0,16 + 5 % 0.4 + 2,0 = 5,6 sec;

x, = 10 x 0.16% + 5 x 0.4% + 2.0% = 5.056 sec’;

xy = 10 x 0.163 + 5 x 0.47 + 2.0 = 8.361 sec’;

x, = 10 x 0.26% + 5 x 0.4% + 2.0% = 16,135 sec”,

etc, Then from Formula (3.12) and the polynomials of Table 1 (alternatively from
the recurrence formula (3.17)), we obtain

g(l6,0) = 1

g(16,1) = X = 5.6 sec;

g(16,2) = %(xi + X2> = 18.2 secz;

§(16,3) = £ + 3xyx, + 2x,) = 46.2 sec’;

g(16,4) = %Z(xi + 6xix2 + 3x§ + 8x1x3 + 6x4) = 103.4 secA;

etc. Utilization pi(N) of server 1 for the degree of multiprogramming N is

given (see e.g., [2]} by

0.y = w, 8dLN-1) %.1)

We can predict, for example, CPU utilization under different values of multipro-
gramming level, N, as follows:

p1e(L) = %f% = 0.36;

016(2) = 2.0 x %ﬁ%ﬁ = 0.62;

0163 = 2.0 x £2 = 0.79;

prg(4) = 2.0 x I%é%z = 0.89;

An alternative formula for utilization QH(N) for the Mth resource is given

from Equations (2.14) and (4.1) as

® =1 - sM-1,N) 4.2)

Py PICRY))

For the degree of multiprogramming N=4, for example, we need to calculate
g(15,4). For this purpose we compute the following parameters:

¥y = 10 X 0,16 + 5 % 0.4 = 3.6 sec

2

y, = 10 X 0,16 + 5 x 0.4% = 1,056 sec’
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yy = 10 x 0.16% + 5 x 0,47 = 0.361 sec’

v, = 10 x 0.26% + 5 x 0.4* = 0.135 sec*
Then

g(15,4) = %z(yi + 6y§y2 + 3y§ + By,y, + 6y,) = 11.0,
Hence

e ® -1 - Bl o

which is, not surprisingly, the.same as the value obtained earlier.

The kP moment of the number of customers, ., is given [2] by

N
k 1 k k, n
Eln,] = E. nzl g (M, N-n) [n"~(n-1)"]7; 4.3

For instance, the average of CPU queue for the degree of multiprogramming WN=4 is

4
1 - n
Foye) = gaeny L 8A64m2.0

1

__1 4
T 103.4

(46,2 x 2.0 + 18.2 x 2.0 + 5.6 x 2.0° + 1 x 2.0

= 2,19
Similarly, we obtain the average queue sizes the the drums and disks:
E[n1] T eee = E[nlO] = 0,076

E[ = E[n;g] = 0.210

nll] = e
We check that these values add up to N=4:

2,19 + 0,76 x 10 + 0.210 x 5 = 4,0
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