A COMPUTATIONAL ALGORITHM FOR QUEUE DISTRIBUTIONS VIA THE PÓLYA THEORY OF ENUMERATION

Hisashi Kobayashi Computer Sciences Department IBM Thomas J. Watson Research Center Yorktown Heights, New York 10598

We present a new computational algorithm for evaluating the queue distribution in a general Markovian queuing network, based on the Pólya theory of counting. We formulate queue size vectors as equivalence classes relative to a symmetric group. The normalization constant of the queue-distribution then corresponds to the pattern inventory in the Pólya theory. A central server model is discussed as an application example of this new algorithm.

I. INTRODUCTION

A "network of queues" representation provides a basic framework in dealing with the performance analysis of multiple resource systems, in which different resources process jobs asynchronously to each other. The class of models for which we find a simple closed solution of the equilibrium queue distribution is the so-called "Markovian queuing network" [1-4]. For this class the equilibrium distribution is given in "product" form. This expression, however, includes a normalization constant, and determination of the normalization constant presents a computationally nontrivial task.

A number of authors have proposed various algorithms designed to evaluate efficiently the normalization constant, and related performance measures - utilization, throughput, moments of queue size, average response time, etc. In the present paper we propose a new algorithm that is derived based on the Pólya theory of enumeration - a well-discussed subject in books on combinatorial mathematics [5-8]. The Pólya theory of enumeration influenced the research in finding minimal cost networks for the realization of switching functions, as treated by Slepian [9] and Harrison [10]. The problem of evaluating the normalization factor of queue distribution is a bona fide combinatorial problem, thus it is quite natural to investigate possible applications of the Pólya theory to queuing theory.

II. STATEMENTS OF THE PROBLEM

Consider a closed* queuing network which consists of M service stations arbitrarily connected to each other. Let us define the following set of nomenclature concerning the analysis of such network:

$$M = \{1,2,3,...,M\}$$
: the set of service stations (2.1)

$$N = \sum_{i \in M} n_i$$
: the network population (2.2)

^{*}In the original paper [14] a more general class of queuing networks is discussed.

$$F(N) = \underbrace{\frac{1}{n}}_{i > 0} for all i \epsilon M$$
 and
$$\sum_{i \in M} n_i = N \};$$
 the set of feasible queue vectors (2.3)

$$C_{i}(n)$$
 = the processing rate of server 1, when its local queue size is n, $i \in M$ (2.4)

$$\beta_{i}(n) = \prod_{k=1}^{n} \frac{1}{C_{i}(k)}, i \in M$$
 (2.5)

In order to obtain the equilibrium state distribution of the queue-size vector $p(\underline{n})$, we make a set of fairly general assumptions (see [2,3,4] for details) concerning (i) the routing behavior, (ii) service (or work) distribution, (iii) service (or processing) rates, and (iv) queue disciplines. We can then obtain the following product form solution:

$$p(\underline{n}) = \begin{cases} c \prod_{i \in M} f_i(n_i), & \text{if } \underline{n} \in F(N) \\ \\ 0, & \text{if } \underline{n} \notin F(N) \end{cases}$$
(2.7)

where the functions $f_i(n_i)$ are themselves given in the following product form:

$$f_{i}(n_{i}) = \beta_{i}(n_{i})w_{i}^{n_{i}}, i \in M$$
 (2.8)

the scalar constant $\, c \,$ of Equation (2.7) is the normalization factor referred to in Section I and is given by

$$c = 1/g(M,N)$$
 (2.9)

where

$$g(M,N) = \sum_{\mathbf{n} \in F(N)} \prod_{\mathbf{i} \in M} \beta_{\mathbf{i}}(\mathbf{n}_{\mathbf{i}}) W_{\mathbf{i}}^{N_{\mathbf{i}}}$$
(2.10)

thus the problem is reduced to that of evaluating g(M,N) for a given pair (M,N).

The convolutional algorithm of Buzen [11] and Reiser and Kobayashi [12,13] is essentially the following recursive formula:

$$g(M,N) = \sum_{k=0}^{N} g(M-1,N-k)\beta_{M}(k)W_{M}^{k}, \quad M \ge 1, N \ge 1$$
 (2.11)

with the boundary conditions

$$g(M,0) = 1$$
, for $M \ge 0$, (2.12a)

and

$$g(0,N) = \begin{cases} 1, & \text{for } N=0, \\ 0, & \text{for } N \ge 1. \end{cases}$$
 (2.12b)

for a fixed value of M, the sequence $\{g(M,i); 0 \le i \le N\}$ is the convolutional sum of the sequence $\{\beta_M(i)W_M^i; 0 \le i \le N\}$ and $\{g(M-1,i); 0 \le i \le N\}$. The computation of $\{g(M,i); 0 \le i \le N\}$ given the value of $\{g(M-1,i); 0 \le i \le N\}$ requires $\frac{N(N+1)}{2}$ multiplications and additions. Thus, for a given value of the pair (M,N) the evaluation of g(M,N) requires, in total, $\frac{(M-1)}{2}\sum_{n'=1}^{N} n'(n'+1) = \frac{(M-1)N(N+1)(N+2)}{6}$ multiplications and additions.

Under the special condition of constant service rates of the form for all $i \in M$:

$$C_{\mathbf{i}}(n) = \begin{cases} C_{\mathbf{i}} & \text{for } n \ge 1 \\ \\ 0 & \text{for } n = 0 \end{cases}$$
 (2.13)

we find the following simple recurrence algorithms for the two-dimensional array $\{g(M,N)\}$:

$$g(M,N) = g(M-1,N) + \tau_M g(M,N-1), M \ge 1, N \ge 1$$
 (2.14)

with the boundary conditions (2.12). The parameter τ_i is the expected <u>total</u> service time given to a job by server i during the job's lifetime within the network, and is given by

$$\tau_{i} = \frac{W_{i}}{C_{i}}, \quad i \in M$$
 (2.15)

The evaluation of g(M,N) requires, for this special case, (M-1)N multiplications and additions.

III. A NEW COMPUTATIONAL ALGORITHM

We now introduce a new algorithm for evaluating the normalization constant g(M,N). This algorithm is restricted to a network with exponential servers all of which have fixed service rates, i.e., the case where Equation (2.13) is true for all $i \in M$. Then certainly we could use the recursive formula (2.14) throughout the entire steps, starting with the boundary condition (2.12). The evaluation of $\{g(m,n); 1 \le n \le N, 1 \le m \le N\}$ would require only (M-1)N multiplications and additions. However, the computational formula to be discussed below is sometimes more convenient, especially when N is small.

The assumption of the constant service rates of (2,13) allows us to write g(M,N) of (2.10) as

$$g(M,N) = \sum_{\mathbf{n} \in F(N)} \prod_{i \in M} \tau_i^{n_i}$$
(3.1)

where τ_i was defined by (2.15). Let us define the set of stations

$$M = \{1, 2, ..., M\}$$
 (3.2)

H. KOBAYASHI

and the set of N jobs

$$N = \{1, 2, \dots, N\} \tag{3.3}$$

Consider then a set of functions that have $\,N\,$ and $\,M\,$ as their domain and range, respectively:

$$F = \{f \mid f: N \to M\} \tag{3.4}$$

A function f in the set F represents a way of placing N jobs into M service stations. We write, for example,

$$f(j) = i, j \in N, i \in M$$
 (3.5)

which implies that job j is placed in station i.

Consider a permutation π defined over N, and let $S_{\mbox{N}}$ be the set of all permutations defined over N:

$$S_{N} = \{\pi \mid \pi: N \to N\} \tag{3.6}$$

The elements of S_N form a symmetric group of degree N. For a given function $f_1 \in F$ and permutation $\pi \in S_N$, we can define another function f_2 by

$$f_2(j) = f_1(\pi(j)), j \in N$$
 (3.7)

Clearly the function $\,f_2\,$ is also a member of $\,F_{ullet}\,$ However, such functions $\,f_1\,$ and $\,f_2\,$ correspond to the same queue size vector $\,\underline{n}\,$

$$\underline{\mathbf{n}} = [\mathbf{n}_1, \mathbf{n}_2, \dots, \mathbf{n}_M] \tag{3.8}$$

since we do not distinguish the individual jobs. Therefore, we say that the functions f_1 and f_2 are equivalent relative to the permutation group S_{N^*} . Distinct values of $\underline{n} \in F(N)$ correspond to distinct equivalence classes.

We interpret the parameter τ of (2.15) as the weight of element i in the set M, and thus

$$\sum_{i \in M} \tau_i \tag{3.9}$$

represents the inventory of the set M. If a function f belongs to the equivalence class \underline{n} (3.8), then the weight W(f) of the function f is

$$W(f) = \prod_{i \in M} \tau_i^{n_i}, \text{ for all } f \in \underline{n}$$
 (3.10)

which is called the weight of the equivalence class \underline{n}_{\bullet} . Then the pattern inventory of F - the sum of weights of distinct equivalence classes relative to the permutation group S_N - is

$$\sum_{\mathbf{n}\in\widetilde{F}(N)}W(\mathbf{f}) \tag{3.11}$$

which is nothing but g(M,N) of (3.1)! This observation immediately calls our attention to the celebrated Pólya theorem:

Theorem (Pólya): The pattern inventory g(M,N) of the set of the equivalence classes of functions from the domain N to the range M is

$$g(M,N) = Z_{S_{N}} \left(\sum_{i \in M} \tau_{i}, \sum_{i \in M} \tau_{i}^{2}, \dots, \sum_{i \in M} \tau_{i}^{N} \right)$$
(3.12)

where $Z_{S_N}(x_1,x_2,\ldots,x_N)$ is the cyclic index polynomial of the permutation group S_N .

The cycle index polynomial of S_N is given from Cauchy's formula

$$z_{S_{N}}(x_{1},x_{2},...,x_{N}) = \sum_{\mu_{1}!} \frac{x_{1}^{\mu_{2}} x_{2}^{\mu_{2}} ... x_{N}^{\mu_{N}}}{\mu_{1}! 2^{\mu_{2}} \mu_{2}! ... x_{N}^{\mu_{N}} \mu_{N}!}$$
(3.13)

where the sum is taken over the set of distinct M tuples, $\langle \mu_i; i = 1, 2, ..., M \rangle$ such that

$$\sum_{i \in M} i \mu_i = N \tag{3.14}$$

Table 1 tabulates (3.13) for N = 1, 2, ..., 7.

Table 1

Cycle Index Polynomials of Symmetric Groups

N	z _{s_N}
1	* ₁
2	$1/2(x_1^2 + x_2)$
3	$1/6(x_1^3 + 3x_1x_2 + 2x_3)$
4	$1/24(x_1^4 + 6x_1^2x_2 + 3x_2^2 + 8x_1x_3 + 6x_4)$
5	$1/120(x_1^5 + 10x_1^3x_2 + 15x_1x_2^2 + 20x_1^2x_3 + 20x_2x_3 + 30x_1x_4 + 24x_5)$
6	$1/720(x_1^6 + 15x_1^4x_2 + 45x_1^2x_2^2 + 15x_2^3 + 40x_1^3x_3 + 120x_1x_2x_3 + 40x_3^2 + 90x_1^2x_4$
	$+ 90x_2x_4 + 144x_1x_5 + 120x_6$
7	$1/5040(x_1^7 + 21x_1^5x_2 + 70x_1^4x_3 + 105x_1^3x_2^2 + 210x_1^3x_4 + 420x_1^2x_2x_3$
	$+\ 105x_1x_2^3 + 280x_1x_3^2 + 630x_1x_2x_3 + 504x_1^2x_5 + 840x_1x_6$
	$+210x_2^2x_3 + 504x_2x_5 + 420x_3x_4 + 720x_7$

Thus all that is required is to compute the set of values

$$x_k = \sum_{i \in M} \tau_i^k, \quad k = 1, 2, \dots$$
 (3.15)

and substitute them into the polynomial $z_{S_{\widetilde{N}}}$

Alternatively, we recursively compute g(m,n), $1 \le n \le N$, $1 \le m \le N$. We can derive the following expression for the cycle index polynomials:

$$z_{S_{n}}(x_{1},x_{2},...,x_{n}) = \begin{cases} \frac{1}{n} & \sum_{k=0}^{n-1} x_{n-k} z_{S_{k}}(x_{1},x_{2},...,x_{k}), & \text{for } n \ge 1 \\ \\ & & \\ 1, & \text{for } n = 1 \end{cases}$$
(3.16)

which leads to the recurrence relation of the sequence g(M,n), n = 1,2,3,...

$$g(M,n) = \frac{1}{n} \sum_{k=0}^{n-1} x_{n-k} g(M,k)$$

$$= \frac{1}{n} \sum_{k=1}^{n} x_k g(M, n-k)$$
 (3.17)

with the initial condition

$$g(M,0) = 1, M \ge 1$$
 (3.18)

Note that Equation (3.17) is also of a convolutional form: we can view the sequence $\{g(M,n): n=1,2,\ldots\}$ as an autoregressive sequence with varying regressive coefficients $\{\frac{1}{n} \times_{n-k}: k=0,1,\ldots,n-1\}$.

IV. AN APPLICATION EXAMPLE

The computational formulas presented above will be of practical interest when there are many servers in the network. The cost of computing the parameters $\{x_k,\ k=1,2,\ldots\}$ of (3.15) is insignificant in many cases of practical interest. Consider, for example, a central server model in which the CPU station is followed by a number of I/O devices (disks and drums) with a number of independent access paths in parallel: if the traffic distribution to different paths is uniform (which is often assumed in the absence of detailed measurement data), then the model becomes a closed network with many independent servers, but with the same parameter value of $\{\tau_{+}\}$.

For example, a model of an interactive system with multiprogramming in virtual storage can be decomposed into the outer model - a time-shared system model - and the inner model - a central server model [2,3]. Figure 1 shows a typical structure of the inner model with M=16: servers 1 through 10 represent magnetic drum sectors with independent access paths; servers 11 through 15 are magnetic disks with independent channels; and server 16 represents CPU. The multiprogramming level, N, varies as time changes. Usually the value N is controlled through the job scheduler. We assume the following workload parameters per interaction, where an interaction starts when an interactive user creates a

Figure 1. A Closed Queuing Network Model With M=16 Stations

request (or job) and it ends when the job is processed by the system and its responser is received by the user.

Average CPU work per interaction:	$W_{16} = 2.0 \text{ sec}$
Average number of drum accesses (reads) per interaction:	R _{drm} = 80
Average number of disk accesses (reads) per interaction:	$R_{dsk} = 20$
Average latency and transfer time per drum access:	20 msec.
Average seek, latency and transfer time per disk access:	100 msec.

In the absence of measurement data concerning how these drum reads and disk reads are distributed among the separate access paths, we assume the uniform distributions:

$$W_1 = \dots = W_{10} = 20 \text{ msec} \times \frac{R_{drm}}{10} = 0.16 \text{ sec};$$

 $W_{11} = \dots = W_{15} = 100 \text{ msec} \times \frac{R_{dsk}}{5} = 0.40 \text{ sec}.$

Since the service (or work) is represented in time, the processing rate $\{C_i\}$ should be set to unity. Hence the parameters $\{\tau_i\}$ of (2.15) are the same as $\{W_i\}$:

$$\tau_1 = \dots = \tau_{10} = 0.16 \text{ sec};$$
 $\tau_{11} = \dots = \tau_{15} = 0.40 \text{ sec};$
 $\tau_{16} = 2.0 \text{ sec}.$

86 H. KOBAYASHI

We first compute the parameters x_i 's of (3.15)

$$x_1 = 10 \times 0.16 + 5 \times 0.4 + 2.0 = 5.6 \text{ sec};$$
 $x_2 = 10 \times 0.16^2 + 5 \times 0.4^2 + 2.0^2 = 5.056 \text{ sec}^2;$
 $x_3 = 10 \times 0.16^3 + 5 \times 0.4^3 + 2.0^3 = 8.361 \text{ sec}^3;$
 $x_4 = 10 \times 0.16^4 + 5 \times 0.4^4 + 2.0^4 = 16.135 \text{ sec}^4,$

etc. Then from Formula (3.12) and the polynomials of Table 1 (alternatively from the recurrence formula (3.17)), we obtain

$$g(16,0) = 1$$

$$g(16,1) = x_1 = 5.6 \text{ sec};$$

$$g(16,2) = \frac{1}{2}(x_1^2 + x_2) = 18.2 \text{ sec}^2;$$

$$g(16,3) = \frac{1}{6}(x_1^3 + 3x_1x_2 + 2x_3) = 46.2 \text{ sec}^3;$$

$$g(16,4) = \frac{1}{24}(x_1^4 + 6x_1^2x_2 + 3x_2^2 + 8x_1x_3 + 6x_4) = 103.4 \text{ sec}^4;$$

etc. Utilization $\rho_i(N)$ of server i for the degree of multiprogramming N is given (see e.g., [2]) by

$$\rho_{i}(N) = W_{i} \frac{g(M, N-1)}{g(M, N)}$$

$$(4.1)$$

We can predict, for example, CPU utilization under different values of multiprogramming level, N, as follows:

$$\begin{split} & \rho_{16}(1) = \frac{2.0}{5.6} = 0.36; \\ & \rho_{16}(2) = 2.0 \times \frac{5.6}{18.2} = 0.62; \\ & \rho_{16}(3) = 2.0 \times \frac{18.2}{46.2} = 0.79; \\ & \rho_{16}(4) = 2.0 \times \frac{46.2}{103.4} = 0.89; \end{split}$$

An alternative formula for utilization $o_{N}(N)$ for the Mth resource is given from Equations (2.14) and (4.1) as

$$\rho_{M}(N) = 1 - \frac{g(M-1,N)}{g(M,N)}$$
 (4.2)

For the degree of multiprogramming N=4, for example, we need to calculate g(15,4). For this purpose we compute the following parameters:

$$y_1 = 10 \times 0.16 + 5 \times 0.4 = 3.6 \text{ sec}$$

 $y_2 = 10 \times 0.16^2 + 5 \times 0.4^2 = 1.056 \text{ sec}^2$

$$y_3 = 10 \times 0.16^3 + 5 \times 0.4^3 = 0.361 \text{ sec}^3$$

 $y_4 = 10 \times 0.16^4 + 5 \times 0.4^4 = 0.135 \text{ sec}^4$

Then

$$g(15,4) = \frac{1}{24}(y_1^4 + 6y_1^2y_2 + 3y_2^2 + 8y_1y_3 + 6y_4) = 11.0.$$

Hence

$$\rho_{16}(4) = 1 - \frac{11.0}{103.4} = 0.89$$

which is, not surprisingly, the same as the value obtained earlier.

The k^{th} moment of the number of customers, n_i , is given [2] by

$$E[n_{i}^{k}] = \frac{1}{g(M,N)} \sum_{n=1}^{N} g(M,N-n)[n^{k}-(n-1)^{k}]\tau_{i}^{n}$$
(4.3)

For instance, the average of CPU queue for the degree of multiprogramming N=4 is

$$E[n_{16}] = \frac{1}{g(16,4)} \sum_{n=1}^{4} g(16,4-n)2.0^{n}$$

$$= \frac{1}{103.4} (46.2 \times 2.0 + 18.2 \times 2.0^{2} + 5.6 \times 2.0^{3} + 1 \times 2.0^{4})$$

$$= 2.19$$

Similarly, we obtain the average queue sizes the the drums and disks:

$$E[n_1] = \dots = E[n_{10}] = 0.076$$

 $E[n_{11}] = \dots = E[n_{15}] = 0.210$

We check that these values add up to N=4:

$$2.19 + 0.76 \times 10 + 0.210 \times 5 = 4.0$$

References

- 11 L. Kleinrock (1975). Queueing Systems, Vol. I: Theory, John Wiley & Sons, New York.
- |2| H. Kobayashi (1978). Modeling and Analysis: An Introduction to System
- Performance Evaluation Methodology, Addison-Wesley, Reading, Mass. H. Kobayashi (1978). "System Design and Performance Analysis Using Analytic 3 Models" in Current Trends in Programming Methodology Vol. III: Software Modelling, (Ed. M. Chandy and R.T. Yeh), pp. 72-114, Prentice-Hall Inc., Englewood Cliffs, N.Y.
- 4| H. Kobayashi and A.G. Konheim (1977). "Queuing Models for Computer Communications System Analysis" (Invited paper). IEEE Trans. on Communications , COM-25, No. 1, pp. 2-29.
- 5| C.L. Liu (1968). Introduction to Combinatorial Mathematics, McGraw-Hill Book Co., New York.

- 6 C. Berge (1971). Principle of Combinatorial Mathematics. Academic Press, New York.
- H.S. Stone (1973). Discrete Mathematical Structures and Their Applications, 171 Science Research Associate, Inc., Chicago.
- F.P. Preparata and R.T. Yeh (1973). Introduction to Discrete Structures 8
- for Computer Science and Engineering, Addison-Wesley, Reading, Mass.

 D. Slepian (1953). "On the Number of Symmetry Types of Boolean Functions of n Variables", Can. J. Math., Vol. 5, No. 2, pp. 185-193. 9
- M.H. Harrison (1965). Introduction to Switching and Automata Theory, McGraw-Hill Book Co., New York. J.P. Buzen (1973). "Computational Algorithms for Closed Queuing Networks 10
- 11 with Exponential Servers", Comm. of ACM, Vol. 16, No. 9, pp. 527-531. M. Reiser and H. Kobayashi (1973). "Recursive Algorithms for General
- 1.2 Queuing Networks with Exponential Servers", IBM Research Report, RC-4254, IBM Research Center, Yorktown Heights, N.Y.
- M. Reiser and H. Kobayashi (1975). "Queuing Networks with Multiple Closed 13 Chains: Theory of Computational Algorithms", IBM J. of Res. and Develop., Vol. 19, No. 3, pp. 283-294.
- H. Kobayashi (1976). "A Computational Algorithm for Queue Distribution via 14 Pólya Theory of Enumeration", IBM Research Report, RC-6154, IBM Research Center, Yorktown Heights, N.Y.