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Abstract

A new model, which characterizes the stochastic

_and dynamic behavior of the 'working set! of a program

running in a virtual memory environment, js represent-

Then, applying the diffusion process approximation to

~-the resultant process, we obtaijn the equilibrium den-

sity function of the working set size, the transjent
behavior of the working set size and its autocorrela-
tion function.

Introduction
(il ion

(1) to provide important design parameters--e.g., for
stroage hierarchy configurations; (2) to provide more
realistic inputs to analytic and simulation models,

A Stochastic Model of the Working Set

The term ‘working set" Is often used loosely to
mean a set of working pages assoclated with g process
(or task) which keeps the process running efficiently,
A more formai} definition of the working set |s given by
Denning [2]: Let the behavior of a program in a virtual
memory system be represented by a page reference
sequence

r= rl,rz,...,r',...
The working set W.(T) at time ; is the set of djg-
tinct pages referenced in the T most recent references.
The integer parameter T g called the window sjze,

The working set size w. (T) is the size of w_ (1), Var-
fous Properties of the norking Set are discusseq by Den-

a8 more genera] case where we require only the weak sta-
tionarity of
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generated randomly following some forms of the first-
order distribution.
sequences thus generated into the corresponding page
reference Patterns, they observed that the working set
size (for values of T) followed the normal distriby-
tion.

The present section Proposes a new mode| of pro-
gram behavior in 3 Paging environment which attempts to
capture the dynamic behavior of the working set, {p
this section we are interested in a characterization of
a program eéxecuting in one locality. Within a given
Tocality of the program we assume that the working set
size sequence js stationary or at least covariance sta-
tionary, Furthermore, it Is the objective of this
study to describe the "steady-state!! behavior, A gen=~
eralization of the foiiowing model to a characterization
of transitions between different localities and of the
initial transient phase in locality is not considered
here; it wili be discussed in a separate report (10],

The working set sjze sequence |s representable as

We = w., = 47, ’

AREET =12, (2.1)

where the steps Zi €an only take the values 1|, 0, or
~1. Here we Suppress T, the window size parameter, for
brevity of notation.

If we assume that the incremental changes Zi are
independently, identical]y distributed with

Prob{z =1} = v* 4 Prob{Z;=1} = r™ (3 5

modeled as a simple one-dimentional random walk [6], in

which each State represents the value of We. From its
definition, it is clear that W, is bounded by

V<w <miniN,T} | (2.3)
where T g chosen window size and N g the total num-

ber of distinct Pages in the iocality under considera-
tion. The boundary conditjon (2.3) is met by assuming
reflecting barriers at states | angd min{N,T}. We ex-
press Eq. (2.3) for notational convenience in later dis~
cussions by

-b W, <a . (2.4)
where

b= - (2.5a)

a = min{N,T} (2.5b)

Then the limiting equilibrium distribution of the state
occupation probabilities is given by the foliowing trun-
cated geometrijc distribution:




4+ -
Prob{w=g} = -J;!;fﬁi——- (rf7ey*! "

t={r'/r)

£=1,2,...,a (2.6)

The simple model_described above assumes that
values of r  and r~ are independent of the current
state; this may be acceptable when T Is very small,
but Is clearly unrealistic for a reasongbly large value
of T (say T>20). The probability r  that Z'
takes on 1 should be dependent on the states w ¢
reasonable assumption we can make is that the 'arger
w the smaller _r'. For the same reason we assume
the probability r  should be a monotone increasing
fugction of w. Figure 2.1 depicts the case where

A

(r"(w) and r (w) are both linear functions of w with
slopes - g- and g- respectively and take on the com-
mon value %' at W

) = Lo B o

r(w) 77 (W w.) , (2.7)

rw =X- g (w-w) . (2.8}

"This niodel describes the process {w.} ‘as a random walk
with some kind of restoring tendency, since the prob-
.~ abllity of moving one unit toward the center w s
" -greater -than the probability of moving one unltcaway
- from the center by an amount proportional to the dis-

. tance from the center, i.e., B |wew This formulation
:was originally suggested by Coffman®and Ryan [5], al-

‘though. they have not carried out a detailed analysis.

.. Let plw,i|w.) be the conditional probabiiity that
the working set s?ze s equal to w at time I given
that it starts from w at time {=0., Because of the
stationarity assumptior made on the process {w }, this
conditional probability is equal to the probib1'ity that
Wis takes on value w given that w,(-wo;‘,fbr any

0 0002

Ime or-

In other words, (=0 simply deflnes;t o
Then we'can'obtain the

| P
fSIn relative to other points,
following equation:

plw, i+ lwo)-p(w-l,l!wo) r+(w-l)+p(vr*l.llwo)r'(wﬂ)
*PTIW) O-rt () -r" W)}, emcico |
(2.9)
This difference equation is rather tedious to solve.
Therefore, we will resort to one of the conventional
techniques: l.e., we replace the dlscrctc,t{mngerles
W, by a diffusion process, viz., a cont inuous~path
H‘rkov process x(t), and we find the partial differ-
ential equation which defines the process x(t). We

now write p(x,t{x.) instead of p(w,l]wo) and there-~
fore Eq. (2.9) becSmes

p(x,t+6t|xo) - p(x-l,tlxo)r+(x-l)6t
+ p(x+l,t]xo)r-(x+|)6t

+Rtlxg) O-r*(x)-r"(ddse (2.10)

By taking the limit as §t>0, Eq. (2.10) can be writ-
ten as: ’
ap(x, t|x;) . R
—r = p(x-l,tlxo)r (x-l)+p(x+l,t]xo)r (x+1)

" POt ]xg) [ (x)4r™ (x)] (2.11)

By applying Taylor series expansion around x with t
being fixed, we have the following approximation:

; | azp(x,t]xo)
px-1),t [xg) = (x,t xg)- o POt ]x )+ 75—
ax

(2.12)

2
3 1 plx,t ko)
p(x""!t'xo):p(x’t,xo) + 5; P(X,tlxo)"‘ TT

(2.13)

Substituting Eqs. (2.7}, (2.8), (2.12) and (2.13) into
Eq. (2.11), we obtaln the diffusion equation

3 8, a2 3
-E-(1+—)—E+B-—[(x-_)p] (2.14)
-t 2 2 2 IX

3x
Note that for practical purposes we can assume that
B<<y, otherwise r  and r _would take negative

values for x not far from X.

»_ya¥p, .o
T Z axz + B8 5;'[(X';)P]

, (2.15)

So the probability density function px,t]x_ )
of the working set size is governed by the forwarg Kol-
mogorov equation. If it were not for boundary condi-
tions, the diffusion process which satisfies Eq. (2.15)
would be the so-called Ornstein-Uhlenbeck process [s].
In our problem, however, the working set size is not an
unrestricted process like the 0-U process; It follows
from Eq. (2.4) that

-b < x(t) < a . for ali t > 0 , (2.16)
The boundary condition (2.16) is equivalent to the
following equation [7]

ap(x,tlxo)
ax

% + B{x~-x) p(x,t]xo) =0 , at

x=a and x=-b for all ¢t . (2.17)
Furthermore, the following initial condition must be
met .

p(x,leo) = G(x—xo) . (2.18)
where &8(x) is Dirac's delta function. The solution
of the diffusion equation (2.15) with conditions (2.17)
and (2.18) iIs given by Sweet and Hardin [8]:

2
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Y4
p(Z,tlZo) = e {a e dZ

1 2,2
®  -BA_t - (z°-25)
+ nz' e n ,e Il_ 0 f Y(Anpz) Y()\n,zo)

z, -1
{ vz(xr",z) dz , (2.19)

where the argument of the probability density is the
normalized variable defined by

1

Z = (x-x) (2—5)i

(2.20)

The interval ~b<x<a

Is transformed accordingly

|
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into -bezfza » where

1
Z_ = (a-%) (2—5)5 (2.21)

and ]
2, = (b+’x‘)(2_5)2 (2.22)

The values of the parameters An are the zeros of the

function

yo(A-l,Za)ye(A-l,Zb)+ye(A-l,Za)yo(A-l,Zb) (2.23)

where 2
e £ :
Yo (Asx)=e [1+(-2) 5T +(-2) (-x+2) %T
6
+(=1) (-2+42) (~a+4) ’B(T* ... ,  (2.24)
2
- )2(_ X3 )(5
Yo (A,x)=e [1+(-2+1) T (A1) (-xe3) T
7
+(=2+1) (-2+3) (-1+5) ’7‘—, +...] (2.25)
and
yo(An-l,Za)
Y(ln,2)=ye(ln,2)+ln ;;7;;:773;7 Yo(Xn,Z) (5.27)

Note that the solution given by (2.19) consists of two

Parts: the steady state part which is a truncated Gaus-
sian distributijon with mean
2 2
Ly 2. 22 1
i le T o 2| T,
78 | e e ,
-z, (2.27)

and the ‘transient

part which is a complicated function
of time and «x.

Now we wish to compute u(tlxo), the average value

of x(t) given in the initial valle Xy
u(t]x0)=E[x(t) lx(t0)=xo] (2.28)
Multiplying both sides of equation (2.15) by (x-x) and

integrating them from b to a, we obtain

TF {elxg)==slu (¢]xp) - 1 [pa,t[x))-p (b, ¢ [x,)]

(2.29)
Now by using the transformation
Blelxg)-X = n(t]x,) Bt (2.30)
we obtain
d . -
it u(tfxo) = - %'eBt[p(a,t!xO)-p(-b,tlxo)]
(2.31)

But from equation (2.19) p(a,t,xo)-p(-b,tlxo) can be
written as
© ‘BAnt
A+ z cn&o)e )
n=]

(2.32)

where

329

2, 1
A= e T a
-Zb
and’
1 2_.,2
- § (@%-27)
eald= fe F T OG22
1 2_,2
-7 @ -Z,)
-e Y(xn,zb)v(xn,zo)
Z -1
a , .
df Y (An,Z)dz . n=1,2,.,. .
4L (2.34).
Therefore, iT n(tlxo) can be written as '
dn(t|x,) © -
_—dtl- - %_eBt A+ Z cn(xo)e , (Z.BS‘)

n=|

which Implies that u(tlio) can be written as:

cn(xo) Bt

B(iI-x7J © ’
n (2.36)

— YA -gt, ©
ult]xp)=x- £ *ex,)e +n§'

where c(x.) Is an Integration constant which Is
uniquely détermined at t=0:
cn(xo)
gUT-2)
n=1 n
and tﬁlsyvalue, by its definition, must be equal  to -
Xo toee, u(tlxo)*;L %% which is the mean of
the limiting equilibrium distribution.

WOlxg) =X - Boac(e) + | (2.37)

and as

Now let us examine the correlation function of the
diffusion process x(t):

t2>t] |
- E[x(t])u(tz-tllx(:l))]\ L ﬁ;.38),;;,
Using the result of equation (2.36), we obtaln .

~ -B(t,-t,)
EDxt)x (e I=Etx (e )[R £ ax(xe)e it

v (x(t,)) - -t,)
. T ) . Bln(tz t,

n=1 le-An) n

A -8(t,~t,)
'(x_-%%)E[x(t')]*-E[x(t])c(x(f‘))]e 2

w E[X(t,)cn(x(t]))]
B(I-An)

-Bx (t,-t,)
e " 271 (539

n=]

For almost all the cases of practical interest, the
proability that the working set size will be equal to
either of the boundary vatues .is very small. So we can
assume here that {p(a,t,x(t,))-p(-b,t,x(tl))} s very
small and therefore cn(x(t =0 for n=1,2,.., , and
A=0, which implies thit clx )=x(t')-;: Consequent 1y
u(t]xo) can be expressed In the form



TR

(tz-t,)

-B
u(tz-t],x(t]))=;¥(x(t])-—)e (2.40)

Therefore the autocorrelation function is given by

R, (t, ,t2)=EIX(t,)x(tz)]=7l5(><(t|))

-8 (ty-t))
*+E[x(t)) Ix(t))-x]]e
-, "Blty-t))
= (1-e JE(x(t,))
-8{t,~t.)
+E(x2(t]))e 21 » 28,0
(2.41)
When both t. and t. are sufficiently large, the
initial cond’tlon x(go)-xo Is negligible and there~
fore
E[x(t')] =X (2.42)
and
ELx*(t,)] = % + Var[x]
=% % var(z]
-2
- x4+ %3 . (2.43)

whére the last expression was obtained since the steady
state distribution of (2.19) is the unit normal distrib-
ution under the assumptions we have made. Therefore,
the autocorrelation function Is reduced to the following
form . ] l
-Blt, -t
-2 1 "2
R (t),t,) = Rx(tl-tz) =X+ Loe ,

t),t,>>0 - (2.44)

This is a property of a Gauss-Markov process.

Concluding Remarks

In this paper, we have presented a method to obtain
a parametric representation of program behavior in a
virtual memory system. The working set size sequence Is
assumed to follow a random walk with some kind of re-
storing tendency. The equilibrium density function of
the working set size can be approximated, using the dif-
fusion approximation, as a truncated normal distribution.
The second-order property of the process is also dis-
cussed in some detall. We need to verify the validity
of thls model based on real data of program traces. An
emplirical study, along with generalization of the mathe-
matical model discussed In this paper, will be reported
in a separate report [10].
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The Shape of the Restoring Force






