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Accuracy of the Diffusion Approximation
for Some Queuing Systems

Abstract: This paper presents the results of a rather extensive study of the accuracy of the diffusion approximation technique as applied
to queuing models. The motive for using the diffusion process approximation here is to develop realistic analytical models of computing
systems by considering service time distributions of a general form. We first review the theory of the diffusion approximation for a single
server and then develop a new and simplified treatment of a queuing network system. The accuracy of this approximation method is
then considered for a wide class of distributional forms of service and interarrival times and for various queuing models. The approxi-
mate solutions and exact (or simulation) solutions are compared numerically in terms of the means and variances of queue sizes, server
utilizations. the asymptotic decrements of the distributions, and the queue size distributions themselves.

The accuracy of the diffusion approximation is found to be quite adequate in most cases and is considerably higher than that obtained

by an exponential server model that is prevalent in computer system modeling.

1. Introduction

The diffusion approximation is an attempt to overcome
the limitations of exponential server queuing models by
considering both the mean and variance of the service
time distributions. It is based on the assumption that
queues are almost always nonempty. The central limit
theorem is then applied to characterize the fluctuations in
the queue lengths, and the discrete-valued queuing pro-
cess is replaced by a continuous-path Markov process
(also called a diffusion process) with a similar distribu-
tion of the infinitesimal increments. The probability dis-
tribution of this continuous process is then described by
a diffusion equation, which has to be solved with appro-
priate boundary conditions. Applications of the diffusion
approximation to queuing systems have been discussed
by Cox and Miller [1], Gaver [2], Newell [3], Gaver
and Shedler [4], and Kobayashi [5].

This paper presents a simplified treatment of queuing
networks but concentrates primarily on an investigation
of the accuracy of the diffusion approximation by means
of a consistent set of examples. The single server queue
is considered in detail, since it is the element used in the
treatment of networks. Specifically, exact analytical so-
lutions for the steady state queue size distributions of the
M/G/1 and the GI/M/1 queues are derived. In the
case of the M/G/ | queue, the Erlangian distribution is
used as a model for service more regular than completely
random, whereas the hyperexponential distribution is
used as a model for long-tailed distributions. In general,
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the diffusion approximation leads to favorable results. Its
accuracy increases as the traffic intensity approaches one,
which is not unexpected from the assumptions made.

Analytical solutions are difficult to obtain for queuing
networks with nonexponential holding times. An exact
solution for cyclic tandem queues with one general server
is reported in Appendix D, and it is used for comparison
purposes. In general, however, one has to resort to simu-
lation. To keep the simulation time within reasonable
bounds, relatively simple examples of networks are used.
Again, in most cases a satisfactory agreement between
simulation and the diffusion approximation was observed.

In the next section the diffusion approximation of the
single server queue is briefly reviewed. Then a theory
for queuing networks is introduced that is based on the
additional assumption that each server may be treated
independently of the others. The accuracy of the diffusion
approximation of the queue size distribution of the single
server queue is evaluated next. Simple examples of net-
works are discussed, and results using the diffusion ap-
proximation are compared with some analytical results
and also with the results of simulations. Finally, the re-
sults are summarized and discussed from a unifying point
of view,

Appendix A summarizes definitions and properties of
the Erlangian and the hyperexponential distributions.
Explicit closed-form formulas for the steady state queue
size of the M /G / 1 queue with Erlangian and with hyper-
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exponential service time distributions are given in Ap-
pendix B. In Appendix C Erlangian input and general
service time distribution are considered. A simple closed-
form solution is given for the E,,/ G/ 1 queue. In the last
Appendix, D, the analytical solution for cyclic tandem
queues with one general server is given in terms of the
results of Appendices B and C.

2. Diffusion approximation for the single server
queue

We briefly review here the basic assumptions leading to
the diffusion approximation for the G1/G/ 1 (ie., gen-
eral independent interarrival time distribution/general
service time distribution/a single server) queuing sys-
tem. For a more detailed treatment, see [5].

s Assumption of a normal distribution for quene size
fluctuations

Let AQ(1) be the change of queue length between times
tand 7+ A. Then, for A sufficiently large, AQ(¢) should
be approximately normally distributed with

ElAQ (1)) = (A — w)A = BA: (1)
var[AQ (1) ] 22 (C.h + Cop)A = aA, (2)

where N is the arrival rate, p is the processing rate (or
the inverse of the mean holding time}. C, is the squared
coefficient of variation of the interarrival time 7,. i.e.,
C,= var[7,]A\°. and C, is the squared coefficient of varia-
tion for the service time 7., i.e., C, = var[7.]u’.

* Replucement of the discrete process by a continuous
process

The discrete-valued queueing process (1) is approxi-
mated by a continuous-path process x{ ) with increment-
al changes dx(1) that are normally distributed with mean
Bdtand variance adt, i.e.,

de(t) = Bt + (1) (ad)®, (3)

where z(f) is a white Gaussian process. If there is no
boundary condition imposed on x(1). then x(¢) is a
Brownian motion with drift, which has a probability dis-
tribution p{x,, x: #) satisfying

aple, xo (azp(xu. X1 I)) ('()p(,\‘o, X t))

at 2 ax

- (4)
dx

where x, is the initial value, and p(x,, x1 Hdx= P{x=
M) = o+ defx(0) = x, ).

* Introduction of appropriate boundary conditions

The diffusion equation is now solved with the boundary
condition x(7) = 0 (reflecting barrier) or p{x, x: 1) =0
for x < 0. For the stationary case, the time derivative in
Eq. (4) is set to zero. Then the obvious requirement
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Jo plx,, x. ®»)dx= 1 leads to the well-known stability
condition 8 < 0 or A < u and to the boundary condi-
tion [ 1]

a (dp(xu. x; )
2 dx

>—Bp(x0.x:oc)=OatX'——O. (5)
With this boundary condition, the steady state solution

of Eq. (4), which is subsequently called p(x), is uniquely
determined to be

2 2
[)(-\'J — ‘i‘ﬂ exp(— fl%) (6)
23 S o

e Interpretation of the diffusion process and adjustment

for small queue sizes

The steady-state solution of the diffusion process is the
exponential distribution of Eq. (6). We now go back to
the discrete-valued queuing process for which we in-
terpret Eq. (6) as a geometrical distribution of the
queue size variable s with the same decrement factor
exp(—2!8|/a). By the very nature of the basic assump-
tion (i.e., the use of the central limit theorem), we cannot
expect meaningful results for small queue size n. For
general interarrival and service time distributions, how-
ever, the probability of an empty queue is known to be
exactly 1 — X/p. We then adjust the geometrical distri-
bution at 7= 0 and use exp(—2|B|/a) as the decrement
factor. If we denote the approximate queue size distribu-
tion constructed accordingly by p( ), we get

[—p if n=40

plu) = (7
p(1—pip"! ifn=1,

with

L _2tu—>\)]_ [_2(1—;);]

p”exp{ pCHAGl - P v pct 8)

where p=A/pu.

3. Ditfusion approximation for queuing networks
We consider a network with M single server stations in
which:

1. The holding time distribution at each station me[ 1, M]
has the mean ., ' (w, is the processing rate) and
squared coefficient of variation C,,.

Customers (or jobs) make instantaneous transitions

from station m to station m’ with probability 6,,,.

Probability 8, . is independent of the state of the sys-

tem (i.e., the routing of each customer is generated by

a Markov chain with transition matrix [8]).

3. In the case of an open network, a customer arrives at
the network with rate u,,, and the squared coefficient of
variation is C,. A customer joins the mth station with
probability 8, and leaves the system from the m’th

rJ
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station with probability 6, ., (for notational con-

venience, the source is treated as station 0 and the

sink as station M + 1).

If all service time distributions are e¢xponential, then
Jackson’s theorem [6] applies, which states that the
joint queue size distribution p(n,, n,," - -, n,,) is the prod-
uct of the M marginal distributions p,(#,,):

M

plny, ny, oo ny) = H pnn,). (9)

In his recent paper [ 5], Kobayashi proposed that queu-
ing processes of a general queuing network be approxi-
mated by a vector-valued diffusion process. The inter-
actions among different queuing processes are explicitly
considered in the diffusion equation in terms of the
variance-covariance matrix. He derived the joint queue
size distribution, which is expressed in a product form of
the marginal queue size distributions. This solution form
suggests that we may treat each server independently,
provided that the interactions among different server
queues are appropriately taken into account. In this sec-
tion we develop a computationally simpler (but perhaps
less exact) approach than the method discussed in [5]:
an approximate solution to the marginal queue size dis-
tribution is computed by applying Eq. (7) individually
to each server and then deriving the joint queue size
distribution.

e Departure and arrival processes

To apply formula (7) to each station me{ 1, M], we have

to know the rate of the arrival process A'™ and the

squared coefficient of variation C,"' of the interarrival

time, as well as the processing rate 4"’ and the squared
imy

coeflicient of variation for the processing time C,” .
Clearly

p"'=pu, CM=C,. (10)
Subsequently we want to determine A"’ and C,"’. We
first concentrate on the departure process of station m
and then turn our attention to the arrival process, which
is the sum of M (M — 1 for closed networks) departure
processes weighted with the routing probabilities.

Departure process of station m

During busy periods, the rate of the departure process is
K,» 2nd its squared coefficient of variation is C,,. But the
server is busy with probability «,, only (u,, is server utili-
zation). Accordingly, the mean and variance have to be
weighted with u,: thus

1

A E[AD, ] = departure rate = u, u,, (1n
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1 var[AD, ] = variance of the number of departures per

A o
unit time 2 u, C, 1. {12)

where AD,, denotes the increase in the cumulative num-
ber of departures during the interval (2, 1+ A).

Arrival process at station m

The arrival process is the superposition of the departure
process of those servers »' that have nonzero routing
probabilities ¢ Therefore, the arrival rate is

mm

M

1
K E[»AA",] = 2

m'=0 (or 1}

um'“‘mom'm’ (13)

where AA4,, is the change in the cumulative number of
arrivals during the interval (7, 14+ A). Note that in the
lower index of the summation, m' = 0 applies for an open
network, whereas m' = 1 is for a closed network. The
expression for the variance is complicated by the fact
that the randomness of the routing is an additional source
of variation. We have

i var{AA ] = variance of the number of arrivals during
unit time,
M
= 2 var{AD . lu, ., (14)
m'=0 (or 1)
where AD, ., is that part of the output stream of sta-

tion m’ that is routed to station m. The expression for

var[AD,. ] (its derivation is in Appendix A of [5]) is
T]& var[AD, . 1= variance of the number of arrivals
from ' to m during unit time
= [(Cm' - l)gm'm+ l]{’m'mp’m" (15'

The rate and the squared coefficient of variation of the
interarrival time can now be expressed as

)\("” = Z um'l“’m'om‘m and’ ( ]6)
w o var[AA,] ]
C." Frad] S HC, — Db, + 1]
/‘Lm'“m’gm'm’ ( 17)

where the approximation used in Eq. (17) is, as is that
of Eq. (2), based on the central limit theorem as applied
to the number of arrival epochs [ 1].

¢ Open networks

For open networks in equilibrium, the arrival rate at sta-
tion m [Eq. (16)] is completely determined by the ar-
rival rate p,= A"’ and the routing probabilities {6},
namely

)\uny:)\lme (18)

m?
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where e, is the average number of vistis to station m by
a job during its lifetime in the system. If the Markov
chain [6] is irreducible, the quantities e are uniquely de-
termined by

mm'm

M
e =6 + 2 e 0, (19)
With the arrival rate A™’ at server m determined, we ob-
tain for the server utilization
u, = e\, (20)
(Note that this result holds éxactly independéntly of the
forms of interarrival times and service times.) By means

of Eq. (19) and Eq. (20), the expression for C."™' can
be simplified to

M
Ca("lbg l+ E (
m'=0

Now we apply Eq. (21 ) to station m, giving the following
expression for the queue size distribution for this station

- 1)6 e, . (21)

m'm m’

. l - um lf "= 0’

. N _ (22)
U ( pm)ﬁm lfnzl’

where

. 2(m, —A™)

b, = exp(- M) (23)

* Closed networks
Two basic problems exist in the analysis of closed net-
works:

1. The server utilization can no longer be simply deter-
mined via Eq. (20).
2. The distribution is over a finite population N.

Closely related to problem 1 is the fact that the param-
eters e are no longer uniquely determined, since the sys-
tem of linear equations

= E em m'm (24)

m'=

has clearly nonunique solutions even if the matrix [6] is
irreducible. If a set {e} forms a solution, so does {ye} for
any scalar constant y. At best we can say that
u,=veu, . (25)
There is no simple way of determining the constant y. If
we assume that at least one of the parameters e, /i, is
larger than the others, then the server with this service
rate is the bottleneck of the system. In such a system,
the utilization of the bottleneck server goes to 1 as
N — =, For a closed system with bottleneck server &k and
sufficiently large population N, utilization of the server is
well approximated by

MARCH 1974

u,=e ' wherem=1,2,"-- M. (26)

m: k_lp'kem”’m

A different approach to obtaining approximate values
for the ulllizations is to assume an exponential server
network with the same {u} and {0}. The problems asso-
ciated with the estimations of the utilizations are dis-
cussed further in the examples of section 5. It should be
noted here that Gaver and Shedler discuss in a recent
paper [7] a different way of “fitting” the diffusion ap-
pr0x1mat|0n

To deal with the ﬁmte population N, we make the as-
sumption that for # = N the marginal distributions differ
from the limiting case N =« only by a propdrtfonality
constant, ,

The suggestéd treatment of closed networks may now
be summarized as follows:

Step-1 Estimate the server uti]ization a, me[l, M], and
use these estimates to compute A" according to Eq. (16)
and C,"™ according to Eq. (17).

Srep 2 Compute the improper distributions for ne(0, NJ:

. 1— i, for n=0,

Paln) =1 _ . (27)
u,(1—p.)p, for n = 1.

Step 3 Compute the approximative joint distribution ac-

cording to

M-1 M-1

md) =N =3 ) T o), (28)

m=1 £=1

plng, ny, -

where 7 is a normalization constant to be chosen so that
Eq. (28) is a proper distribution.

Before we close this section, it is worthwhile to give
an interesting interpretation of the formalism introduced
for the treatment of networks (oben or closed). Itis easy
to verify that the assumption of independent marginal
distributions of the form of Eq. (27) is equivalent to the
solution of an exponential server network with process-
ing speed dependent on the local queue size n,. Such
networks have been analyzed by Jackson [6]. The speed
of server m is then found as a function of the local queue
size nas follows

ML= u )1 —p )" ifn=0,
M () = . (29)
Mo ll 0 if n=0.

Thus the diffusion approximation has led us to a replace-
ment of the original network by an exponential server
network with suitably chosen queue-dependent process-
ing rates. These effective processing rates are determined
by the diffusion approximation and depend not only on
the proéessing rates {u} but also on the routing {6} and
the variance of the service time distributions expressed
by {C}.
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Figure 1 Cumulative service time distributions used in the ex-
amples given subsequently. The parameter represents C,, the
squared coefficient of variation.

Table 1 Summary of parameters used in sample distributions

depicted in Fig. 1. Parameter C, = the squared coefficient of
variation.
No. Service time distribution C,
1 Hyperexponential 5
2 Hyperexponential 2
3 Exponential 1
4 Erlang m = 2 0.5
5 Constant (Erlang with m = «) 0
40
C,=0
20+
0.5
s P = i : I p
;" —20p 5
=}
2
Z —40p
= 5
& -

Figure 2 Relative error of the mean queue size g, vs the server
utilization p in the M/G /1 system, e, = (E[n] — E{#])/E[n].
where the parameter is C,, the squared coefficient of variation
of service time.
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4. Accuracy of the diffusion approximation for the
single server queue

In this section we first discuss the errors in the mean and
variance of queue size and subsequently give compari-
sons of the approximate solution with some known an-
alytical results. The assumed distribution functions for
the service times are the Erlang distribution as a model
for service times more regular than exponential (i.e.,
C < 1) and the hyperexponential distribution for service
times with C > 1.

These distributions are defined in Appendix A. Ex-
amples that are used consistently throughout the fol-
lowing sections are depicted in Fig. 1. and their param-
eters are summarized in Table 1.

e M/ G/ I queue
Error in mean queue size

The mean queue size of the M/ G/ 1 queue is well known
[8] as

L+ C) (30)

pz

E{n] = +—<

[nl=0p =,

where p = A/ is the server utilization and C, = var[r,]/

E[7,]’ is the squared coefficient of variation of the ser-

vice time distribution. The mean queue size E[#] ob-
tained by the approximation (7) is

E[n]l=p/1—p. (31)

A plot of the relative error £, of the mean queue size is
shown in Fig. 2. We make the following observations:

* The relative error of the mean vanishesasp — 1.

» The mean queue size E[#] of the diffusion approxima-
tion tends to be an underestimate for cases with C, < 1
and an overestimate with C, > 1.

« Although the relative error of the mean queue size may
sometimes be quite large, the absolute error is always
small. In fact it is not difficult to show that the absolute
error |e,| is bounded by |e,| = |1 — C,|/2 forall C; =0
and for all values of utilization factor p. The upper
bound is achieved when p = 1. The above inequality
does not hold only for the interval C,€ [0.08, 1.06],
for which it can be shown that |e,| = 0.08.

« Highest positive values of €, are found for C;= 0 and
p = 0.5, whereas for C, > | the maximum of |g,]| is
found at p = 0 and increases with C..

e Errorinthe variance of queue size
The variance of the M/G/1 queue size distribution
[8]is

3p°(1 +Cy)
2(1 —p)

p (1 +3C.— D)
3(1—p)

+p—E[n].
(32)

var[n] =
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Table 2 Relative error (in %) of variance of the queue size
&' = (var[n] — var[ n]) /var[n]. where p is the server utiliza-
tion and C, the squared coefficient of variation of service time.

(j\.
P 5 2 ! 0.5 0
0.4 —195 —=71 —11 23 Sl
0.6 —85 —35 —4 19 50
0.8 =30 —12 —0.8 10 28
0.9 —-13 -3 —0.2 4 14
Table 3 Relative error of the asymptotic decrement: (r — p/r)

C,\‘
P 5 2 / 0.5 0
0.4 -17 —-15 —6 1S 75
0.6 -5 —4 -1 6 32
0.8 —1 —0.7 0.01 1.3 7
0.9 —0.2 —0.2 0.001 0.3 1.5

where D= E[(r.— A)*]/ E[7.]" and as before C,=
var(r,]/ E[7,})’. The variance of queue size obtained
from the diffusion approximation solution is

var[ 4] = p(1 — Ap)/ (1 = p), (33)

with Ap = p — p. The error of var[ ] follows a pattern
similar to the error of the mean discussed above. Some
values of the relative error of variance, €. for various
utilizations p are summarized in Table 2. The magnitude
of the relative error |g,'] is found to be consistently higher
than corresponding values |g,| for the mean.

Asymptotic slope of the queue size distribution

For a wide class of holding time distributions, the result-
ing queue size distribution has an exponential tail, i.e.,
Po.\/p, = ras n— = In the argument of section 2, the
quantity p was introduced as an approximation of r. For
the distributions of Table 1, the exact values of r have
been obtained as a function of p. The graphs of rand p vs
p are shown in Fig. 3. The relative errors of p are sum-
marized in Table 3. We find that

* The quantity 6 tends to be an overestimate of r for
C, > 1 and an underestimate of rfor C, < 1.

* Relative and absolute errors vanish as p— 1.

¢« For C, < | the error is largest for C,= 0, and for
C, > 1 the error increases with C..
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Figure 3 The asymptotic decrement r and its approximation
p vs the server utilization p in the M/G/1 system. The solid
lines are exact values (r), and the dashed ones are by the diffu-
sion approximation {p). The parameters 0, 1, and 5 represent C,.

Comparison of queue size distributions

Analytic expressions for the queue size distributions p{n)
have been obtained for the distributions of Table 1. In
the cases of the 2-stage FErlang and the 2-stage hyper-
exponential distributions for the holding times. the exact
queue size distribution is of the form

pln)=ar" + ayr,", (34)

where r, and r, are the roots of a second-order polynomial
(see Appendix B), and «, and «, are chosen such that
p0)=1—pand Zpin) = 1.

The observations reported above imply that  is a good
approximation for the larger of the roots, r,, which de-
termines the asymptotic behavior. Here we are inter-
ested in how well the diffusion approximation of the
queue size distribution, p(n) of Eq. (7). fits the analytic
form for p(n). First we note that p{n) has only one geo-
metric term, whereas p(n) for m-stage Erlang and the
m-stage hyperexponential services has in general m geo-
metric terms. Thus, the question is how fast the dominant
term takes over. Inspection of the graphs in Fig. 4 shows
that this is usually the case for n = 3. The examples of
Fig. 4 show quantitatively what has been discussed
above, especially that the error gets worse for small p and
extreme deviations from the exponential distribution
(e.g.,Ci=0and C, = 3).
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Figure 4 (a) The queue size distribution (in logarithmic scale)
for the M/ G/ 1 queue (a), where the service time is hyperexpo-
nential with C, = 5. The solid lines are exact values, and the
dashed ones are by the diffusion approximation. (b) The queue
size distribution (in logarithmic scale) for the M/D/ 1, viz the
service time is constant, i.e., C, = 0.
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N —

Figure 5 The queue size distribution (in logarithmic scale) for
the E,/M/1, i.e.,, C,=0.5. For p= 0.9 the diffusion approxi-
mation solution (dashed lines) and the exact solution {solid
lines) are indistinguishable.

It may be interesting to note the principal difference
between the cases C, < | and C,; > 1. Compared to ex-
ponential service, more regular service with C, < 1 fa-
vors the state n= 1 (one customer being serviced), and
the tail of the queue distribution falls off more rapidly.
The opposite is true for service with Cg > 1: here n= |
is considerably less probable than in the case of random
service, but the tail falls off less rapidly.

« E,/M/I queue

Even for the single server queue, the solution for non-
Poisson input is difficult. However, a relatively simple
solution is available for the case of Erlang distributed
interarrival times (see Appendix C). A closed form solu-
tion for the queue size distribution exists for 2-stage
Erlang input and exponentially distributed holding times
(for more general cases polynomial equations have to be
solved). This solution is of the form

_[1-r
p(n) = {p(l _ r)rn—l

forn=20

forn=1, (35)
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Table 4 Asymptotic decrement r vs server utilization p in
E,/M/1 and M/E,/1 systems. Relative error is defined by
(r—pY/r

E/MJI MJE,/ 1
error error
p r (%) r (%)
0.4 0.312 15 0.275 -33
0.6 0.515 6 0.496 -9
0.8 0.745 1.4 0.740 -1.5
0.9 0.870 0.3 0.868 —.33

Table 5 Exact asymptotic decrement r compared to p of the
diffusion approximation such that In pg=—-2(1—p)/(C,+
pC,) = constant for each row. (The actual value of p is adjusted
and varies from column to column.)

E/M/1 M/G/1
Ca= 0.5 (Ca= 1}

6 C.= 1 C.=2 C.=05 C.=
0.4 0.414 0.376 0.351 0.326
0.6 0.609 0.596 0.582 0.569
0.8 0.803 0.800 0.796 0.793
0.9 0.901 0.900 0.899 0.898

where r is obtained as the larger root of a quadratic equa-
tion (see Appendix C). Equation (35) is analogous to
the diffusion approximation solution of Eq. (7). A graph
of p(n) vs nis shown in Fig. 5. Values of r and the rela-
tive error of p compared to r are summarized in Table 4
for both the E,/M/ 1 and the M/E,/ 1 queues. In general
we make findings similar to the case of the M/G/1
queue.
It is interesting to observe that

*+ The effect of Erlangian input on the queue size dis-
tribution is similar to that of Erlang distributed holding
times. The asymptotic decrements of the two systems
converge to the common value as p — 1.

* The errors in the mean and asymptotic decrement
obtained by the diffusion approximation for the
E,/M/1 and the M/E,/ 1 queues have different signs.

Before we close the section on the single server queue,
we want to answer the question of whether the invariance
of the diffusion approximation (Eq. 7) with respect to
changes in C, and C; such that C, + pC, = constant is
supported by the analytical results. For this purpose,
Table 5 gives the asymptotic decrement r for various
systems such that 2|8|/a = In p = constant for each row
(note that the utilization p itself is different for each
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Figure 6 An open server network (a) and a closed net-
work (b).

column). We find from the data of Table 5 that indeed
the exact solution is quite similar if the quantity 2|8}/«
is kept constant.

5. Some examples of networks

In this section we consider the two server networks of
Fig. 6. Such networks may be useful for various applica-
tions. For example server 1 may represent the CPU and
server 2 a swapping device. An interactive computer
system that may be modeled by this queuing system is
described in [9], where it is pointed out that the CPU
time distribution has a long tail, i.e., C;> | (hyperex-
ponential service time distribution). Alternatively,
server 1 may be the paging device and server 2 the CPU,
with each task requiring a (random) number of time
slices.

Subsequently, we compare some analytical results,
as well as some simulation results, with the diffusion
approximation to investigate the validity of the approach
described in section 3, i.e., separate treatment of each
server.

* Open network
Let us consider the open network of Fig. 6(a). For con-
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Figure 7 Queue size distributions at servers | and 2 in the open
network of Fig. 6(a) when the system parameters are those of
Case A of Table 6(a). Solid lines are simulation results: dashed
lines, diffusion approximation solutions. Queue size distribution
for the open network of Fig. 6(a), when the system parameters
are those of Case B of Table 6(b).
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Figure 8 Utilization of server | (normalized by p) vs the num-
ber of jobs N in the closed network of Fig. 6(b). Server 2 is ex-
ponential, i.e., C,= I and p =, (1 — #)/p,. Solid lines are ex-
act solutions: dashed lines, diffusion approximation solutions.

Table 6 Average queue size for the open network of Fig. 6(a).

Case A Cuse B
=09 p,=084 p =095 p,=089
qgueue 1 quene 2 quetie 1 quietie 2
simulation 6.84 3.22 13.3 4.5
diffusion
approx. 6.76 2.70 14.3 4.52
error 1.5% 15% 6% 19
expon.
servers 9 5.25 19 9
error 309 65% 30% 100%

venience we assume that x,= 1 and C,= 1 (i.e., Poisson
input). We then find

A= =1/(1-9,). (33)
)\(Z‘:Q:H‘/[“VHI)(]_GB)]’ (36)
G =1+ (G, 1)1 —8,)6,. (37)
C* =1+ (C,— 1)6,(1 —6,) + (C, — 1)6, (38)

We do not know of any analytic solution for this net-
work. Consequently we compare the diffusion approxima-
tion with a few simulation results. The number of ex-
amples is restricted because simulation is costly and time-
consuming. The following set of parameters was chosen:
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Routing: 6, = 0.5, 0, = 0.1:
Server |: 2-stage Erlang, i.e., C, = 0.5:
Server 2: Constant Service, i.e., C, = 0.

Results for two different sets of values for u, and u, are
given in Table 6 and in Fig. 7, leading to the following
observations:

* Mean queue sizes (Table 6) agree well. For compari-
son, results with an equivalent network having expo-
nential servers are also given.

« Comparison of the queue size distributions shows good
agreement for the highly utilized server. The fit is less
satisfactory for the second server, which has constant
service time distribution. Accuracy gets consistently
better as the utilizations of both servers are increased
(e.g., Fig. 7{a) vs Fig. 7(b)).

¢ Closed network
We now turn our attention to the closed network of Fig.
6(b). The formulas for arrival rate and squared coeffi-
cient of variation, Eq. (16) and Eq. (17), can be made
more specific, i.e.,

M=, (1) (40)
N =, + (C,— 1) (1 —6) (41)
GU=14(C,— 1)(1—8) (42)
CH'=1+(C,—1)(1—8)+(C,— 1)8. (43)

As already mentioned, the difficulty in applying the
diffusion approximation to closed networks is the esti-
mation of the server utilizations, which have to be known
a priori to evaluate these formulas. One possibility is to
take as estimates the values obtained by an exponential
server network with identical routing and the same
processing rates. For example, we have

i=p(1—pH/(1—p"""): (44)
= (1—p") /(1 =p""), (45)
where

p=p,(1 —0)/p,, (46)

and N is the number of customers. In the sequel, we.

assume that server 2 is the bottleneck server (i.e.,p < 1).
Then, apparently, &, — pand &, = 1 as N - =,

We first consider the example in which the second
server has exponentially distributed holding times. An
analytical solution for this case is known (see Appendix
D). This solution has the property that the queue size
distribution is invariant to changes in 6 and u, such that
(1 — 0)u, = constant. The diffusion approximation as
computed with the above formulas does not show this
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Figure 9 Queue size distribution of server | for the closed net-
work of Fig. 6(b) with 8 =0 and p = 0.9(a). Server 2 is ex-
ponential, i.e., C,= 1, and server 1 is hyperexponential with
C, = 5. Solid lines are exact solutions: dashed lines, diffusion
approximations. Queue size distribution of server 1 for the
closed network of Fig. 6(b) with #=0 and p= 0.9(b). Server
2 is exponential, i.e., C, = 1, and server | is regular,i.e.. C, = 0.
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Figure 10 Queue size distribution of server ! for the closed
network of Fig. 6{b) obtained by simulation for different values
of 8. The system parameters are C, = 0.5, C,=0, p= 0.9, and
N=38. ’

Table 7 Relative error (in %) of the mean queue size and the
utilization of server 1. The holding time distributions of server |
are those of Table 1 and.Fig. 1. Server 2 has exponential holding
times. The estimated utilizations are obtdined by the exponential
server network. Restuls are for the diffusion approximation (a)
and the exponential server approximation (b). - ’

(a)
N
mean utilization
C, ! 4 . 8 ! 4 8
5 20 0.75 =25 20 6 3
1 0.3 —0.025 —0.05 0.35 0.1 0.02
0 —15 7.5 8 —15 —1.6 —0.5
(b)
N
mean utilization
C, I 4 8 1 4 8
5 50 16 6 50 16 2.5
1 0.3 —0.025 —0.05 0.35 0.1 0.02
0 -30 12 15 —30 2.5 2
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Figure 11 Queue size distribution of server 1 for the closed
network of Fig. 6(b). The sysitem parameters are C,=0.5,
C,=0,p=09,N=28, and 8 =0.5. Solid line is the simulation
result; dashed line is the diffusion approximation with i, and &,
according to Eqs. (43) and (44): dotted line is the diffusion ap-
proximation with &, = 0.9 and &, = 0.99. ’

invariance. Generally, we find the best results for § = (
(i.e., cyclic tandem queues) and observe an increase in
the error as § approaches one.

We now consider the results given in Fig. 8, Fig. 9, and
Table 7:

« The utilization of server 1 as a function of the number
of customers is plotted in Fig. 8. As mentioned above,
u, = p as N —> = The approach to the limiting value
is fastest for C, = 0 and slows with increasing values
of C,. In addition the more balanced the system (i.e..
with p close to 1), the slower this convergence.

« The most accurate results are found for p close to !
(heavy traﬂié), C, close to | (exponential service),
# close to 0 (no feedback), and N large. The errors
increase as these quantities deviate from the ideal
values.

» The error in the mean changes its sign as N increases,
For sufficiently large N, the mean queue size of the
diffusion approximation is lower than the true value
for C, < | and higher for C, > 1.
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Exact distributions and diffusion approximations are
shown in Fig. 9. An excellent fit is found for # =0 and
p = 0.9. It is quite remarkable how well the special
behavior of p(N) is reproduced in the approximate
solution. However, as mentioned above, the fit gets
worse as & — 1 and the special feature of p(N) tends
to disappear.

The accuracy of the diffusion approximation increases
as the exact values of the utilizations are substituted
for the approximations found by the exponential
server network,

As the last example, we assume nonexponential hold-
ing times for both servers: specifically

Server [: 2-stage Erlangian service times with C, = 0.5
Server 2: constant service times with C, = 0.

That portion of the output of the second server
routed to the first server has interdeparture times with a
geometric distribution that approaches the exponential
distribution as w, — % and & — 1 in such a way that
(1 — #)u, remains constant. Thus for this limit we find
again the solution of Appendix D. This is indeed found
in the simulation results of Fig..10. Note that this is an
example of how the routing process generates additional
variation. The diffusion approximation as depicted in
Fig. 11 gives best results for 8 = 0. However, the loss of
accuracy is more serious than in the previously discussed
example with C, = 1. This is due to a much higher sen-
sitivity of the approximate solution to the error in the
imperfectly estimated utilizations &, and 4,. A good fit
can be obtained by more accurate values for & and #,,
as shown by the graphs of Fig. 11. An unsolved problem
is how such values may be obtained.

6. Conclusions

The main purpose of this paper is to assess the accuracy
of the diffusion approximation to queuing systems. Gen-
erally, satisfactory results have been found for reasonably
highly utilized systems. Throughout the examples we find
that:

1. Accuracy is highest for C & 1, i.e., the exponential
server case. It is of course an important requirement
that the approximation, designed to handle general
distributions, reproduces the one case for which an
exact solution is known. The errors grow as C deviates
from one.

. The errors go to zero as the utilizations approach one.
This is a consequence of the use of the central limit
theorem leading to the diffusion approximation.

3. In all examples with nonexponential distributions,
the diffusion approximation yielded a mean and a
variance of the queue sizes that are considerably more
realistic than those obtained by an exponential server
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model. As a rule the mean queue size tends to be low
for cases with C < 1 and high for cases with C > 1.

4. The treatment of open networks. which is based on
the assumption that each server may be treated
separately, has proved successful. The most accurate
values for mean and variance are found for the highly
utilized servers. Of course, higher errors have to be
tolerated for the less utilized servers in a network.

5. In the case of closed networks with a small number of
customers, the estimation of adequately accurate
utilizations remains an unsolved probiem. In some
cases (e.g., when the bottleneck server is exponential}
utilizations obtained by an exponential server model
work satisfactorily.

Finally it should be mentioned that the computational
complexity is small and that a general computer program
capable of handling any reasonable number of servers
may be easily implemented (e.g., in APL). There is
therefore considerable hope that such a program may
prove a useful tool for design and analysis of systems.
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Appendix A: Definition and properties of the m-stage
Erlang and the m-stage hyperexponential distribu-
tion
The m-stage Erlang distribution for a random variable
7is

F(ty=prob {r=t}=1—¢"" 2‘ i";\",*”k (A1)
with S

Elr]l=1/p, (A2)
var [7] =1/ mu’, (A3)
C=var [7]/E[«]’=1/m= 1. (A4)

Note that the squared coeflicient of variation is less than
(or equal) to one. The exponential distribution is the
special case m = 1, whereas t becomes completely reg-
ular as m — =,
The hyperexponential distribution of a random variable
718
m
Fly=prob{r=1=1-3 e ik (A5)
=1
with 7, = Oforall ke[ 1, m] and Zmr, = 1.
Mean, variance, and squared coefficient of variation
are found to be

Elfl=%m/p,=p",. (A6)
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var[r] =u”> + E,‘,E,‘A,Tr,‘,n',\_,(u,\fl - (A7)

C=1 +;L22,\,Zk,ﬂ'k77k,(uk_l - ,I.I.kf1 > =1, (A8)

Appendix B: Queue size distributions of the M/G/1
queuing system

The M/G/ 1 queue is among the oldest solved queuing
problems with nonexponential distributions. One solution
method is known as the imbedded Markov chain method
and derives the queue size distribution via the generating
function U/(z) = £ p(n)z", which is given as [8, 10]

(1 —z)p[A(l —2z)]

Uiz =t —p) YAl —z2)] — 2

(B

where Wi(s) is the Laplace-Stieltjes transform of the
service time distribution

Wis) :f e dF(1). (B2)

0

For the m-stage Erlang service-time distribution, we have

lb[)\(l——z)]*f[(%+l\)—%z]7 , (B3)

which in the case m — = (i.e., constant service) con-
verges to

$[A(l—2z)] =exp [-p(l —2}]. (B4)

In the case of the m-stage hyperexponential service
time distribution defined by Eq. (AS5), $[A {1 — z}] be-
comes

m

yiA(l—2)]= D ——
kg (p,+1)—p.z

T,
. (BS)

where p, = A/u,. Generating function U(z) is in both
cases (except for constant service) a rational function
inz.

To obtain the queue size distribution, the generating
function U(z) has to be expanded into a power series.
For rational functions, such an expression is most easily
obtained from its representation as a partial fraction

m o % mn

Uz) = 3 ——==3 23 ar. (B6 )

where r, =z, ' and |z,|> 1 are roots of the following
characteristic equations:

| - z{(ﬁ + l) — Bz} = 0 for Erlang service, (B7)
\ 11 m

Ekﬂk[n (p, +1 ~pizj]~zH (p,+1—pz)=0

i=k

for hyperexponential service. {B&)
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Both polynomials are of degree m + 1 and have z,= |
as a root. Then, by Rouche’s theorem, there are exactly
m other roots outside the unit circle, ie., |z, | > | for
ke[t, m]. But (z— 1) is a common factor of the numer-
ator and the denominator of U(z), which can be can-
celled. Therefore we find for the probability distributions

m
13

plny =Y a.r’. (BY)
k=1

i.e., a superposition of m different geometric distribu-

tions.

Closed form solutions may be easily obtained for
2-stage Erlang and 2-stage hyperexponential service time
distributions, because then the polynomials of Eq. (B7)
and (B8) are both third order and reduce to second order
after cancellation of the common factor (1 — z}. Some
elementary computations show these quadratic equations
to be

pZ—plp+dz+4=0
for 2-stage Erlang service, and (B10)

pp,— g+ Dip, ) —1z+(p,+p,—p+1)=0
for 2-stage hyperexponential service. (B11)

The queue size distribution then becomes

H

plm)y=ar" +an" (B12)
withr, =2, 'and r,= 2z, ".and

a, = (r,+p (1 =r)lr,—r)" (B13)
a, = (r,+p)(1 —rlr,—r)7" (B14)

In the case of constant holding times, U(z) is a tran-
scendental function. The queue size distribution is found
as the coefficients of the Taylor series around the origin
z= 0. Repetitive derivation of the generating function
is a tedious task. The solution, which has been obtained
by the symbolic computation system SCRATCHPAD
[11],is

n

pln)=1(1=p) > (—1)
j=1

J

n-—-j—1 (

n—j (/p) /p +n -J) ()jx)

PO | M
=g (BI5)

Appendix C: Queue size distribution of the E_/G/1
queuing system

The single server queue with m-stage Erlang distributed
interarrival times and holding times with general distribu-
tion F(7) = prob {r = r} is equivalent to the following
queuing system:

I. Interarrival times are exponentially distributed with
mean | /A,

The server accepts only batches of m customers. Ser-
vice time distribution for servicing a batch is F(¢).If

2
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after service completion the queue size ' is less than
m, the server idles until the queue has grown to m.

The solution of the latter system by the method of the
imbedded Markov chain is similar to the solution of the
M/G/1 system. The generating function for the queue
size probabilities p’ (n) (the primed quantities are for the
equivalent system ) is found to be

m—1 .
(1=2"Wlmr(1=2)1F p'(j)z’
Utz) = —= , (cn
wlmr(l ~2)] —2"

where ¢(s) is the Laplace-Stieltjes transform of the ser-
vice time distribution. The queue size probabilities p' (),
je[0, m — 1], are m unknown parameters of U (z). Since
U(z) must be analytic in the unit circle (ie., |z| = 1),
these parameters are determined by equating the numer-
ator of U(z) to zero at all the roots of the denominator
that are inside the unit circle. According to Rouche’s
theorem, there are exactly m such roots, one beingz = 1.
The parameters p' (), je[0, m — 1], are therefore unique-
ly determined. The queue size p(n) of the original prob-

lem is obtained by the relation n= [%} {where #n is the

original queue size, #' is the queue size of the equivalent
system and [x] is the greatest integer less than x). In
terms of the probabilities, this relation becomes

n-m—I|

plar="% p'(j). (C2)
j=n

A closed-form solution is found for 2-stage Erlang
input and exponential service, in which case the poly-
nomial equation is of second order. The solution, which
is easily obtained by elementary algebra, is

1—p for n=0,

pln) = (C3)
p(l—rF"  forn=1,

where

r=4p1 + (1 +8p)?] " (C4)

Appendix D: Analytic solution for a cyclic network
with one general and one exponential server

A simple analytic solution for the cyclic network of Fig.
6(b) is available by the equivalency principle due to
Kobayashi and Silverman [12]. This principle states
that the cyclic tandem system with one exponential
server and one server with general distribution of service
times is equivalent to the M/ G/ 1 queue with finite wait-
ing room. If the parameters of the cyclic queuing system
are

F(t) : service time distribution of server 1
u, : rate of server |

MARCH 1974

4, : rate of server 2 (exponential)
7} : feedback around server 2
N : number of customers:

then the equivalent M/ G/ 1 queue is given by

F (1) : service time distribution
B=p, : rate of server

= (1 — #)u, : arrival rate (Poisson arrivals)
N . size of waiting room.

The analytic solution of the M /G /1 queue with finite
waiting room is known (see, for example, Keilson [13]).
If p={1—6)u,/pn,, then the queue size distribution
with finite waiting room N, p,(n), is simply expressed in
terms of the queue size distribution p_(#) of the uncon-
strained M /G /1 queue. The result may be cast into the
following principles:

1. The shape of the distribution is not affected forn < N:
more precisely,
py(n) =Kup_(n), (D1)

where K, is a proportionality factor.
. For equilibrium the inflow rate equals the outflow
rate, i.e.,

~

M1 —=p (NI =pu[l - p(0)]. (D2)

3. pln), 0= n= N, is a probability distribution (i.e.,
addsup toone).

These three conditions uniquely specify the solution as:

po(n) = K p (n), for 0 = n < N, (D3)

(N =1—-[1- K, (1-p}]/p, (D4)

N-1 ~1
KNz{l—p{l~2px(i)]} . (DS)
=0
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