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ABSTRACT: The present paper discusses bounds on the waiting time distributions

in queueing systems. First, we review closed form solutions of the waiting time
distribution for M/M/m, GI/M/m, M/G/1, and GI/G/1 queues. Then, we derive expo-
nential bounds for the waiting time distribution (in both tramsient and equilib-
rium states) of a GL/G/1 queue. Our result is an extension of Kingman's bound and
is based on Kolmogorov's inequality for submartingale. In the final section we
give a new treatment of the heavy traffic approximnation, in which close relation-
| ships will be found between the heavy traffic theory for GI/G/1, Lindley's theory,
and the exponential bound derived above.

I. INTRODUCTION

In recent years we have been observing an increasing interest in approxi-
mation and bounding techniques for queueing theory. The diffusion approximation
method (Newell, 1971; Gaver and Shedler, 1973; Kobayashi, 1974a), for example, is
an attempt to find reasonably accurate solutions for server utilization and queue
size distribution for queueing systems with general interarrival and service time
distributions. Another fruitful approach will be to establish upper and lower
bounds on such variables as waiting time and queue size, which are valid for a
wide range of input and service mechanisms (Kleinmrock, 1969). The present paper
will focus on bounds for the waiting time.

In Section 2, we review closed form solutions for the equilibrium state
waiting time distribution in M/M/m, GI/M/m, M/G/l, and GI/G/l queues. In Section
3, we derive an exponential bound on the complementary distribution of waiting

time wg(t) = Pr{w_ > t}, where v is the waiting time of the rn th job in a busy
n 2

period in a GI/G/1l queueing system. The result 1s an extension of an earlier work
by Kingman (1964, 1970) who obtained a bound on the equilibrium state distribution.
Section 3 discusses Kingman's heavy traffic approximation (1962a, 1965). Our
treatment, however, is different from his argument and will shed light on the
relation between Lindley's theory and the exponential bound discussed in the
earlier sections.
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II. WAITING TIME DISTRIBUTIONS - A REVIEW:

Consider a simple queueing system in which the number of servers may be
greater than one but a single queue is shared. Furthermore, we assume the FCFS
(first-come, first-served) discipline. Let us number the sequence of jobs in the
order of arrival and define the waiting time of the n th job, w_, to be the time
from its entering the system to the instant at which its servicl® begins, whereas
its response time, r_, is the time from entering the system to the instant at
which its service is completed. Thus, the response time equals the waiting time
plus its service time s,

Let us denote the steady-state distribution of the random variable w by

W(e) = Priw < t} (2.1)

and the complementary distribution of waiting time by
W) =1 - W(t) = Priv > tr. (2.2)

In the sequel, we adopt the conventional short-hand notations due to Kendall
(1951) to describe the type of queueing situation. The following are known results
on the waiting and response time distributions (see for example Syski, 1960;
Cooper, 1972).

2.1 M/M/m System: (Poisson arrival with rate X; exponentially distributed service
time with mean 1/u; m servers):

Wc(t) _ wc(o)_e-mp(l—a)t , (2.3)
m
2
c _ v . Pm _ 1 m!
W (0) = Pr{w > 0} = Ip = I:E 2 ) T (2.4)
atdo + o+ B+ B2 =
2! (m-1)! m! 1l-p
where
2 =2, A
a = o o= p— (2.5)

and P(j) is the probability of queue size (including a job in service if any)
being j:

pJ'
P(j) = 3T P(0), j <m
(2.6)
P(3) = P ", 3 2m.
The constant P(0) is determined from the normalizing condition.
The mean waiting time w is found to be
- _ WO P(m)
w = = . (2.7)

ml=p) - pu(1-p)?

By convolving W(t) and the service time distribution we obtain the response time
distribution of the M/M/m system

R(ey = 2lme) - W(0) . -uty | Tllffé()ﬁ__i (1 - =)y >0

m(l-p)-1

(2.8)
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An M/M/1 system is obtained as a special case in which m = 1, hence
a = W¢(0) = p, leading to

WC(t) = pe (7oLt (2.9)

and
R(t) = 1-e F{ImPE (2.10)

t 2.2 GI/M/m: (General independent interarrival with distribution A(t); exponen-
tially distributed service time with mean 1/u; m servers):

W (e) = W0y e HA-BE (2.11)
W) = Priw > 0} = %é%l . (2.12)

Here B is the unique root of the characteristic equation

s = ™I aw - kma-s)] (2.13)
0

where K(-) is the Laplace~Stieltjes transform of A(t). Q(j) is the distribution
of the imbedded Markov chain associated with the GI/M/m queueing process, and
represents the probability distribution of the number of jobs in the system just
prior to the moment a job arrives in the system. If the traffic intensity p is
less than unity, the limiting distribution exists and is a geometric series except
for modifications of its first m~1 terms, the common ratio being 8. Imn particular
for j = m,

Q(m) =————————lm (2.14)
1
P
where
o n(l-¢,)-1
v, = —2 . (1_8;_1 (2.15)
i ci(l-¢i) m
i $.
c =1, ¢, = I — (2.16)
0 i =1 1Yy
and ]
¢, = KGaw) . (2.17)
The mean waiting time is
- e 2.18)
mu(l—B)2 @-

There is a striking resemblance of these expressions to the case M/M/m, the
difference being that p is replaced by RB.

In the case of a single server, GI/M/1, the distribution Q(j) is a geometric
one,

Q@) = (l—B)Bj, 3=0,1, 2, ... (2.19)
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whereas the waiting time distribution is exponential
- {1-

W) = pe HUTB)E (2.20)
which again resembles formally the solution of the case M/M/1l. The response time
distribution for GI/M/m and GI/M/1 are given by exactly the same formulas (2.8)
and (2.9) except for p being replaced by 8.

2.3. M/G/1l: (Poisson arrival with rate A; general service time distribution
B(t) with mean 1/u; a single server):

Pollaczek-Khinchine Formula:
?':'(S) - s(l - i) (2.21)
s-A[1 - B(s)]

where ai(s) and %‘(s) are the Laplace-Stieltjes transforms of W(t) and B(t),
respectively. Equation (2.21) can be expanded as

3 "
. 1- .
M) = ey 1z o (RUIE(edy] (2.22)
j=0
which yields
Benes's formula:

Ww(t) = (1-p) L pj ﬁ*j(t) (2.23)
=0

]

%4
where ﬁ J(t) is the j-fold convolution with itself of the distribution ﬁ(t)
defined by

t
Boy =w [ [1-B(s)lds
4}

t
_g [1-B(s)]ds
- . (2.24)

L [1-B(s)]ds

2.3 GI/G/1l: (General independent interarrival distribution A(t)/general service
time distribution B(x)/single server):

Define the following distrihution function

F) = f[BGety) daty), (2.25)
o

Then, W(t) is given as the solution of
Lindley's Integral Equation:

t
f W(t-x) dF(x), t >0
e (2.26)

= 0 , t<0.

W(t)

L}
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We assume that the probability density associated with the interarrival time
drops off at least as fast as an exponential for very large interarrival times
and let 6 be a real number greater than zero such that

1im  dA(t)/dt

i oo TS < w (2.27)
e
which in turn implies that
lim  F(x)
. xoce eex < . (2.28)

LetN%(s) be the Laplace-Stieltjes transform of F(x) and find the factoriza-
tion of F(s)-1
b (s)

y
F(s) - 1= ) (2.29)

!

such that for Re{s}>0 ¢ (s) is an analytic function of s and it contains no
zeros in this half plane, and for Re{s}<8, y_(s) is an analytic function of s and
contains no zeros in this half plane. Furthermore, these functions should satisfy

1im w+(s) = s for Re{s} > 0 (2.30)
&[>

lim ¢ _(s) = - s for Re{s} <o . (2.31)
[s]>e

The Laplace-Stieltjes transform of W(t) is then given by

o _ s W)
W(s) _u‘»+(s) (2.32)
where
¥, (s)
W) = 1m X2y (o) . (2.33)
s+0 8

ITI. EXPONENTIAL BOUNDS ON WAITING TIME DISTRIBUTIONS
In this section we will derive a tight upper bound on wWo(t) = Priv_ > t},
where w_ is the waiting time of the n th job in a busy cycle. First we start

from the background mathematics.

3.1 Kolmogorov's Inequality and Exponential Bounds on Waiting Time Distribution

Chebyshev's inequality is among the most frequently used inequalities in
probability theory. The inequality in most general form is stated as follows
(Gallager, 1968).

Chebyshev's Inequality

Let y be a nonnegative random variable with its finite mean y. Then for any
§ >0,
Ply > 8} < % . (3.1)

Kolmogorov generalized Chebyshev's inequality to martingales and submartin-
gales (or semi-martingale)
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Definition of Martingale:

A random variable sequence {y } is called a martingale if E{|ynl] < = for all
n and if

E[yn | ylyz,---,}’n_l] = Yn_l- (3.2)

Definition of Submartingale:

A random variable sequence {yn} is called a submartingale (or semimartingale)
if E[|yn|] < = for all n and if

Ely, | ypo¥gseeayy gl 29, (3.3)
for all n.

We now present Kolmogorov's inequality for arbitrary submartingales.
Kolmogorov's Inequality for Submartingales:

Let {y_} be a sequence of variables for which eq. (3.3) holds and Y >0
for all n. “Then for any § > 0

P{max[yl,...,yn] > &} S-EE . (3.4)

Proof: See Feller (1966: pp. 235-236).

3.2 An Upperbound on Wc(t) in a GI/G/1 System
Y

We now consider a GI/G/1 queue, in which jobs {J_} arrive and are served in
the order of their arrivals. As in section 2, we dendte the waiting time and
seryice time of J by w_ and s_, respectively, and let the interval between the
arrivals of Jn+l and Jnn be denoted by tn. We now define a random variable X by

X =85 -t . (3.5)

Note that xn's are i.i.d. random variables and have the common distribution given
by (2.25), i.e.,

P{x_ < u} = F(w). (3.6)

Then the sequence {wn} of waiting times is a sequence of random variables defined

recursively by "y = 0 (3.7a)
LA max{0, wn+xn] (3.7b)
where we assume that job J_  arrives at epoch 0 at a free server and so his waiting
time is Wy = 0. By solving (3.7) recursively we have
w, = max ({0, X _1» xn—l+xn—2""’xn—l+xn—2+ ...+x0] (3.8)
For given n, we define a sequence {yj} by
Yo =1
y. = 2 Cnr ot e T X 1 < <, (3.9)

]
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where 6 is a real-valued parameter to be determined below. If 6 > 0, then
egs. (3.8) and (3.9) imply that

ewn
e = max[yo, Yis cees yn] (3.10)

We define the moment generating function £(6)} of the i.i.d. random variables
x by

£00) & e® (3.11)

where 0 is a real variable. Note that £(8) is defined over an interval I_ in
which £(8) is bounded. This domain I, includes the origin 6 = 0. It is not
difficult to show that the function £(8) is a convex U function. Furthermore,
£(0) = 1 and £'(0) = E[x] < 0. Let 6 > O be any value in I, that satisfies

8
£(8) > 1 (3.12)
then
Ely, | v9» ¥ps +oes¥y ]
e(xn_1+xn_2+...+x0) Gxn_l 6(xn_l+xn_2) e(xn_l+xn_2+...+xl)]
= Ele e , e PR -
6x 8(x H+x . txg )
-1 - 1
=Ele 0] e ml'm2 = £@) y 2V, - (3.13)

Therefore, the sequence {y } is a submartingale. Note here that f(f) is equal to
the Laplace-Stieltjes transform of F(t) evaluated at s = - 6, since

£(8) = fee" dF(x) = ¥(-8) = A(8) B(-8) . (3.14)

Then by applying the Kolmogorov's inequality to this submartingale, we obtain

C ewn
W (e) = Plw >t} = Ple > e

St}

ot
P{max(y _,y;,.--¥ ) 2 e }

il

Elyal  _oreng(e)
ot ¢ (3.15)

A

e

where g(8) 1s called the semi-invariant moment generating function and is
defined by A
g(8) = &n £(8) (3.16)

Then for a given n and t, the tightest bound is attained by finding
min (g(8) - = - 6} (3.17)

with the comstraint (3.12) or equivalently
g(8) > 0. (3.18)

1f it were not for the constraint (3.18), the minimization of (3.17) would always
be achieved by choosing 8* such that

gt (%) = %%Q:ﬁ ) (3.19)
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Therefore if the solution 6% of (3.19) is larger than 6, which is the unique
positive root (in the domain Ie) of the following equation:

g(8) = 0, (3.20)
or equivalently

£(®) =1, (3.21)
then we have

~8*titn g(6%) o Tako! (AkY *
W(e) e = o TRIE*ET(0%) - g(8%)] (3.22)

If 8% < 80, then

¢ 6ot

wn(:) <e . (3.23)

It is to be noted that the tighter bound (3.22) is valid for small n and/or large
t.

By letting n> in (3.23), we obtain an upper bound of the tail of the waiting
time distribution at equilibrium state:
c _eot

Wi(t) <e . (3.24)

This inequality for equilibrium distribution has been obtained by Kingman (1964,
1970). It is important to notice that the zero of w+(s) of (2.29) that is closest
to the origin s = 0 is given by

s =-86_ . (3.25)

Therefore, the upperbound (3.23) is best possible in the sense that there is no
e(') > So for which

-6't
Wc(t) =0(e 0) . (3.26)
In fact Kingman (1970) has derived the following lower bound
-8 t
W(t)zae ° (3.27)
where
j;:dF(x)
a = inf —pr—r————— (3.28)

© § (x-t)
50 j; e © d F(x)

where F(x) is the distribution of (3.6). It is also possible to show that

o

1; dB(s)
% Bo(s-t)
0 J e dB(s)

(3.29)

a > inf

where B(s) is the distribution of the service time S+
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In (Kobayashi, 1974b) it is shown how the above results can be applied to
various queueing systems, and the bounds are compared with the corresponding
exact solutions via Lindley's theory. Because of the space limitation these
results are not reproduced here,

IV. THE HEAVY TRAFFIC APPROXIMATION AND UPPER BOUNDS FOR THE WAITING TIME

In this section we discuss the behavior of the system GI/G/l in the "heavy
traffic" situation, where the traffic intemsity p is just below its critical
value p=l. The central result in heavy traffic theory is that the distributions
of the waiting time and similar other variables of interest are insensitive to
the nature of the input and service processed. Here we derive the heavy traffic
approximation in a different mamner from the argument given in (Kingman, 1962a,
1965), whereby we can show more clearly relationships between the results of
sections 2 and 3.

Before we consider a heavy traffic situation, let us review the formulae
given in sections 2.1 and 2.2. There we saw that an exponential form of W (t)
holds exactly in the M/M/m apd GI/M/m queues. In a GI/G/1 queue, when the
Laplace-Stieltjes transform ?(s) is a rational fun&tion of 5, W(t) can be expressed
as a sum of negative exponential functions, since F(s) has in general more than
one zero in the half planme Re{s} < 0.

Let Sy < 0 be such zero that is closest to s = 0, i.e.,

Fe) =1, (4.1)
It is not difficult to show that 8, is real, and it is clear (see eq. (3.24) that
s, = -eo N (4.2)
Then for sufficiently large t > 0, the exponential term due to the zero
s, = - 60 predominates, and thus we have the following asymptotic expression
—Oot
W) =c e (4.3)

where C_ is determined by applying the partial fraction method to eq. (2.32) and
is given by

s-s, 1 (0)
C_ =~ W(0) lim TGy Tt (4.4)
° s¥s -0 wi(so)

We now consider the following Taylor series expansion of f£(8) defined by

(3.12) 2
Bx [ 2 3

f(8) = E[e”"] =1+ 8 E[x] + 5 E[x"] + 0(87) (4.5)

Therefore, the characteristic equation of (3.21)
£(8) - 1 = 8+{E[x] + 5 E[x%] + 0(6%)) = 0 4.6)

has a zero 6=0 and additional zero 60 near 6=0, which is given by

o = - 2Exl 4

o E[xz]

4.7)
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By the definition of random variable x (eq. (3.5))
E[fx] =s-t==~t(-) =0 (4.8)
and

E[xz] = ;2 + var[x]
2 2
= var[x] = ag + o, (4.9)
under a heavy traffic condition. Thus
2x

eo - var[x} ° (4.10)

As we have discussed above, the exponential term which contains e predominates
in the waiting time distribution
~8 t

W (L) = o

(4.11)
The coefficient C_of (4.4) is close to unity under the heavy traffic condition,
and we can obtain, using (3.14) and (4.6), the following factorization
2
(s) - 1= - siEIx] - $ELCT + 0(sH)} = 5[—’2‘—] s(s +0,) (4.12)
near the origin, i.e. around s=0. Therefore, w+(s) defined by (2.29) will be
well approximated by

v, (s) = s(st0 3¢, (s) (4.13)

near the origin where ¢, (s) contains no zeros or poles in Re{s} > O and remains
relatively unchanged near s=0 and s= - 6 . Since w+(s) is a parabola in this
region, it follows that

v, (0)
= .1, (4.14)
viC-8 )

[¢]

Therefore, we obtain the following essential result of heavy traffic theory

2E(1-p)
-~ 2, ot
g + 0

s

W) =e © (4.15)

Thus, the bound (3.23) iIs quite tight upper bounds in the heavy traffic situation
i.e., for p = 1.

The results discussed above apply only to GI/G/1l. Kingman (1965), however,
has made a conjecture that when the queue GI/G/m is in a situation of heavy
traffic, the equilibrium waiting time distribution is approximately negative

exponential - -
_ 2(mt - s)
2 2
mo. + o /m
W)y ~e © ° (4.16)

which, to the author's knowledge, remains yet to be proved.

¢
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V. CONCLUDING REMARKS

Sometimes we may be content with the mean waiting time rather than the
distribution. Bounds for the mean waiting time can be easily derived from the
exponential bounds for the waiting time distribution discussed above. But tighter
bounds for the mean waiting time have been found via different approaches by
Kingman (1962b, 1970), Marshall (1968) and Brummelle (1971, 1973). For a review
of this subject, see also (Kobayashi, 1974b).

In this paper the exponential tail of the waiting time distribution was found
to be a characteristic common to a wide class of distributions of interarrival
and service times. This property seems, however, critically dependent on the
queue service discipline. Chow (1974) has recently shown that the response time
distribution of M/M/1 queue with processor sharing discipline is given by the
following hyperexponential distribution with infinite stages

® _ Bt
. e
R(E) = A-p) £ o) @-e h
j=0
for which there is no 8 > 0 such that R(t) < e_et. Bounds for the waiting and

response time distributions under non-FCFS queue disciplines are research subjects
yet to be explored.
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