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ABSTRACT

Recently a "network of queue" representation
of a multiple-resource model has been applied
to a variety of practical problems such as a
multiprogrammed computer model, storage hier-
archy model, computer communication network
model, etc. These models, however, have al-
ways assumed that the routing behavior of
each job is governed by a lst-order Markov
chain. Here we eliminate this restriction,
and discuss how an analytic solution can
still be obtained. We then show that the
joint queue-size distribution has a sur-
prisingly simple form under fairly general
conditions. The only parameter that enters
into the solution is the expectation of the
total work placed on each server by a job
during_its life in the system. The order in
which queues are visited is immaterial.

1. INTRODUCTION

A "network of queues" representation of gz
multiple-resource model plays an important
role in the performance analysis of computer/
computer-communication systems. Jackson [1]
considered a network of exponential servers
and showed that for any work-conserving queue
discipliné the joint queue-size distribution
is given in the product form of marginal dis-
tributions. Recently, Jackson's model has been

‘extended to the case of multi~class jobs and

general service distributions under certain
types of queue disciplines (2,3,4]. a11 these
works, however, maintain the assumption that
the job transition behavior is governeg by a
lst-order Markov chain, i.e., a job completing
service at server i will 90 next to server j
with probability Py s of the job's past history,
In the present paper we essentially replace
this assumption with a Markov chain of arbi-~

trary ordex.

We shall show that the only quantitieg
which enter into the expression for the queue
size distribution are the expectationg of the
total work demands jobs place on each queue
during their stay in the system. 1In other
woxrds, the queue size distribution ig robust
with respect to aly the detail of the routing.

The method to Prove this result ig to
enla?ge_the state space by the introduction
of fictitious classes. 1Ip the enlarged state

Space, the problenm falls into the class of
models solved in [21.

2. A Cyclic Queue with a General Distribution
for the Number of Cycles.

Let us start with the simple queueing net-
work shown in Figure 1. We define a "ecycle" to
be a routing of a job from the branching point
A to server 1, server 0, and back to A. Under
the assumption of lst order Markovian routing,
the number of cycles, k, which a given job
makes during its lifetime in the system is
geometrically distributed, i.e.,

p, = (l—a)ak, k=0,1,2,... (1)

where o is the probability that a job cycles
back to server 1 from the point A.

Consider now a general discrete distribution
{p,+ k>0} for the number of cycles. We assume
that p_have a rational P.g.f. (probability
generating function), viz.
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Then we can obtain the following expansion:
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(3)
where q is the degree of the polynomial Q(z),

and {ai-l} are the characteristic roots of Q(z)=
0. The representation (4) is schematically shown
in Figure 2. It is equivalent to cascaded geo-
metric distributions with parameters o., O eees
¢« In general, this Yepresentation involves

e formal use of complex transition probabilities,
since the characteristic roots o, — of Q(z) can
take on complex values [5]. *

In Figure 2 each box labelled z corresponds
to one cycle in Figure 1. Corresponding to the
4 geometric stages defined above, we now intro-
duce q fictitious classes as shown in Figure 3.
A job whose routing is in its rth stage is classi-
fied as a class-r job, 1 <z < q. For notational
convenience we define that all entering jobs pro-
ceed first to Server 0 as class~0 jobs.
after Yeceiving its first Service at server 0,
either leaves the System immediately, or becomes
a class~1 job ang cycles around the servers 1 and
0 as many ag k times, where the random variable
kl is gegmetrically distributed, i.e., pkl =

1
(l-al)al k1=°r1r2,--. The job then leaves the
systen, OtherWise_ChangeS its status to a class-2




job and cycles around k, times, and so forth.
Clearly the total numbeXr of cycles has the
given distribution p, . The average number of
visits a job makes tO servers j with class

membership r during its life in the system is
a
e = g a,***a __x;—
] r-1 l-o
r

5,0 %% , 3=0,1 1l <r<gqg. (4)

=1and e 0.

r=
For 0, we set eo,0
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Now the solution is readily obtained. For
simplicity we assume constant arrival rate A
and constant processing rates C, and C.. At
each visit a job places a service-demand on the
server. Successive service demands be exponen-

tially distributed r.v.'s with mean wj, j=0,1.
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expanded state vector and 2z = ( peeeZn
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transform variables.

With these definitions, the p.g.f. for the
queue size distribution [4] becomes

(5)

wh = - = e
ere o = Aeg Wo/Cor Py, = Aeg, W, /Cyy

po =Z°0r’ pl = Zplr and the sums extend
over r=0,1,...q. The marginal distribution of

queue j is obtained by substituting zj0=zj2=
...=zjq =z and_all other z-variables are set
to unity. This procedure yields
oy
Gj(z) = l-pjz , 3=0,1 (6)

the familiar expression for the M/M/1l queue. We
call the quantities p., j=0,1 workload
intensities. They 'may be expressed in terms of
work demand, arrival rate and service rates as
follows

fé W, g W,
p. = o, = —2 S e = —d (7)
J £=0 jr Cj —5 jr Cj
wh W S mb £
ere W, = w, . . The average number O
J J ;é% ejr g

visits is

q 1 + E[k] for j=0
e =

s e,
J =0 Jjr

(8)
E{k] for j=1

where E[k] is the average number of cycles.
Therefore we may interpret Wi as the expectation
of the total work a job places on servexr 4 during
its stay in the system. Thus only the mean value
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of the cycle distribution enters into the final
result. We say ‘the queue size distribution to
be robust with respect to the cycle distri-
bution.

The restrictions placed on arrival and
service rates can easily be removed. Our re-
sult is compatible with the full generality
found in [2-4], viz (1) The arrival rate may
depend on the total number of jobs in the sys-
tem, (2) the processing rate may depend on the
local queue size, (3) if the queue discipline
is PS (processor-sharing) or preemptive-resume
LCFS (last-come, first-served) then a general
work demand distribution is permitted.

In the above derivation we assumed that
the service demands placed on the server j by
a job in its successive cycles are i.i.d. ran-
dom variables, and hence have the common mean
w.. By a straightforward extension of the ar-
gament, however, we can show that the solution
holds for PS and LCFS, even when the sexvice
demands are not identically distributed. What
counts in the queue size distribution is the
total average work a job brings in. How the
total work is distributed in individual cycles
is immaterial. This is a surprisingly strong
result. We have to stress again, however, that
for FCFS or any work-conserving discipline other
than PS or LCFS the service demands in success-
ive cycles must be drawn from identical expo-
nential distributions.

3. Job Routing Characterized by a High-Order

Markov chain

The notion of "cycles" cannot be easily ex-
tended to a queueing network with general topo-
logy. We will therefore take a different app-
roach in this section: the first-order Markov
chain, which characterizes Jackson's model [1]
and other related work [2,4], will now be re- a
placed by a high-oxder Markov chain. Let us \'
start again with a simple network with two
servers which we denote as server 0 and server
1. 1In the lst-order Markov model, the transi-
tion probabilities p , were defined over
s,s'=0,1l. Now let u8 ’8ssume that job routing
is statistically characterized by a 2nd-order
Markov chain. Then the probabilities p , are
now defined over states s,s'=(00), (01);'{10),
(11) .

A job is said to be in state (ij) if the job
is now at serxver j just after completing service
at server i. For notational conciseness we use
integers 0, 1, 2 and 3 to denote the states (00)
(01) (10) and (11), respectively. Therefore, jobs
in either 0 or 2 are located at server 0 and those
in states 1 or 3 are at server l. By using the
discrete time (or step) parameter k, a job routing
can conveniently be represented by a "trellis"
picture of Figure 4.

In Figure 4 we introduce an additional state,
s=4, vwhich is an absorbing state. A transition to
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state 4 at step k means that the job leaves the
System after k services. For example, the

path 0 + 1+ 3 + 2 > 4 in Figure 4 means that
a job enters server 0 first, moves to server 1,
and again to server 1, and finally goes back

to server 0 and then leaves the system. Let
us denote by es(k) the probability that a job

4
is in state s at step k, I es(k) = 1 for all
s=0
k. Then the equilibrium state distribution of
the extended system state vector

>

B o={n i 0<s<3k=0,1,2,...} (9

is §iven again by eq. (5).

The quantity e defined by

e, = e_ (k)
0 s=;,2§) S

is the total average number of visits a job
makes to server 0 during the job's 1life time.
Similarly, a job visits server 1, on the aver-
age, as many as

ey = 2, ;i; e, (X)

s=]1,3
By using W, = e.w.
¥ g J J3
the simple expression (6).

(10)

(11)

times. we are led again to

The evaluation of e,, j=0,1 can be done
by a straightforwara appiication of the Markov
chain theory. The probabilities {e (x)}
satisfy the equation s

4

2

‘e_(k) =
s s'=0

es(k_l)ps's (;2)

for 0 < s < 4 and k > 1.

By defining a row
vector

g_(k) = [eo(k)l el(k)l"‘le4(k)]l (13)

and the corresponding generating function vec-
tor

E(z) = ;i: elk) z*
=0

we obtain from (45)

(14)

E(2) - e(0) = z E(z) 2 (15)
where P is the matrix [p 1g}+ We can then de-
rive the well-known form31S

E(z) = e(0) [T - zp1™t (16)

Denoting the individual components of E(z) ana
E (2), 0 <s < 4, we have -

eO“% Eo(l) + Ez(l)

(17)

and

e, = El(l) + E3(l) (18)

4. Extensions to a General Network Topology

with Markov Chain of Higher Order

The presentation of Section 3 was made by
choosing the simplest example, i.e., a network
of two servers and the 2nd-order Markov chain.
Its extensions to a queueing network with ge-
neral topology with job routings characterized
by a higher-order Markov chain is now straight-
forward. If there are m queues 0,1,2,...,m-1
in a network and the job routing transitions
are characterized by an hth-order Markov chain,
there are mb different states a job can take on,
which we denote as before by integers s=0,1,2,
voomBal, We then form a trellis picture with
mb different states plps an absorbing state
which we denote by s=m . We define e (k) as
before for 5=0,1,2,...m! ang k=0,1,2,§.. We
then define parameters

(mod m)

es(k) (19)

vhere the summation over s is taken over those

§ which satisfy s(modulo m) =j. For example h-1
8, is obtained by suming over s=0,m,2m,...,m &
Similarly, e, is the sum of the terms with s=1,
mtl, 2mbl,..v "1 4 1, and so forth. The ge-
neral form of the solution is given in eq. 20
below; Again only the eXpected total workdemand

Wj=ejwj enters into the solution. Throughout

the above discussion we assumed that the network
is open, and thus jobs arrive with rate A. It
is not difficult to extend the result to a closed
network as was done in the earlier work [2,3,41.
We define in this case A=l. The parameters

e.} are not determinable up to a common scaling
fadtor, 1f we choose the factor such that ejy#=1
for some j*, then {eu} represents the average
nurber of visits that a job makes to server j
between its consecutive visits to sexver j*.

The workload parameter Wy then represents the
Sxpected total amount of work that the job brings
into server j during that cycle.

5. Summa;y and Conclusion

For a given general network with servers
1, 2,000, m, the distribution of queue-size vec-

-
tor n=(nl,n2,...,nm) is given by

- - m-1 >
PO f=c MIR]) T £ (ny, 1£2 is feasible
j=0 J J

= 0, otherwise, (20)

where ¢ is the normalization constant,

e m-1

[nl = ¥ a, (21)
=0 J




A(i=1) i (22)

where A(N) represents the Poisson arrival rate
of jobs to the network when the total job pop-
ulation is N. The function £,(n.) of (20) is
given by )3

n.
£ (n,) = D.(n.)W, -
J(nJ) DJ(nJ)Wj (23)

The function Dj(nj) is defined by

Dj (nj) = 1 (24)

where C.(n) is the processing rate [work units/
sec] of“server j when its queue size is n, thus
called the gueue-dependent processing rxate
function. The parameter W4 [work units/job] of
(23) represents the expected work demands that
a job places on server j during the entire life
of its job.

. The most important aspect of this result
is its simplicity as well as its generality,
namely:

(1) One may characterize the workload
of a job in terms of an nth-order Markov chain
and service demand distributions. But the only
parameter that appears in the final expression
for the queue~size distribution is the set of
{W,} defined above. In Jackson's model the
Parameters reduce to

W, = hye .
3T egvy 1<i<m (25)
‘where w, is the average work [work units/visit]
at servdr §, and {e,} is the solution of simul-
taneous equations

’ m
&y =Py 5 * j 26
3 iil e3Py 1<j<m ( )
Where p . is the probability that a newly-
arrived®4dpb s ;
goes first to server J.

(2) The functional form of equation (23)
hold? (1) for the service station j with expo-
Nential distribution under any work-conserving
Queue discipline; (ii) for any general distri-
bution if the queue discipline is either pro-
Cessor-sharing or LCFS with preemptive-resume,
Or the server itself has ample parallel servexrs
é?ften called infinite servers); and (iii) for

ifferent classes of jobs [2,3,41.

. (3) An interpretation of equation (20)

N the case of a closed network is the same as
discussed in earlier work [1-4]. Furthexmore,
a1 extension to the case where job routing is
gharacterized by multiple closed chains can be
One as discussed in [4]. The efficient compu-~

tatiopal algorithm [4] to evaluate the normali-

zation constant ¢ of (20) and other related
performance measures is readily applicable to
our generalized solution as well.
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Figure 1. A cyclic queueing system.




Figure 2. Schematic representation of the p.g.f. P(z) = R(z) /Q(=z)
of the cycle distribution. Note: each box labelled z
corresponds to one cycle in Figure 1.
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