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The solution of separable closed queucing networks
requires the evaluation of homogeneous multinomial
expressions. The number of terms in those expressions
grows combinatorially with the size of the network such
that a direct summation may become impractical. An
algorithm is given which does not show a combinatorial
operation count. The algorithm is based on a generaliza-
tion of Horner’s rule for polynomials. It is also shown

-how mean queue size and throughput can be obtained at
negligible extra cost once the normalization constant is
evaluated.
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Queueing networks provide important models for
complex computer systems. The most general class of
analytically solvable queueing networks is characterized
by (1) servers with memoryless service time distributions
and (2) Markovian routing. The solution is known as
product form solution. Recent progress in extending the
scope of the product form solution is found in {1, 2].
Well-known special cases of the class of networks
treated in [1] are the exponential server networks as
described in [3, 4]. Although the product form solution
is quite simple mathematically, a numerical evaluation
requires a summation of the product terms over the
entire state space, which exhibits a combinatorically
exploding size. The great interest in applying large
queueing network models has led to several solutions of
the computational problem [5-7]. It is the object of this
paper to describe an algorithm which is based on a
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multidimensional Horner scheme. Qur algorithm allows
evaluation of the most general case with load-dependent
servers. It is faster than previously published algorithms
of the same generality (although it has the same asymp-
totic growth of the operations count).

We consider a closed queueing network with M
servers and N customers which has a product form
solution. For such a network, the quantities of interest
(i.e. normalization constant and marginal distributions)
are given by homogeneous multinomial expressions of
the form

M B
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G(M,N) =
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where n is the state vector of queuec lengths n =
(ny,ns,..., nu), D(M, N) is the feasible state space
defined by DM, N) = {n;n > Oand D ;nm = N},
um (1) is the rate of server m as a function of its local
queue size n, and P is the routing matrix. The quantities
e = (e1,¢e,,...,ey) defined by (3) are proportional to
the throughput of each of the servers. Note that e is not
uniquely determined by (3). The solution (1), however,
is unique after normalization. For more details we refer
to the original literature [I-4]. The basic idea for eval-
uating the sum (1) is to partition the state space into
mutually exclusive subsets as follows:

D(M,N) = QOD(M —~ 1,N — i), (4)

DIM~1,N—i) = {mn >0 A ny=1A2m =
N—i}. Then a factor J]'a—i ru» can be factored out of
the sums over the subdomains D{M —1, N—i) yielding

N +
G(M,N) = 2.GM — LN = i) [] 7a. (5)
=0 n=]
(Note that empty products have the standard value I
and therefore the value of G(M, 0) is 1.} Expressions
of the form (5) are most efficiently evaluated by means
of Horner’s rule [8], e.g. for M = 3 and N = 3,

G(3,3) = G2, N + ralG(2,2) + 7[G(2, 1) + 7w]].
(6)

Equation (5) could in principle be implemented as a
recursive subroutine. This, however, would yield a ex-
ponentially growing operation count. Inspection of the
recursive tree shows that the same subexpressions are
reevaluated repetitively and that a row-wise construc-
tion of the array G(m, n), m = 1,2 ..., Mand n =
1,2..., Nsimilar to [6] avoids the exponential growth.
We summarize our algorithm as follows.

Step 1. Initialize first row by

G(l,m= J]rn: forn=1,2,...,N. N
=1

Step 2. For each level m = 2, 3, ..., M compute row-
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rise the values G(m, n), n = 1,2, ..., N by means of
Horner’s rule: ’

Gm,ny=Gm—1,n+ralGm—1,n—1)
+T,,.2[G(m—l,n—"2)+'f.,,3 [...
F TG — 1, 1) + 7] .. 0] (8)

The operation count for this algorithm is (1/2)(M —2)
(N—DN + 2(N—1) = O(MN? essential operations
(i.e. multiplications and divisions) as compared to
2M(N+1) for the previously published algorithms [7].
The storage requirement is 2N cells.

In the special case of constant processor speed (i.e.
Tml = Tm2 ... = Tny = Tm). Step 2 of the algorithm
simplifies to
Step 2’. Foreachlevelm = 2,3,..., M compute row-
wise the values

G(m, 1) = 2 Tmiy 9

Gim, n) = Gm,n — 1) + 1,G(m — 1, n)
form=2,3 ..., M. (10)

The operation count reduces to M(N — 1) = O(MN).
Step 2’ yields the first algorithm of [7). It is now, how-
ever, a special case of the general algorithm, whereas in
{7] the two algorithms had no connection.

We conclude with two formulas which allow an
especially efficient evaluation of gueue statistics. For the
throughput at server m we find

Tw = em G(M, N—1)/G(M, N). (1n

The mean queue size of a server with constant rates is
given by

E{n,} = 1 G(M+1, N—1)/G(M,N) (12)

where G(M+1, N—1) is obtained from the array
G(M, n), n¢ {1, N] by applying once more step 2’ with
the parameter 7, Note that (12) avoids time-con-
suming computation of the entire marginal distribution.
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