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Abstract .
A class of exponential server queuing networks, called semiclosed networks, is

introduced.

In & semiclosed network, the number of customers K is a random

variable such that K <k<kt. Arrival rates may be variable and the service

rates load dependent.

scheme is given with an operation count of O(

gservers.

1. INTRODUCTION

The most important class of analytically solvable
queuing networks are the exponential server net-
works. J. R. Jackson(l) discussed a rather general
case with (1) Markovian routing, (2) load dependent
processing rates, (3) variable arrival rate, and
(4) constraints on the number of customers in the
system and on the queue-sizes. Closed queuing
networks and multiprocessor servers are special
The solution is known

Although quite simple

cases of Jackson's result.

as product form solution.

mathematically, a numerical evaluation requires a
summation of éhe product terms over the entire
state space which exhibite a combinatorially
exploding size.

The great interest in applying large queuing net-
work models, especially in the area of computer
network performance has led to several solutions

(2-5)  Mogt of these

of the computational problem.
publications are for closed networks. Most general
is the algorithm of J. P. Buzen(3) which allows for
load dependent servers. The same algorithm was
also reported independently by M. Reiser and

H. Kobaynahi.(s)

*
Permanent address:

A numerical solution, basid on a multidimensional Horner

+:

) where N is the number of

It is the object of this paper to describe a novel
algorithm which is based on a multidimensional
This algorithm, then, is applied

Horner scheme.

to a rather general class of queuing networks,

which we call semiclosed queuing networks.

Although the new algorithm has the same asymptotic
operation count as Buzen's, it turns out to be
considerably faster (by more than a factor 2) in
the domain of greatest interest (i.e., up to 20

servers and 50 customers).
2. SEMICLOSED QUEUING NETWORKS
We consider the following queuing network:

(1) N servers with K customers proceeding
randomly through the network. Customers

may arvive or depart.

(2) K is a random number such that K-SKSK+. If
K-K_, a departing customer is immediately
replaced; 1if K_SK<K* customers arrive as a
Polsson process with parameter A(K); 1if K=K+
the arrivals stop.

(3) Service times are exponentially distributed
with parameter un(kn) where n denotes the
server and kn its queue length. The queuing

discipline is work conserving.
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This network is essentially Jackson's with the
newly introduced constraint KSK+. It may be
viewed as a generalization of the closed queuing
network to the situation where the number of
customers 1s allowed to fluctuate randomly between
K and K. we may therefore call it a semiclosed
network. Note that the semiclosed network

- 4ncludes the closed network as a special case
“(d.e., K-=K+). ‘Similar to the closed network, the
. gemiclosed network 1s always ergodic. The open
" -queuing network is obtained i the limit K'we,
Multiserver stations can be treated by a special
choice of the load dependent processing rates

p(k) (i.e., as a staircase function) as was

-ghown by W. J. Gordon and G. F. Newell.(s)
 The product form solution is
> L ' K+—1 N kn en
p()=mp ()=l IT_AD| 1T II 7355 ¢))
1=K n=l 3=1 Yn

where ¥ 1s the (non-negative) state vector of
queue~lengths kn’ p(E) is the joint queue size
distribution, K=Ziki is the number of customers in
the system, e, ig the expected number of visits to
gerver n made by a customer on its routing and 7 is
a normalization constant which is obtained by
sumning the product terms p*(i) over the feasible
state space F-{E;izo and KXK'}, An example of F
for N=2 is depicted in Fig. 1. o

3. SUMMATION ALGORITHM

The sums we are dealing with have the form of
homogeneous multinomials in NxK variables which

may be written in matrix form X-[xk,n]’ k=1,2,...,K
and n=1,2,...,N, viz,

N kn

R x® =22 I 1T

EGD n=1 k=1

(2)

xk,n

* where D={k;k20 and Eiki-K}. The following is an
example with N=3 and K=3 which 1llustrates Horner's
rule(7) applied to the last variable. For con-
venience we denote the variébles by K, ; and ;,

i.e., x-[3,¢,$]:

R, ,(X) = u1u2u3+ulu2v1+u1u2w1+u1v1v2+ulvlw1

+u1w1w2+v1v2v3+v1v2w1+v1w1w2+w1w2w3

(ulu2u3+ulu2v1+u1v1v2+v1v2v3)

Hry [{aguptug v vy vyt [ (ug vy d4gll

R2.3(X)+w1[R2'2(X)-I-'w2[Rz,l(X)-!-wa]] &)

The R-expressions in the last line of equation (3)
have one less variable (dimension) and we now may
apply the same procedure again until we are left
with terms in one variable only, which are

K

T x .

R - oy 1,1

However, such a recursive procedure, which is
easily implemented as computer program, exhibits
an exponentially growing operation count. Examina-
tion of the recursion tree shows, that this expo-
nential growth is due to repetitive re-evalua-

tion of the same subexpressions Rn k(X). Elim~

’
ination of such re-evaluation leads to a row-wise
construction of the array Rn k(X) for n=1,2,...,N
»

and k=1,2,...,K as follows:
(1) Initialize first row by
k

IT x
i=1

R =

1,k for k=1,2,...,K . (4)

1,1
(2) Compute row-wise (n=2,3,...,N) the values
R . (k=1,2,...,K) from previously computed
»
values R by means of Horner's rule.
n-1,k

R =

R e TCLLNERE LLLL

+xk—1,n[Rn—1,1+xk,n]]"'] - %)

The diagram in Fig. 2 1llustrates this algorithm.

The operation count is
1/2 -2)K (R-1)+2 (K1) =0 (NK*) (6)

essential operations (i.e., multiplications or

divisions). The storage requirement is 2K words.
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It is well known that Horner's rule not only

minimizes the necessary multiplications but also
the roundoff errors. In the case of load indepen~
dent servers, the computational demand reduces to

O(NK).(S)

4, COMPUTATION OF QUEUE STATISTICS

BY MEANS OF THE R~-FUNCTION

This section describes the application of the
summation algorithm to the semiclosed queuing
network. The'RN'K-function basically does the

> .
summation for a closed network with N servers and
K customers. The solution of the semiclosed net-
work can be expressed as a superposition of closed
network solutions with K=K_,K-+l,...,li+ with
welghts Ak=A(K_)A(K'+1)...A(k—1) (see Fig. 1).
The argument for the R-function is the matrix
T=[Tk,n]’ k=1,2,...,K and n=1,2,...,N where

Tieon = e /u (k) 6))]
The proof of the following expressions is &
straightforward exercise for which there is no
space in this paper, For convenience, we
define RO’K(X)-I.

4.1 NORMALIZATION CONSTANT

With the above definitions, the normalization

constant 7 1s found as

K+

e ARy,1 ™

1=K

(8)

Note that all the R-values are found as inter-
mediate results for the computation of RN K+(T).
»

4,2 MARGINAL DISTRIBUTION

The marginal queue size distribution Pn(k) at
server n is found by summing the joint distri-~
bution over {k;k=0 and K <Ik<k® and kn-k}. 1f

the common factor
k
I T
1=1 1

is taken outside the products, then the remainder

n

is of the same form as equation (1), thus
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" K -k

I

9
ye1 )"

Py} = m Aindy-1,16,D

where I =max(0,K -k) and enr is obtained from T
by deleting the n-th column. The operation count
for computing the marginal distribution is O(NKZ),

the same as for w.
4.3 MOMENTS AND SERVER UTILIZATION

Often only some low order moments are of interest.
The moments may be obtained with slightly less
computational effort directly by the R-function,
viz.

K+

Ellg) = Eg;- Ai[RN,i(T*)_RN—l,i(enT)]

(10)

where the modified argument T* 1s obtained from T
by replacing the n-th column by T;,n=(k/k_l)mTk,n'
Note that all R-values can be computed simul-
taneously if n=N, a condition which can always

be achieved by permutation of the arguments (the
R-function is invariant to such permutations).

The utilization of the n-th server is obtained’at
little extra cost from the R-values used in
equation (9) by

K+
2

1=K

11

U = 1-P (0) = 7 L SPLCR

4.4 AVERAGE RESPONSE TIME

Assuming work conserving schedule discipline,(sl
the average queuing time E; at server n can be
found via Little's formula, viz. E;-E;/(Xén)
where kn is the average queue size and A the
average arrival rate, given by
k-1
X

Tr =
1=K -1

A(i)RN’i(T) . (12)

Again, note that the R values are the same as those

for the computation of 7.
5. CONCLUSION

An efficient and numerically stable summation
algorithm has been described and applied to the



general case of Jackson's exponential server
“network model. An interactive APL program is
available for solution of semiclosed queuing
network models. It is an additional advantage
of the R-function approach that once the R-array
is computed for & given routing and given pro-
cessor speeds, results for various arrival rates,
K and K+ may be obtained at little extra cost
from those stored R-values. The operation count
for computation of all N marginal distributions
is O(NZKZ). This is oﬁiy a moderate effort and

" the APL program solves for fairly large problems
(e.g., N=20, K=50) within few seconds (on an IBM
1360/67) .
This APL program has already proven to be a

The storage requirement is O(5NK).

useful tool in systems design and analysis.
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FIGURE 1. TFeasible state space for the exampie N2, K =3, Kf-6.
The R-function sums the terms along the diagonal lines which correspond to
closed queuing networks. The solution for the semiclosed case is obtained

by a superposition of closed network solutions with the indicated weights.
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FIGURE 2. Diagram of the computation of Rn,3 from Rn-l,l' Rn-1,2 and Rn-l,S

according to the multidimensional Hormer's rule.
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