1. Introduction

A "network of queues" representation of a multiple-resource model plays
an important role in performance‘analyses of computer/computer-communication
systems. Jackson [1l] considered a network of m exponential servers labelled
as servers 0,1,2,...m-1, in which (i) the job arrival process is Poisson with
rate A(N) where N is the total number of jobs found in the system at a given
time, (ii) the job routing is characterized by a lst-order Markov chain, i.e.,
a job completing service at server i will go next to the service station j with
probability pij irrespective of how this job has reached server i, (iii) the
service discipline is any of the so-called "work-conserving" queue disciplines [2],
which includes a class of preemptive-resume scheduling disciplines, as well as
FCFS and non-preemptive scheduling disciplines, and (iv) the processing rate,
C.(n.,) [work units/sec] of the station j may be an arbitrary function of its local
queue size nj. With these assumptions Jackson [1] showed that the equilibrium
state distribution of the queue-size vector K = [no,nl,...,nm_ll is given in terms
of the product of the marginal distributions of the variables nj, j=0,1,2,...,m-1,
Namely, the linear difference equation (or the system's balance equation) can be
solved via the "separation of variables" method, insofar as the steady-state queue
distribution is concerned. Chandy [3] calls the linear difference equations for
the individual coordinate variables "local balance" equations.

Recently, Chandy [3], Baskett and Muntz [4] and Baskett et al. [5] have made
a substantial exténsion of the Jackson's model. Their result can be summarized
as follows: if the assumption (iii) is replaced by a more strict one, namely if
the service—discipliné of a given station is either the (round-robin) processor

sharing (PS) or preemptive-resume "last-come, first-served" (LCFS) discipline, then
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the service-time distribution at this station can be a general distribution.

This rather surprising result is due to the fact that with the PS or LCFS disci-
pline, an M/G/l queue is essentially converted into an "equivalent" M/M/1 sys-

tem, insofar as the departing process and the steady state queue distribution

are concerned [6]. That is, the queue distribution is geometric and job de-
partures exhibit a Poisson process*. They have also shown that if the queue-depen-
dent service rate of the assumption (iv) is specialized as Cj(nj) = nj-C;, then the
service-~time distribution of station j can be also general. This is because the
service station with C(n) = n*C* is equivalent to infinitely many servers (IS) each
of which has the processing rate C* [work units/sec]. It is also known that an
M/G/* queue exhibits a Poisson departure. The queue size distribution in this case
is not a geometric distribution but a Poisson distribution. The above authors [4-6]
have also showed that those servers with the PS or LCFS discipline or IS stations
allow multi-class jobs in terms of both the service time distribution and job

routing transitions.

Kobayashi and Reiser [7]) subsequently treated the case in which the underlying
Markov chain is decomposable to multiple subchains. Furthermore, they have devel-
oped an efficient computational algorithm [8] which determines the normalization
constant of such analytical solutions.

All these works referenced above, however, maintain the assumption (ii), i.e.,
the job transition behavior is governed by a lst-order Markov chain. In the present
paper we will essentially remove the assumption (ii) and will show that the class
of queueing network models which satisfy the “separation of variables" can be sub-
stantially enlarged. This result will bring significant implications into our

system modeling practice.

*
To be more precise, the server adopts the PS or ICFS discipline, but its processing

rate C,(n.) is independent of n,. If the queue-dependent processing rate is intro-
duced, thd departure process becomes a state-dependent Poisson process, and the
queue is no longer geometric.



II. A Cyclic Queue with a General Distribution for the Number of Cycles.
Let us start with the simplest queueing network, namely, a two-stage
cyclic queue as shown in Figure 1. We define a “cycle" to be a routing
of a job from the branching point A to server 1, server 0, and back to A.
Then the number of cycles k which a given job makes during its lifetime in

the system is

pk = (l-a)ak, k=20,1,2,... (1)

where a is the probability that a job cycles Sack to server 1 from the point A.
Thus the assumption of lst-order Markov transitions in a cyclic queue implies that
the variable k is geometrically distributed. The model of Figure 1 is often used
in the analysis of a multiprogrammed computer system, even though the distribution
of (1) is not always justifiable.

Consider now a discrete distribution {pk, k>0} of general form, an example

of which is shown in Figure 2. We define the probability generating function

(p.g.£.) P(z) by
P(z) = E P, zX (2)

Practically speaking, for any given {Pk}, the p.g.f. P(z) can be written as a
rational function of z:

_ R{(z)
P(z) = () (3)

' Then we can cbtain the following expansion: -

r

q
“} : i
P(z) = bO + aoal' ar—l br I l-a.z (4)
. i
r=1 =1




where g is the degree of the polynamial Q(z), and {ai-l} are the characteris-

tic roots of Q(z) = 0. The coefficients {ai} and {bi} satisfy

a, +b, =1, 0<i<g-l1 (5)
and

b =1 (6)
The representation (4) can be schematically shown in Figure 3, which is equiva-
lent to cascaded geometric distributions with parameters al, az,...,aq.

The expansion (4) is a discrete analogue of the exponential stage repre-
sentation [12] of a general service time whose Laplace transform is a rational
function of the Laplacian variable s. In general, this representation involves
the formal use of complex transition probabilities, since the characteristic

roots ai-l of Q(z) can take on complex values.

Examples

(1) Consider the distribution

+q-1 ' k
P, = kq_cll ) (1~a) W™, x=0,1,2,...

which is a shifted version of the negative binomial or Pascal distribution. Its

p.g.f. is then

q
1-a
P(z) = (1-az)

Thus the expansion (4) is simply obtained as a0=al=---=aq_l=1, b0=bl=-'-=bq_l,

bq=l and al=a2=---=aq=a.

(2) A Poisson distribution

’ n>0



has the corresponding p.g.f.

P(z) = eA(z—l)

which is clearly not a rational function of z. If we allow, however, the

formal passages to the limit we can represent, P(z) as the infinite stage:

q
_ A(z-1)
= e

[}
|

1lim
g

[
[}
m|§'x|»

(3) Let {pk} be of oscillatory form with geometric decay as illustrated in

Figure 2.

pk =C - rk (1 - cosbn)

where 0 < r <1 and C is the normalization constant such that § : Pk =1,
k

The p.g.f. is

C(l-cosf) (1+rz)rz

Plz) = 2 2
(1-xrz) (1+r "z~ - 2rz cosb)
Thus one of the probability parameters a, =r is real, but the other two are
complex conjugate o« = rele, a, = re-le. It can be shown that although the

2 3

probabilities associated with the individual fictitious stages may be complex,
the probabilities associated with real states are real.

In Figure 3 each box labelled z corresponds to one cycle in Figure 1.
Corresponding to the g fictitious stages defined above, we now introduce g
different classes. A jcb whose routing is in its rth stage is classified as
a class-r job, 1 < r < g. For notational convenience we define that.all en-
tering jobs proceed first to server 0 as class-0 jobs. A job, after receiving
its first service at server 0, either leaves the system immediately, or becomes

a class~1 job and cycles around the servers 1 and 0 as many as k1 times, where



the random variable k1 is geometrically distributed:

k1
P = (1—a1)a1 k1=0,1,2,... (7)
1

The job then leaves the system, otherwise changes its status to a class-2

job and cycles around k., times, and so forth. Thus the average number of

2

visits a job makes to servers j with class membership r during its entire

life in the system is

a
r .
ej r = aoal"-ar_1 1o ; j=0,1 l<r<gqg (8)
r
r
For r=0, we have:
e =1 and e =0 (9)

0,0 1,0

Let us define the system state vector by

n o= Ing n,] (10)
where
- LIE BN .= 11
ng = Ing grony 5ettteny Jbe 32001 , (11)
with
n o= 0 (12)
, .

If the job arrival process from the outside is a Poisson process with rate A(N),
+ 3 K3 .
where N = Inl is the total number of jobs in the system, then the equilibrium

state distribution is given [5,7,8] by

p(;) c A(|;l)g (n.)g.(n.) if h is feasible
0'20’91 ' g

= 0, otherwise (13)



where ¢ is the normalization constant, and A(N) is determined solely by the

arrival rate function A(n):

AN) = T A(n) (14)
n=0

If the arrival rate does not depend on the number of jobs in the system, i.e.,
A(n)=A, then clearly A(N)=AN. If the network is a closed network, then we define
A(N)=1. The function gj(gj) is the (improper) probability distribution of Bj and
takes the form ([8)

——— njr
- (ejrwj)

.(n.,) = D.(n.) n.! , 3=0,1 (15)

955 350 nyt 4 ]

if server j uses the round-robin processor sharing (PS) scheduling or the pre-
emptive-resume "last-come, first-served" (LCFS) scheduling. The parameter ;5
of (15) is the average service demand [work units/job] a job places upon server
j. The function Dj(n) of (15) is dependent only on the queue-dependent pro-

cessing rate function Cj(n) [work units/sec] of the server j and is defined by

n,

] 1
D.(n.,) = n TS . (16)
3 J n=1 j n

If the processing rate is independent of the queue size, i.e., Cj(n) = Cj*.

then simply Dj(n) = 1/Cj*n. Practical examples in which we can make use of the
queue-dependent processing rate are as follows. The first example is representa-

. tion of a multiprécessor: if server j is a ;ymmetric m-way multiprocessor (m-
parallel server) with each processing rate C; , then we can define Cj(n)= min{n,m}C;.
The infinite server (IS) defined earlier is the limiting case m*. The second ex-

ample is consideration of the processor degradation due to system overhead. 1In



general, the effective rate of the processor will decrease as the number of
jobs in the server increases. The PS and LCFS disciplines defined above, for
examples, involves "task switching" and that clearly should introduce some loss
in the processor's productivity and this factor can be suitably accounted for
in terms of Cj(n). It will be clear that an asymmetric multiprocessor, or
multiprocesssor with degradation factor can be suitably represented as Cj(n) =
min {n,m} C;(n). In the queueing literature [1,4-7] we usually use, instead
of Cj(n), the quantity uj(n) = Cj(n)/§5 [jobs/sec] which is also called gueue-
dependent service rate. Needless to say, if the service demand on server j is
exponentially distributed with mean ;5, the formula (15) is valid not only for
PS and LCFS disciplines, but also for any work-conserving queue discipline, in-
cluding FCFS discipline.

If the station j is an IS (infinitely many servers), we can write Cj(n) =

*
an(n). Then gj(Bj) is given, by rewriting (15), as

* q ) — njr
g.(n.) =D.(n,) T = (e W) . j=0,1 (17)
xR r=0 | "¢ jr3
where
i
*
D.(n,) = I  —= (18)
3] n=1 Cj(n)

* *
If the server j is an IS with no degradation, it follows that Dj(n)=l/Cjn.
The formula (17) holds for an arbitrary distribution of service demand wj.
The distribution of our interest is the marginal distribution of the

variables.
q

n, = }E: n, (19)
J jr

r=0

for j=0,1. From (14) we readily obtain that



P(no:nl) {= CA(no+nl) fo(no)fl(nl), if (no,nl) is feasible
=0, otherwise, (20)

For a given value of nj the function gj(gj) of (15), excluding the term

Dj(n), is proportional to a multinomial distribution. In general, let

x = [xlxz...xq] have a distribution given by
q 1 X ‘
= — >
g(x) c(x1+x2+...+xq)! rgl Xr! Py for all X 0 (21)

Then the sum y=x1+x2+...+xq has the distribution

£(y) = cp¥ , y>0 (22)

which is a geometric distribution, where p = L P and the normalization con-
r
stant is determined as ¢ = 1 - p. Hence the distribution (20) may be called a

multinomial distribution built on a geometric distribution. By applying the

formulae (20) and (21) to (15) we obtain the marginal distribution of nj.

q . n,

_ J
= 23
fj (nj) Dj (nj) Z ejrwj (23)
r=0

if server j adopts PS, LCFS, FCFS, etc. If server j is an 1S, gj(nj) takes the

form of multiple Poisson distribution as shown in (17). 1In general if x has the

distribution
a A Xr AL
g(x) = 1 —_— e (24)
r=1 r!
Then the sum y = [ X, has the Poisson distribution
r
vy
A -A
fly) = Y e (25)

where A = L Xr. Then applying the formulas (23) and (24) to (17), we cbtain
r .
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D.*(n.) Zq _ ny
fi(ni)=fgj! i ejrwj . (26)
=0

if server j is an IS.
From (8) - (10) we have
©1 T D0 S T D %% %’ T-a_ (27
r=0 r=1
which turns out to be E[k], the average number of cycles. This can be shown

by using the identity

q r
E(k] = P'(1) = Z aya,.--a__,b_ E/ —
) i

r=l l=l
q a. q
= a.a a = a a
01" "7i-1 l-ai i " r-1"r
1=l r=i
< o,
= a.a a = (28)
E 01" "Ti-1 1-o,
. i
i=1

The last expression was obtained by repetitive use of the identity aj + bj =1

for 1<j<g-1 and bq = 1. Therefore from (26) and (27)

e, = E[k] (292)

1
Similarly we cbtain the average number of visits that a job makes to server O.
e. = E[k] + 1 (30)

0

Thus, the distribution (23) and (26) can be rewritten as

n.
£.(n,) = D.(n.)W, } for PS, LCFS, FCFS (31)
iy R
*
and D.(n.) n.
£.(n,) = —4—4L w, 3 foris (32)
i1 n.! J

]
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where

Wj = ej ;5 [work units/job] : (33)

represents the total average workload that a job places on the server j during
the total life time of the job.

In the above derivation we assumed that the service demands placed on the
server j by a job in its successive cycles are i.i.d. random variables, and
hence have the common mean ;5. By a straightforward extension of the argument,
however, we can show that the solution forms (31) and (32) hold for PS, LCFS
and IS even when the service demands are not identically distributed. What
counts in the queue size distribution is the total average work a job brings
in, and how the total work is distributed in individual cycles is immaterial.
This is a surprisingly strong result. We have to stress again, however, that
in order for the formulae (31), (32) to hold for FCFS or any work-conserving
discipline, the service demands in successive cycles must be drawn from identical

exponential distributions.

III. Job Routing Characterized by a High-Order Markov Chain

The notion of "cycles" has some difficulty when we attempt to extend it to
a queueing network with general topology. We will therefore take a different
approach in this section: the.first—order Markov chain, which characterizes
Jackson's model [1l] and other related work [3-8], will now be replaced by
a high-order Markov chain. Let us start again with a simple network with two
servers which we now again denote by server O and server 1. In the lst-order
Markov model, the transition probabilities ps,s’ were defined over s,s'=0,1.
Now let us assume that job routing is statistically characterized by a 2nd-order

Markov chain. Then the probabilities P gt are now defined over states s,s'=(00),
r

(01), (10), (11).
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A job is said to be in state (ij) if the job is now at server j just after
completing service at server i. For notational conciseness we use integers
0, 1, 2 and 3 to denote the states (00) (01) (10) and (11), respectively. There-
fore, jobs in either states 0O or 2 are located at server 0 and those in states 1
or 3 are at server 1. By using the discrete time (or step) parameter k, a job
routing can conveniently be represented by a "trellis" picture of Figure 4.

In Figure 4 we introduce an additional ;tate, s=4, which is an absorbing
state. A transition to state 4 at step k means that the job leaves the system
after k services. For example, the path 0 + 1+ 3 + 2 + 4 in Figure 4 means
that a job enters server 0 first, moves to server 1, and again to server 1, and
finally goes back to server O and then leaves the system. Tet us denote by

4

es(k) the probability that a job is in state s at step k, I =1 for
s=0
all k. Then the equilibrium state distribution of the system state vector

A ={n .; 0<s<3;k=0,1, 2,...} (34)
s,k - —

is given again by eq. (14), where gj(gj), j=0, 1 should now be interpreted as

the (improper) distribution of subvectors,

ny = {n . s=0,2; k=0,1,2,...} , (35)

and

n {n

n, sk’ S7L,3i k=0,1,2,...} (36)

respectively. Clearly n, and n, together consitute the system state vector

n. The function gi(gj) takes essentially the same form as (16) or (18):

nsk

1 —
= Do(no) n_! |1 It — (es(k)wo)

g,(n.)
00 © s=0,2 k=0 sk

for PS, LCFS, FCFS, etc. (37)
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and

* = 1l —-.nsk
g.{n.) =D .(n.) I n |—— (e (k)w.)
0’0 070 s=0,2 k=0 nskl S 0

for 1IS. {38)

The distribution gl(gl) is the same as go(go) except that the product is taken
over s=1,3 instead of s=0,2.
The distributions of n, and ny are then derived as marginal distributions

of p(;), resulting in the same form as (20) where fo(no) is readily obtained

> em)"
Do(no) es(k) Yo ~

from (37) as

£f (n ) =
00 s=0,2 k=0
for PS, LCFS, FCFS, etc. (39)
or from (38) as o
*
Do(no) _ n,
folngd = 71— &g (k)wg
0’ s=0,2 k=0
for IS. (40)
The quantity ey defined by
>3
e, = e_(k) (41)
° 0,2 %0 °©

is the total average number of visits a job makes to server O during the

job's life time. Similarly, a job visits server 1, on the average, as many

as

= ' 42
e » Z e (k) | (42)
=1,3 k=0

s=4,

times. By using Wj defined in (33), we are led again to the simple ex-

pressions (31) and (32).
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As we discussed in the previous section, we can further generalize the
definition (33). If the server j uses the PS or ICFS discipline or server j
is an IS, then we can allow that the service demand distributions be different
at different states s and at different steps k. Letting ;;(k) be the average

service requested by a job in state s at time k, we now define

00

W, = E E e (k)w_(k) : . (43)
S S

s=0,2 k=0

W1 = E E es(k)ws(k) (44)
s=1,3 k=0

The restrictions associated with FCFS or arbitrary work-conserving discipline

and

are the same as discussed at the end of the previous section.
The evaluation of e,, j=0,1 can be done by a straightforward application

of the Markov chain theory. The probabilities.{es(k)} satisfy the equation
4 v
e (k) e (k-1)p_, ‘ _ (45)

s'=0

for 0 < s <4 and k > 1. By defining a row vector

S(k) = [eo(k)l el(k)l---le4(k)]l (46)

and the corresponding generating function vector

-3

Ez) =y, ez (47)
k=0

we obtain from (45)

E(z) - e(0) = z E(z) B (48)

where P is the matrix [Ps's]' We can then derive the well-known formula
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E(z) = e(0) [I - zp1 1 . (49)

Denoting the individual components of E(z) as Es(z), 0 < s < 4, we have

e0 = Eo(l) + E2(1) (50)
and

el = El(l) + E3(1) (51)
Example:

Consider the simple cyclic queue of Figure 1. Because of this special
configuration, states 0=(00) and 3=(11) are never reached. So it suffices to

consider only the three states, s=1,2 and 4. By defining

E(z) (E,(2), E,(2), E,(2)]

and

firo
il
Q
@)
[
|
Q

0o 1
we abtain
1 -z 0 -1
E(z) = e(0) | -az 1 ~-(l-a)z
0 0 1-2

Since all jobs enter from server 0, the initial condition is

e =[0 1 0]

which leads to

az
El(z) ’

1—az2
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and
Ez(z) = 1
l-az
Hence
1
¢ = BV = 135
and
o
e = El(l) = 1o

IV. Extensions to a General Network Topology with Markov Chain of Higher Order

The presentation of Section III was made by choosing the simplest example,
i.e., a network of two servers and the 2nd-order Markov chain. Its extension to
a queueing network with general topology with job routings characterized by a
higher-order Markov chain is now straightforward. If there are m service centers
0,1,2,...,m-1 in a network and the job routing transitions are characterized by
an hth-order Markov chain, there are mh different states a job can take on, which
we denote as before by integers s = 0,1,2,...mh—l. We then form a trellis picture
with mh different states plus an absorbing state which we denote by s=m . We de-

h

fine es(k) as before for s=0,1,2,...,m and k=0,1,2,... We then define parameters

00

e, = E E e (k) (52)
3j s

s=j k=0
(mod m)

where the summation over s is taken over those s which satisfy

s (modulo m) =j : (53)
. . . h-1 . . .
For example e is obtained by summing over s=0,m,2m,..., m . Similarly, e, is
the sum of the terms with s=1, mt+l, 2m+l,...,mh_l + 1, and so forth. By defining
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h ., . . .
the m -dimensional p.g.f. E(z) as in (47) and using.the formula (49), we can
evaluate'ej by

e = E Es(l) , 3=0,1, ... , m-1 (54)

s=j
(mod m)

where Es(z)'s are the elements of E(z). The entire results of Section III carry
over to this general case in an obvious way,- and thus the joint queue size dis-

tribution of this general network is given by

m-1
p(nO Nyseees nm-l) = cA(N) 'H fj(nj) (55)
j=0
where m-1
N = E n, (56)
J
j=0
and
. n,
fj(nj) = Dj(nj) Wi ) when server j adopts PS, LCFS, FCFS, etc.
(57)
d *
an D. (n.) n,
fj(nj) = HJT—~1— Wj J, when server j is an IS. (58)
J
for j =0, 1, 2, ... , m-1.

Throughout the above discussion we assumed that the network is open, and thus
jobs arrive with rate A(n). It is not difficult to extend the above result to a
closed network as was done in the earlier work [5,7,8]. As mentioned earlier, we
define in this case A(n)=1. The parameters {ej} are not determinable up to a
common scaling factor. If we choose the factor such that ej*=l for same j*, then
{ej} represents the average number of visits that a job makes to server j between
its consecutive visits to server j*. The workload parameter Wj then represents the

expected total amount of work that the job brings into server j during that cycle.
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Throughout our discussion thus far we assumed a homogeneous job
population in the sense that the routing behavior of each job is charac-
terized by the same transition ps,s" The formulue (57) and (58) remain
to hold even if multiple classes r=1, 2, ..., R, of jobs are introduced,
as long as their arrival processes are mutually independent Poisson pro-
cesses with rate lr, r=1,2,...,R. The introduction of R classes, is
essentially equivalent to extending the dimeﬁsion of state Qpace by factor
of R. Multiple Poisson streams can be created from a single Poisson stream

r
of rate A = I Ar, which branches out to one of R parallel streams with

r=1

probabilities {Xr/l}.

The simple results of (57) and (58) are essentially dependent on one im-
portant condition. Namely, an arrival process to each state (not server) must
be Poisson. Here the distinction between state and server is important. 1In
the cyclic queue of Figure 1, job arrival process to server 0, for example, is
not Poisson. This is because soﬁe of the arrivals to server 0 are due to past
departures from the server 0 and hence the present arrival is aependent on past
arrivals. If we distinguish the states of job in its different cycles, the arri-
val of a job to a given state is Poisson. If the condition of Poisson arrivals
is met over a suitably defined state space, then the product form solution
holds and its marginal distribution is reduced to the simple formulae (54) ~ (57).
Thus a crucial step is to examine whether we can define a state space in which the

Poisson arrival condition is satisfied at each state.
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IV. Conclusions

In this paper we have shown that a simple product form solution of a
queueing network model can be obtained, even when the lst-order Markov assump-
tion on job routing is removed. This result significantly enlarges a class
of problems to which we can realistically apply a "network of queue" model.
We have shown that for any job routing behavior (which can be represented in
terms of a Markov chain of arbitrary order) fhe only parameter that appears
in the queue-size distribution is WB, the average workload that a job places on
server j. This result also simplifies our efforts on model constructions and
validations which use empirical data; namely, we need not measure detailed
transition probabilities, but simply estimate the to£a1 workload requested of

each resource by jobs.
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Figure 1. A Cyclic Queueing System.
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Figure 2. An Example of General Distribution of the Number
of Cycles, {pk}.
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Figure 3. The Schematic representation of Cascaded Geometric
Distribution of P(z).
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