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ABSTRACT: This paper discusses some extension of recent results obtained by Baskett, Chandy, Muntz, and Palacio
on queueing network models with different classes of customers. We consider the case where the underlying
Markov chain M of customer routing is decomposable into jrreducible subchains. We will show that derivation
of the queue-size distribution in this model is more involved than in the irreducible Markov chain model. We
also treat the case where the service distributions at FCFS (first-come, first-served) centers are different

for different classes of customers.

1. Imtroduction

Queneing network representation of multiprogrammed/
wl‘t;iprocgssor computer systems have been drawing
an increasing attention in the past few years.
“The 1ginel work of queueing nemgrk with exponen—
‘ae . dates back to Jackson” and Gordon .
pplications to comppter
V. re see Buzen and

‘noteworthy. progress on 'this subject has been
‘lately repogted by Baskett, Muntz, Chandy and
alacios. ’ “They hive shown that the product form
‘solution of the equilibrium queue-size distribution
‘- of Jacks ‘_t}“ilf’éxt@nd;‘h : tme classes of queueing
g orks with differer ‘ _customers.
Purthermore, they have dé red: that the
assuliption of Jexponentis rioe’ time distribution
can be removed, 1if th y 8 :
center is either an inff
-..sharing queue, or preemp
“come, first-served) queue.
solution of joint and mar
" however, ‘is:oritically-de
assumption that’the:underl

riying Maxrkov:cha
of customer transition is irreducible*.

The extension we shall make: is. of: special interest
not only as:a thegr’tical; generalization of

the previous work '’ but for its ‘practical

value to deal with different job mixes:

computer systems. ‘ B

Consider a queueing network system consisting
of N service centers which we label -as.center
1, 1<i<N. ‘There exist 'R different classes of
customers and their. transitions from ope center
to another are governed by a-first-order Markov
chain M: the transition matrix-is NRxNR - and
its element Plar) (') is the probability :

“of transition from state. ~(1,8) to state (i',r'),
namely, the probability that a customer of

‘class’ r which completes service at center

1 ‘will next go to service cénter 1' and

changes to class r'. This underlying Markov

chain M 1is in general decomposable into L subchains
Ml',M' ,»++ M which are all irreducible. We

can assume ’Ehat R>I>1 without loss of generality.

* In {7] some consideration is given to the case of
decomposable Markov chain.  Their solution, however,
is valid only for open systems with constant arrivals.
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The subchains M,'s are driven by L independent
Poisson arrival streams. with variable rate

A, (m,), where m, is the total number of customers in
s{’ibcﬂain M’L at a given system state. A newly
arriving customer out of stream % will first enter
station 1 with class identification T with
probability pl,(ir)' Similarly, a customer of

class r' completing service at center i' departs
the network with probability Pei'e'y, 80 Note that
: y

our model includes the case where the network is
closed with respect to subchain Mﬂ.’ This situation

18 realized by choosing p, ( ir)-p (1) 2-0 for all
»’

(it)eMzz the arrival rate Az(ml) is left undefined*

III. Solution

3.1 Equlibrium State Distribution

Let us start with the case vhere all service centers
are FCFS (first-come, first-served) queues and

the service time distributions are exponential. We
do not require that the service completion rates

M, 's be common for all clasae%. We define the
stite of the system by vector S = [s ,Sz,...,Si,...,
s.], where S, itself is a vector whi%h Fepresents
tge FCFS sta?:k at center i: S, = [r (1),r (2),...,
r (j),...,ri(ni)], in which ritj) is the ciass of

tn

b} customer at service center i, and n, is the
total number of customers at this center. Let the
last entry of the FCFS stack of center 1 be class
r, i.e., r-ri(ni) and state (ir) belong to subchain
M!,'

Let P(§} be the equilibrium probability of state L1
a variable m, be th_g nunber of customers in sub-
chain M,, an& let S([ir]") be a state which is the -

£
same as K except that the last (i.e., n th

of the stack S, is missing. Thus a transition from .
state §([1r] }'to state S is achieved when a new '
customer joins center i with class penbership r-ri(nfi

We define parameters. e, . as the average number of
visits that a customer makes to service center 1
from its arrival at the systﬁmsm)til its departure.
It is not difficult to show "> ’" that e 's

are the solutions to the following set o%rlinear
equations defined for subchain M!L:

ey = Py, (ir) ¥ Z e P ) (1K)
. (i't')eMl

* Later we formally set )‘z(m)-l for a closed sub- ‘
chain My -




where zal,z,...‘;l..."' The selution of (1) 18 uniquely
determined when. p, (ﬁ);o, for sbwme (1r)eML. i.e., vhen
- L d - (i N N t

the system is open with respect to subchain ¥, and
M, and its absorbing state form an absorbing
Mirkov chain. If the system is closed with respect
to Mﬂ,’ i.e., Py )-Oyfor all (ir)eMz, then sub-
chain M, is etg(}ﬁg, and the solution'e,  1s
clearly nonunique. If we introduce addRional

condition, say,

E &, - 1 - (2)

(i) st

then the solution is uniquely given.

Then by.solving "individual" balanc:e8 or "local®
balance’ conditions derivable from the "overall"
balance equation defined for P{ }, we obtain the
following recurrence equation:

e
i pidan) ©)

p{8} = A, (mp-1) a0

if the system is open with respect to M, and u,_ (the
service completion rate at center 1 given to a

job in class r) is dependent on n,_, the number of
customers of the same class queuei:x{g at the same
center; and

e
ir -
P8} = D) s p3 (111D} (4)

if the system is open with respect to M, and Yy is
dependent on n_, the total number of cu%tomers

at the same ceiiter as the one being served. If
the system is closed with respect to Nz’ relations
(3) and (4) should be replaced by

e
p{§) = ir __ 11} 3"
g0y
and
. ‘
P8} = n,—at— pE(I1r]D)) "
1uir(ni) :

respectively, where constant ¥ is to be chosen 8o
that n,e, 1is an effective arrival rate of r class
jobs to center 1.

By applying recurrence relation (3) or (3') repeatedly
to all the entries of the FCFS stacks we obtaip the
equilibrium probability distribution of state 5 as

L’ L
P{§}=’C(H A(m))n il £, (n, ) (5)
=1 & ¥ et amen, TN
‘where
e “ir ’
ir
f:I.r(nir ?\_—-——_— )
ir
T o (1)
j=1 ir
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and

“2,"1
A’.(_'R.) - 11‘10 kl(i)

1f subchain M, is cléud ‘A, ( ui
will be instructive to .gi'v% alte

of P{8} as

pBr=cl @ A @)} N £
(z-l S0 R
wvhere \
n = [“11""’““’”‘"“13,]
and

R
fa) = T £l

e

1f the service completion rate u, 1s
classes and is dependent on f &m
(4) or (4') should be used f«nni‘njehm;v

51(51) = ni

Bou A

mt
The laa gores pression vas wc’uﬁéé earlinr b
and Wmes", e
3.2 Ind nd Pro

1f service center i is an infiniie-
then the product form ao;lgqeg ol
service time distribution ’ . The
i Poisson distributed, :
proportional to - -

£, (n,) = =%
irt ir ny tl

1r RN .
customers. Note that (12) cor
vhere we get “11:(” of (G)u i

given by a multiple Poisaon daet:

:}.&) By
()

If service center i is proocessor-sharing (PS
product form solution alsg hojds for

service time distributioa ™" .. .
essentially equivalent td 'au
queue, except that the service”
sloved down by a factor of ni.‘ﬁ

The joint distribution of vector rh

o

R
1 i

£, (o) =
i'.d‘ r=1 Mr

DR o T



1
where —— is the mean service time of class r

ir
customer. Note that the last expression is propor-
tional to a multinomial distribution.
Chandy9 and Baskett and Munt26 have shown that
preemptive-resume LCFS (last-come, first-served)
queue also possesses the steady state queue

" sized distribution of (14).

3.3 Normalization Constants and Marginal Distributions

Evaluations of normalization constants, marginal
distributions or related6q?antities are not so
straightforward as found ’° for the case of irre-
ducible Markov chain M. We start with the simplest

. case.

Open Network with Constant Arrivals: If the system
is open with respect to all subchains ¥ , 2=1,2,...,L,
and all service centers are FCFS type further sim-—
plification is possible. By denoting the constant

“‘arrival rate by Az we have

My

A,‘f(mz) = 0 A 15)

(1r)eMz

From (8) and (15) the joint distribution of the
vector n = [n be obtained as a

Bct __,22,...,g¥] c
- marginal dist%ibution of P{5} and be written in to

form
-+ N
Pln} =cC I gi(gi) (16)
=]
where
. n
ir
R | (Ageyp)
g(ny) =n,l T
=1 ir ir ;
o, ($)
=1 ir
R
and n, = I n, . The subscript 2 of A, 1s such that
=1 *F L
(ir)eM,. The derivation of (17) is based on the fact

that afly two distinct states of the FCFS stack at
center 1, that are equivalent except for permuta-
tion of their dements, have the same probability.
If in particular u r(J)-uir’ then (17) reduces a
multinomial distribution: o S
n

ir
R A e
1 f ir
g,(n) =n ! I —|—=— (18)
1= 1 =1 nir! Uiy

if service center is a FCFS queue with common
exponential service time distributions, where
gservice completion rate Uy, can be dependent on n,

function 81(21) is obtained from (11) as follows7

41 R 1 By
g,(n) = n (Ae, ) (19)
11 ng =1 Mt L ir
T ()
J=1

In a similar manner it can be shown from the result of
Section 3.2 that if service center i is a processor
sharing queue or a preemptive-resume LCFS queue
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81(51) is given alsoc by (18). Note, however, that

this solution holds even for any general service
time distribution with means 1/u - Similarly if
gervice center i is an infinite-sServer queue we
have

n
R Ale ir
g = 1 | == (20)
1=1 M4r! Yir

which holds for any general service-time distribution
with mean lluir.

The joint generating function of (16) is given by

N R a
Q(z) = E T x z, 1ir
i=] r=l ir
1 (21)
= C I G,(z,) 2
1=1 1=4 :
where
R n
Gy(zp) = I 1oz ire () (22)
n, r=1

By inserting (18) imto (22) we readily obtain

n
G,(z,) = E ( % ———‘—kleitzir ' =
1 =1 Yyr

-1
R Ae, z
{ 1 - z g ir ir }

(23)

r=1 Yir

for FCFS, PS and LCFS. Likewise from (20) and (22)

A Br
1 [ Lplarfar
Yy

R Ae, z
-e,p{z_z_i_rﬁ} (24

for an infinite-server center.

For a queue dependent FCFS center (but with a
common distribution function for different classes),
we define a function

L] n
b, (z) = 2 (25)
i nZO ni

I w1

1 1

Then ffom (22) and (25) we have

) .
Gi(gi) -0, ( z Xzeirzit) (26)
r=1

The probability generating funetion (p.g.f.) of
Ei-[nil"’°’niR] is proportional to Gi(gi)




defined above. By its definition, a p.g.f. must

be unity when their arguments are all unity. Hence

"the p.g.f. of n, is given by Gi(gi)/c (1), where 1

is an R-dimensidnal vector whose entries are all 1.
R

The p.g.f. Hi(zi) of ni=rzln r is obtained by

i

setting zy =24 in the p.g.f. of n;-. Thus from (23)
we obtain
1- % zeir
U
___r=]1 "ir
Hy(zy) = R re 27
g ir
1-zi Z
=1 Mir
for FCFS, PS and FCFS, which ylelds the following
geometric distribution
n
R A e R A,e 1
£ 21
hi(ni) = |1- z A A (z —-u——r') (28)
r=1 Mir r=]1 ir
For an infinite-server center we obtain from (24)
R A eir
Hi(zi) = exp ¢ (z;-1) ) —%r——- (29)
r=1 ir
which leads to the following Poisson distribution
R A "y § re
1 zeir i ir
hi(ni) = ) RV exp 4 - 2 u
1! r=1 ir re=l ir
(30)

Similarly for a queue dependent FCFS center we use
(26):
A e, | [ Ae
1 2 ir i =1 % ir (31)

Hy(z)) = ¢ (Zi 1

r:
which yields, by inversion,

(If )ni/(lzl )n1
h,(n,) = 2 .e /2. Age T ow
1V oy Aar I\ M) gt

It will be instructive to note that h_ (n,) of (28)
and (30) correspond to the queue size diStributing
of an M/M/1 and M/G/», respectively, with traffic
R Akeir

intensity Py 2 —_.

. =1 Mir
By now it is obvious that the constant C of (21)
is obtainable as

N
I
i=1

6, (L) €5)

If we wish to compute the marginal distribution of
the number of customers in subchain Ml’ we set

375

“joint gener;ting function Q‘*(';) consists of those

(@) = | (a“ﬁe:%..aé:“)ny'({'éiéit};}f
I m! o SRR [
=1 g

We assume that genter 2 is a PS5 queue with mean:

in (21) 2z, =z, if (1-r)eM£ and z, =1, otherwise
by invertiﬁg %he resultant func%ion, we have the
desired distribution. Similarly, the distribution
of the total number of customers in the system

is obtained by setting all z; "2 in (21).

Now we want to obtain the queue-size distribution of
a closed network. Let the network be closed with
respect to all subchains M, , 2=1,2,...,L. The
number of customers in -each chain is fixed which
we denote by m,, £=1,2,...,L. Therefore, the
total number of customers in the system

L N R
n= } mo= 7 ] n,, 1is also fixed. Let F be -
=1 i=1 =1

a set of vectors n which are feasible in this closed
network: ’ :

Over this feasible set F is defined the recurrence
relation (3') or (4'). Equations (3') and (4') c#
be viewed as equivalent to (3) and (4), respectively, '
in which xl(.)-w . How to detefinine the constant
parameters’n, will be demonetrated shertly. Then
by taking the same steps that have led uws to (16),
we obtain the following joint queue size dfstribution
for a closed network

>
n

n-ir = Y ;2-1,2’---*,'1.% (34)

(ir)eM&

N
(C* T g *n,) :
PH{(n} = { e LM

nef

n§Ff

where ‘*(51) is the>sﬁma as that -of (17) - (20)

0 :

except that the A, are mow replaced by w, . The

N R ‘
terms I I zirnir in which ) By =
1=1 r=1 ' ir)eM '

to1), e reprace
2%1,2,.44,L #nd
times with respect to 8,,

In order to derive this from Q(2z) of
Z of (21) by @ zi for all (ir)eM
tﬁen differentiate it m

and set 62-0,£~1,2,..b,f.

,el-u, ) BI. "0
(36)

Example Consider a simple closed network consisting
of three service centers. There are two classes
of customers which we denote by a and b: class a
cycles around centers 1 and 2, and class b cycles
around centers 2 and 3. Thus, we have two sub~
chains and the set of states (4,r)'s is decompossble
into

Ma = {(1,a), (2,a)}

M = {(1,0), (3,0)}

service time ;——,r-a,b ; center 2 1s a FCFS queue

ir



with service completion rate u and center 3 is
ap infinite-server queue with iean service time
——=— , Then from (23) and (24) and using eir=1/2

Y3p
for all (ir), we obtain
Tz T, Z -1
la i”1b
G.(z, ,z,,) = (1 -2 - —-*——-)
1'*"1a’"1b Zula Zulb
Tz -1
2a
G, (z )-(1--3——)
2'72a 2u2a
and
Tz
b~ 3b
G3(z3b) = exp{2u3b }

Then by substituting these results into (36) we have

c» (amm, ae:aaebmb)_

Q*(z) =
Ta1%py
-1 -1
(1 _ "aeazla _ "bebzlb ) (1 _ "aeaz2a )
%ula 2“'lb 2“23

. "bebz3b)
AT

8,=6,=0

The unknown constants C*, w_ and w, are ob-
tained from the following c8nditions: (1)

The probabilities sum up to one, i.e., Q*(1)=1 ;
(2) The inflow rate of each class must equal its
outflow rate at each service center. We will not
pursue this procedure here because of space
limitation.

IV Concluding Remarks

Throughout the present paper, we resorted primarily
to the generating function method. ¥For actual
numerical evaluating of the solution, however, the
transformation domain is not necessarily best in
terms of computational efficiency. TEB recursive
algorithm, recently reported Yx Egzen and indepen~
dently by the present authors ~’"“ are directly
extendable to the open system discussed in the present
paper. For the closed network of the type discussed
in the last section, however, a further study is
required for computation efficiency.
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Figure 1. A closed network with 3 service centeré,
2 classes of customers (class a and class b).






