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A cyclic queuing system is often used to model a multi

programmed computing system. Most of known results,

however, are based on the assumption that service times at CPU and I/0 deyice are both exponentially

distributed.

This paper derives a closed form solution for the queue size distribution in such a model with one gene~
ral server. The derivation is based on Green's function method for the imbedded Markov chain analysis
and on the equivalence between the assumed model and an M/G/1 queue with finite capacity. We also derive
simple algebraic expressions for the cases of hyperexponential and Erlangian distributions. The numeri-
cal evaluation results obtained provide useful information about how critically the system performance

1s affected by the distributional form of service demands.

1. INTRODUCTION

In performance analysis of a multiprogrammed system,

a cyclic queuelng model 1s often used [1-4], in which
the central processing unit (CPU) and input-~output
(1/0) device are treated as two independent servers.
The jobs in the model correspond to those programs
which are allocated some portiom of main memory. The
number of such programs is called the degree of multi-
programming, and is treated as a constant, which is a
reasonable assumption to make when the system is hea-
vily loaded.

Despite 1its great simplification, very little is
known about the behavior of a cyclic queueing system,
except for a special case where service times at both
servers are-exponentially distributed [3,4]. Appli-
cations of these exponential server queueing models
to computer system modelling are {i prevalent use [5]
because of thelr mathematical tractability, although
some of the receént empirical studies indicate that
service time distributions in real computer systems
are often quite far from exponential [5,6].

In the present paper we discuss the cyclic queueing
model of fig. 1 in which one of two servers (i.e.,
either CPU or 1/0 device) is allowed to have a service
time distribution of general form. An analysis of
such a model is given by Gaver [1]. Shedler and Lewis
[2] consider the effect of system overhead. These
studies, however, are primarily concerned with the
server utilization and to the present authors' know-—
ledge, no prior work discusses such quantities as
queue size distribution, response time, which are im-
portant measures in system performance analysis.

In section 2, we derive a closed form solution for
the queue size distribution. The result is based on
Green's function method for the imbedded Markov chain
analysis discussed by Keilson [7,8)] and on the equi-
valence between the system of fig. 1 and an M/G/1
queue with finite capacity [9].

In section 3, taking as special cases hyperexponential
and Erlangian distributions, we obtain the corres—
ponding queue size distributions in the form of finite
sums. The solution for a multi-stage Erlangian case
1s derived by using a symbolic computation system [10].

Section 4 presents various numerical results. Such
performance measures as utilization, the average
queue size and response time are plotted for differ—
ent configuration parameters. These results clearly
show that most of performance measures are sensitive
to the distributional form of service times, and

thereby emphasize the relevance of our study.
2. GENERAL. SOLUTION

We consider the cyclic queueing system of fig. 1 with
(1) A fixed number N of jobs (or customers) circulating
in the network. (2) Server 1l having service times {t}
with distribution F(t)=Prob{t<t} and mean p-l=g[t].

(3) Server 2 having exponentiallg distributed service
times {r}, i.e., Prob{r<t}=1-e~2t.
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Fig. 1. A cyclic queueing system

Kobayashil and Silverman [9] have shown the following
equivalence principle between the cyclic queueing
system and in general server with finite capacity:
The joint probability distribution of this queueing
system of fig, 1 is

Prob {n jobs in queue 1 and N-n jobs
in queue 2}

P (n > N_n)
= py(m)

vhere p, (n) is the queue size distribution of the
M/G/1 queue with finite capacity of size N (inclu-
ding the one being served), service time distribu-
ticn F(t) and Poisson arrival rate A as shown in
fig. 2.
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F(t) 1-e~M
m+np =N

Fig. 2. The M/G/1 queue with finite capacity
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The validity of this principle follows from the fact
that jobs arrive at queue 1 according to a Poisson
process with parameter A whenever the second queue

ig not empty. If the second queue is empty then the
first queue has length N and the Poisson arrivals are
interrupted. This corresponds exactly to the finite
capacity of size N of the equivalent M/G/1 queue. :
Note that this relationship is based on the so-called
"memoryless property' of an exponential server and a
Polsson process.

The solution of the M/G/1 queueing problem is based

on the imbedded Markov chain. If the number of jobs
i{n the waiting room is observed at successive service—~
initiation times, then the observed sequence is a
sample from a Markov chain X, which is said to be
imbedded in the queueing process. In case of the
finite capacity size N, the chain X assumes the value
0,1,2,...,8-1. 1f we denote by a, the number of arri-
vals during service of customer k, then the sequence
{Xk}is governed by the recurgive law

0 if Xk—l+o.k<0
xk+1=xk'1+°‘k if Oixk—1+akf_N—1 (1)
N -1 if Xk—1+ak>N—1

The random variable %y has the probability density

o n
a(n) = Prob{akfn} = f e_xt Slﬁ%—-dF(t) (2)
0 !

where A is the arrival rate. Hence, the generating
function for a(m) is

©

Az) =) a@z® = v} - A2) (3)
0

where y(s) is the Laplace-Stieltjes trangform of the

gervice time distribution, i.e., Y(8)= f e—St 4aF (t) .
0

The Markov chain X of eq. (1) is a random walk on

the integers with two reflecting barriers at zero

and N-1. Such processes are well investigated, and

one known technique uses Green's function method

{7,81. Below, we glve a summary statement of the re-

sults which are of our {mmediate interest.

1If A(z) has an annulus of convergence which includes
all the roots of z-A(z)=0, then the queue size
(including the one being served) distribution pN(n)
of the M/G/1 queue with finite capacity is deter-
mined by - . -

an;(n) ,0<n <N ‘ (4a)
pN(n) = .
1—[1—&N(1-p)/o], n=N (4b)

where p=i/u, u_—l {s the mean of F(t) and

° L¢3
p) = iy d-ra-e —————5——(;23‘}:)1 l (s
. " dz z=0
: N-1 -1
K = {1-pf1- I @1} ° K
n : n=0

For p<l we recognize the quantities p(n) as the
queue size probabilities of unrestricted M/G/1
queue. In this case we find the following interest—
ing interpretation of the above result: (1) Except
for a multiplicative constant Kg, the boundary at
n=N has no influence on the distributional form

of P_(n) for n<N. (2) In the steady state the
infl%w rate must equal the outflow rate, thus

[l-pn(N)]A = [l-pN(O)]u 3 N

N
(3) The probabilities sum up to one, 2 pn(n)=1.
4]

These three principles completely specify the solu—
tion as given above. The major difficulty in applying
this simple result is to get the quantities f(n) ex-
plicity. Closed form solutions for several cases of
interest are derived in the next section.

The joint distribution p(n,N-n) in the cyclic queueing
system of fig. 1 follows directly from the equivalence
principle stated earlier. Eq. (7) relates the utili-

zations of the servers, i.e.,

€))

hf‘hp
1}

= |>
1}
©

vhere u,=1-p(0,N) is the utillzation of server 1
and u2=}—p(N,0), that of server 2.

3. THE UNRESTRICTED M/G/1 QUEUE WITH ERLANGIAN
AND HYPEREXPONENTIAL SERVICE TIME DISTRIBUTION

The main result in section 2 was expressed in terms
of the quantity p(n) which, in case of p<l, is the
queue size distribution for the unrestricted problem.
This section is devoted to the derivation of simple
closed form solutions for p(n) in the case of the
m-stage Erlangian distribution

m k
F(e) = 1 - 7 ) iﬁﬁ—f—)——- )
k=1
and of the hyperexponential distribution
m —ukt
F(t) =1 - ) me (10)
k=1

s

vhere Zﬂ =1 and L. z x . The generating func-—
k Yok Y

tion of the arrival probabilities of eq. (3) 1is

= (& _Ph
A(z) = {(m + 1) - z} (1)
for the case of Erlanglan service times and

° -1
Alz) = L o Lo tD) - 0 2} (12)

for the case of hyperexponential service times where
pkéA/uk. The quantities p(n) are defined by (5) ox

n

pmy - LKA (13)
i dz~ z=0

with

ey = (mpy E2AE (14)

which we recognize as the probability generating
function of the umrestricted M/G/1 queue. For the
distributions considered here, U(z) is a rational
funetion in z. The derivatives in eq. (13) are most
easily found through a partial fraction_expansion‘of
u(z); this, however, requires knowledge of the roots
of the characteristic equation A(Z)-z=0. The asymp—
totic behavior of p(n) is determined by the smallest
real root z, of the characteristic equation z-A(z) = 0
such that zl#l (zo=1 is always a root), i.e.,

p(n) = 0(2]") : @as)

Thus in the case of -Erlangian or hyperexponential
service times, p(n) has always a geometric Yrail."

In fact this property holds for a much larger class .
of distributions for which A(z) has an annulus of
convergence which is sufficiently large to enclose

Zg.

For the two-stage Erlangian or hype:exponential
distribution the characteristic equation is of the
third order and reduces to the second order after

cancellation of the common factor (1-z). We then
find for both cases
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_ -n -n
pn) = Clzl + sz2 (16)
where

C1 = (1 - pz2)(1 -~ zl)/(z2 - zl) an
Cy= (1 -0z00 - 2,)/(z) ~ 2z (18)

with z. and 2, being the roots of the following
charac%er 1stic equationa

pzz2 - p(p+4)z +4 = 0 for the 2-stage (19)
Erlangian

2
P1Po2 = (pytpyteieglz + 1 +py +p, ~p =0 (20)

for the 2-stage hyperexponential

where the parameter p of eq. (20) is given by

p= pl+nzp . The hyperexponential distribution with
m=2"18 suf%iciently general to treat most cases of
practical interest since it has three free param—
eters and can produce agy coefficient of variation
greater than 1, i.e., ¢">1. This 1s not so for

the corresponding Erlang case,zwhich is specified

up to the mean and for which ¢™=0.5.

We are therefore iInterested in the solution for the
Erlangian distribution with general m, which we have
obtained in the form of a finite sum, i.e.,

n
p(a) = (1-p) J ()P 331
* 3=0 (21)

{(“{?—:1) + (n‘l‘j) _r} 23 120

with R=(p/m)+1 and r=p/(p+m). In the limit mo=,
which corresponds to constant service times,
eq. (21) specializes to

n _ n~j-1 to- .
) = (o) ] (-ptd Lol lietmnd) e

3=0 (22)

The above results, which can easily be programmed
in a suitable computer language, have been obtained
by forming successive derivatives of U(z) and
inducing the form of the general term. The compu-
tation of the derivatives may become quite tedious
if we attempt to do it manually. We have obtained
the results by means of symbolic computations
available on a digital computer [13].

4. NUMERICAL RESULTS

We now present numerical results to illustrate how
the distributional form of service time affects
system's performance in terms of server utiliza-
tion, average queue size, average response time,
etc.

First, we show typical examples of the queue size
distribution in figs. 3(a) and (b), in which

p= X = 0.75 1s chosen, and the total number of jobs
(i.g., the degree of multiprogramming in a computing
system model) is set to N=4,6, or 8. Fig. 3(a) shows
the case where service times at server 1 are constant,
i.e., the coefficient of variation c¢=0, The queue
size distribution 1s calculated from eqs. (4) and
(22). Fig. 3(b) plots the case where the distribution
F(t) is the two~-stage hyperexponential distribution
with w,=0.744 and u2/u =202which give the squared
coefficient of variation ¢ =5.

Note that in figs. 3(a) and (b) pN(n) is plotted in
logarithmic scale. If F(t) were an exponential dis-
tribution (i.e., c=1), then the curve would be a
straight line with slope log p, whereas figs. 3(a)
and (b) indicate that p,(n) 1s concave for Erlangian
distribution, and convex for hyperexponential distri-
bution. Furthermore, pN(0)<pN(l) for Erlangian dis-

o4+t

I

0.0t
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N
»
@

Fig. 3a. The queue size distribution of server 1,
when server 1 has a constant service time
1

N
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pptn)
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Fig. 3b. when server 1 has a hypefexponential dis—
tribution with the mean E—aad the squared
coefficient variation =5,

tributions and p_{(N)>p, (N-1) for hyperexponential dis-
tributions. In %act, ghese properties hold for a much
broader class of distributions than Erlangian or hy-
perexponential distribution; namely, the queue size
distribution (in logarithmic scale) is concave 1f F(t)
has coefficient variation c<l, and is convex if c>1.

A theoretical basis for such a statement is provided,
for example, by the diffusion approximation method
[11, 12].

The utilization or productivity u, of the general
server as a function of the number of jobs N is
depicted in figs 4(a) and (b), where the curves are
grouped according to p, the,ratio of the mean service
times. Within each group c¢”, the squared coefficient
of variation of servige time at server 1, ranges from
0 to 100. The cgse ¢ =0 represents the constant ser—
vice time, and ¢"=5, 20, 100, are realized by appro-
priate choices of parameters in hyperexponential ser-
ver with m=2, which are tabulated in table 1.2 The
dotted chain curve in each group represents c =1,
exponential service time. Note that u, is simply
proportional to uy according to eq. (8}. As N,

the solution approaches the result for the uncon-
strained M/G/1 queue, and therefore we find that

-+ min{p,1} , u, - min{p-l,l} for noo ., (23)

by | 2
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Q2+

'

Fig. 4a. The utilization of server 1 vs. multi-
programming N,

p= %-is 1,5, 0.75 or 0.4

Fig. 4b. p=1

Table 1
The parameters of the hyperexponential distributions
used

d Holuy "

5 20  0.744

20" 50 0.949
100 250 0.99

The value of uy for N=1 is

u = A7, w, et (24)

This ig clearly the smallest value of u, and
therefore we find the following lower anid upper
bounds

1+ < u < minp,1} (25a)

1

e+ ) <y <minfo i1} . (25b)

2
From figa. 4(a) and (b) we see that the smaller c2

is and the more p derivates from unity (i1.e., the
more unbalanced the system is), the faster u
approaches the asymptotic limit. Compared to
exponential service th the same mean, the utiliza-
tion is larger for c“<l and smaller for c“>1,

which wis reported earlier by Gaver [1]. For

large ¢”, the convergence to the asymptotic value may
become extremely slow and throughout the practical
range for N, U, may be close to the lower limit. In
such cases, the lower limit of eq. (25) should be
used for design estimate rather than the values ob-
tained under the exponential server assumption.

The average queue size of the general server, ;i,
are depjcted in fig. 5 as a function of N with
p and ¢~ chosen as parameters. Asymptotically,

Fig. 5. The average queue size of server 1 vs.
degree of multiprogramming N.

Ei approaches a comstant value
oy 21+c2
1 2(1 - p)

which is a well-known formula in the theory of the
M/G/1 queue. If p>1, the server 1 is the bottle-

+p+ 82 for N> if p <1 (26)

neck, therefore, Ei increases without bound in
parallel with the straight line E1=N. It is
interesting Ehat Ei is the least sensitive to
changes in ¢~ 1if p=1.

The average response time (sum of waiting time and

service time) T, at the general server is obtained
by Little's foriula

e = nl/ul (27)
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and the corresponding curves are similar to those Watson Research Center, Yorkrown Helights, New
York, November 1973.

of ;i but show more variation with c2 [13].
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