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E Use of the Diffusion Approximation to Estimate Run
i Length in Simulation Experiments
T. Moeller and H. Kobayashi, New York

ABSTRACT

This paper presents an application of the diffusion process approximation
to the statistical analysis involved in simulation experiments of queueing sys-
 tems. The autocovariance function of the queuve size process for both a GI/G/1
‘queue and a cyclic queueing system are obtained. Run length is predicted and
i the variance (hence confidence intervals) of estimates of performance such as
} average queue size, queue size distribution, and server utilization are com—
puted using the approximate autocovariance function. These techniques are
used in a simulation experiment of a cyclic queueing model of a multi-programmed

computer system.
1. INTRODUCTION

The analysis of outputs of simulations of queueing processes 1s often made
| difficult because of the high degree of serial correlation in the output time

I geries. If the autocorrelation function is positive over some range of time as
. 18 the case'in many queueing processes, a variance estimate made on the assump-
; tion of independent and idehtically distributed outputs may be a serious under-
L estimation of its true value.



364

In order to overcome such a difficulty, a number of techniques have been
developed. The method of blocking of the output samples is the most widely
used technique to achieve nearly independent sample outputs. Also commonly
used is the method of independent replications of the experiment.

FISHMAN [1971] has proposed a method in which regression analysis is per-
formed during the simulation to dynamically estimate the autocorrelation in the
output. This estimate is then used to determine when to halt the simulation.
CRANE and IGLEHART [1974] recently discuss the concept of regeneration cycles
to obtain groupings of the output which are independent and identically distri-
buted, whereby the variance of the sample means can be calculated in a straight-
forward manner.

correlation into account are given in FISHMAN and KIVIAT [1967].

Other methods of analysis of variance which take the auto-

An exact expression for the autocorrelation function of a queueing process,
however, is known only for the M/M/1 case, MORSE [1955], who obtained the
solution as an infinite series of modified Bessel fumctions.

For simultations of queueing systems we propose here the use of approxi-
mate analytical solutions, The diffusion approximation of the queue size pro-
cess of a GI/G/1 system and a two stage cyclic queueing system is used to esti-
mate the autocovariance functions of the processes. They, in turn, are used to
calculate the run length required to achieve a prespecified value for the

variance of the sample mean of the quantity one wishes to estimate.

2. GI/G/1 QUEUEING SYSTEM

Consider a GIL/G/1 system with FCFS (first-come, first-served) queue dis-
cipline.
independently and identically distributed with means and variances given by

Let us assume that the interarrival times and service times are both

(ua,us) and (uaz,osz), respectively.

Let Q(t) represent the number of customers in the system (i.e., those in
service or in queue) at time t. A realization of Q(t) is a random step function
with vertical jumps of magnitude one at instants of customer arrivals departures
from the system.

If the traffic density p=ua/us i1s close to unity, then the server is
rarely idle, i.e., Q(t) is seldom near the barrier Q=0 and it is well justified
to replace Q(t) with an approximate continuous process X(t), t>0. In this case,
X(t) is a diffusion process with a reflecting barrier at X=0. For a discussion
of the validity of this approximation, see COX and MILLER [1965], KOBAYASHI

[1974], and NEWELL [1971].

3

] stationary, the autocovariance function of a queue size process Q(t) can be
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; For a stochastic process X(t) which approximates the queue size process
‘:of a GI/G/1 system, the conditional probability density function p(xo,X:t) of
i X(t) given that X(0) = X, satisfies the Fokker-Planck equation:

2
3 ey = & 9 ) )
3t p(xosx’t) 2 axz P(xonxat) -8B ?i P(Xo,xit) 1)

b with the boundary conditions

9 . .
| 2 3x P(goX5t) - B p(Xy,X5t) = 0 at X = 0 2)
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p(XO,X;t) = :—X {@(—?:2——— ) -e $(——)} (4)

"éuhere ®(*) 1is the Integral of the unit normal distributiomn, i.e.,

X 2 '

1 -t2/2

o) = - f e dt. (5)
f21|» 0

Using the property that the process X(t) is, in equilibrium, covariance

E approximated by

R(t) = X 2 [k - E{X}[m - E{X}] p(k)f(m,kst) (6)
k=0 =0

where f(m,k,t) is the discrete conditional probability density function corres-

. ponding to p(m,X;t) and is given by

o+l

p(m,k;t) -j p(m,E;t)dE, k=0,1,... ¢)]
1 k
| and p(k) = lim p(m,k;t). (8)
3 Tt
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3. CYCLIC QUEUEING SYSTEM

Let Ql(t) represent the queue size of the first server of a cyclic queue-
ing system, shown in Fig. 1. The number of jobs N remains constant and.the
Jobs circulate in a closed loop of two servers. Each server follows the FCFS
(first—come, first-served) discipline and when service is completed at one
server, the job instantaneously moves to the queue of the other server. If the
gervice process at each server is governed by a general probability distribution
with means (ul,uz) and variances (012,022), and then the Ql(t) process is a
discrete-~valued random process with reflecting barriers at Ql-O and Ql-N.

If the number of jobs N in the system is sufficiently large and the ratio
ullu2 is close to unity, then Ql(t) seldom reaches the bar;ier and it is appro-
priate to approximate Ql(t) by a diffusion process q(t). We then derive a
normalized diffusion process y(t) according to the transformations

T=t 2 9
Q-p)
and
C, +C,p
;- / arey an

and we obtain the corresponding Fokker-Planck equation in KOBAYASHI [1974]:

Y ]

3 U i) - & ;

37 PUsys™) = 3 2y P(3Gs73T) - 55 P(G.73T) 1)
with boundary conditions

13

7 3y PUQt®) - P(p,y;T) =O0at y=O0andy=b Qa2

vhere those parameters which appeared in Eqns. (9) - (12) are defined by

2 2
Wl % 92
b" +Co| G Ty, G227y
1+ Y i1 2
1-p
u (13)
p-—l <1_
L]

Note that T represents a normalized time and y, the normalized queue size.
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Fig. 1 A two-stage cyclic queueing system

L Using the conditional probability demsity function p(yo,y;T) and its steady

?utate probability density function p(y) = lim p(yo,y;T), the autocovariance

T
k function for the normalized queue size process 1s given by

b
R() =f [y(s) - E{y}Ip(y(s))dy(s)
0 (14)

b
f [y(s+t) -~ E{y}l-p(y(s+1), y(8);1) dy(s+t}
0

$ A solution to the boundary value problem given by Eqns. (9) and (10) is given
B in SWEET and HARDIN [1970] )

AT
n

T
2y YV "7 & -
2e 0 2 2
P(Ygs¥5 ™) = 5 +te e z ¢n(yo)¢n(y)e (15)
e’ -1 n=1
g Vit 21 ? L }
¢ (y) =W————— {cos Ay+3— sin Ay
n b(A 2+1) n xn n
" (16)
A, = % , n=1,2,...

Using an approximate solution ior p(yo,y;t) defined by Eqn. (15) in the expre-

ssion for R(t) ylelds an estimate of the autocovariance function
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. 0 )
R() = 3 a’e” 2 17)
n=1 n .
where 1 b
a = |—2—1|? 8o () d (18)
n 2b te ¢n 3 £ -
e -1 0

3.1 Mean Value of Queue Size

The sample mean of queue size is given for an observation of length T by

- 1 T
y = ¥f y(t)dt . (19)
(0]

The variance of y may be used to estimate how close the sample mean is to its
population mean E{y}. The sample covariance is given in terms of the auto-

covariance R(t) as

T
var (y) =% J[ a - ‘l%l) R(t) dt . (20)
L1

Since R(1) given by Eqn. (17) approaches zero sufficiently fast as 1>, we

obtain the following asymptotic result

T 00
1im f (1 -JT;-L) R(t) dt = 2f R(t)dT . 21)
T =T 0
For the case where R(1) is approximated by Eqn. (17) the assumption for Eqn. (21)
holds and thus 2
- 1 — 4 an
var(y) = > 2 (22)
n=1 )‘n +1

Thus, an estimate of simulation run length T* required to obtain a specified
level of variance V¥ in the sample mean is
© 4 an2
- (23)
n=1

.y 2+1
n

IH

T* =

<l

3.2 Queue Size Distribution Function

Consider an estimation of the distribution function for the queue size
process y(t) of the cyclic queueing system. The first-order distribution

function of y(t) is given by
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F(y) = Pr{y(t)sy} , Ogys<h. (24)

f‘}
%

%or the process y(t) define a 1-0 valued process Zy(t) by

2 (0 = fLEVO <y
M 0 if y(1) > y. (25)

the expected value of Zy is thus the value of the distribution fumction F(°) at
point y:
E{Zy(t)} = Pr{y(t) <y} = F(y). (26)

‘for a simulation of run length T, define the sample estimate of the distribu-
‘tion function F(y) by

- 1 T
F(y) = T_[ Zy(t) dt., 7
fhe variance of this sample value is given by

var{F(y)} =% fr(l - J';—L){G(y,r) - FZ‘(y)]d'r (28)
T

ﬁere
,~’ 6(y,t) = E{Zy(th)zy(t)}

= Pr{X(t+r) <y, X(t) <y} (29)

y y
=_£ p(5)£ p(E,n3T) dn dE .

?.ince R(1)+0 sufficiently fast as T+, we may write for sufficiently large T

R

var{F(y)} = % fo [6(r, 1) - Fo(y)1dr . (30)

Using the diffusion process approximation for p(f,n;t) we have an estimate for
the variance of F(y) given by

2
_ = 4b “(y)
var{ff(n} =1 ¥ —2 (31)
n=l A" +1
vhere n
1
2 1% 7 ¢
b () = [ - 1] ‘L efo (0) a5 . 32
o2

Using Eqn. (31) an estimate of run lemgth T; may be obtained for the desired
level of confidence V; in the variance of the sample distribution point f(y):
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2
= &b ()
& .
. .
y Vy n=1 Anz +1

(33)

3.3 Simulation Experiment

As an example of the run length and confidence interval prediction tech~-
niques we take a cyclic queue model (Fig. 1) of a multiprogrammed computer sys-
tem. Programs (jobs), in the system wait for service at the CPU (server 1),
then after an I/0 request they wait for service at the I/0 device (server 2).
It is assumed that there is a constant number of jobs N in the system and that
the CPU has an exponential service time distribution and the I/0 device has a
five stage erlang service time distribution. For this example, N=10, p-ulluz-.s
and u;=4.0, 1,=5.0, 0,=4.0, o,= V5. Since g = ((c; +¢Cp) /(1 - 0))y (where
y 1s given by Eqn. (19)) is essentially a linear sum of a random variables y(t),
0 <t < T, the random variable q is asymptotically (i.e., as T+=) normally
distributed. Thus a confidence interval for q for sufficiently large T can be
derived using the relation

Pr( |q - E{q}| <L - Y{var 9 ) >1-¢C (34)

with L such that ¢(L) = % s 0<C<l. Thus the confidence interval is given by
2 LY(var §) and the confidence level is 100(1-C)%.

The simulation was programmed using the SIMPL/I language [IBM, 1972] and
The experiment is initialized by placing five

jobs in each queue and beginning service to the first job in each queue at time

run on a IBM 370/158 computer.
zero. The stopping condition was determined from the run length estimate given
by Eqn. (23) together with a variance of sample mean such that the confidence
interval 1s .2 and the confidence level is 90%.

The sample mean queue size for the first server and the sample queue size
distribution {f(q)}:gl are generated from the simulation, and confidence inter-
vals are calculated for {f(q)}:gl based on the run length T* = 62,180 (in the
same units as ul) and using Eqn. (31) and Eqn. (34).
results of the simulation.

Table 1 summarizes the

Of special interest is the fact that the sample value of utilization for
the CPU (server 1) is given by 1 - F(0).
utilization is therefore given by the confidence interval for Feo).

The confidence interval for this sample
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ﬁ = 1,92, 907 confidence interval of .2

with a the sample mean queue size

qa F(q 8, [F-s,, F+s,]
0 245 .002 [.243, .247]
1 .530 .005 [.525, .535]
2 .712 .008 [.704, .720]
3 .826 .011 [.815, .837]
4 .B95 .014 {.881, .909]
5 .938 .016 [.922, .959}
6 .965 .017 {.948, .982]
? .981 .016 [.965, .997]
8 .992 .014 [.972, 1.000]
9 .997 .008 [.887, 1.000]
10 1.000 0 -——

gi Table 1 Estimates of Queue Size Distribution Function For Cyclic

& Queue System

g (N=10, p=.8, Run Length = 62,180)

CONCLUSIONS

The techniques of run length prediction or confidence interval prediction
: y be applied to other systems for which an expression for the autocovariance
Hunction 1s known. Here a cyclic queueing system and a GI/G/1 were studied.
Hoetial correlation of the output time series. An extension of the method to a

imulation of a more general queueing network is currently being investigated.

&

i
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