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Summary

The conjugate gradient algorithm of Hestenes
and Stiefel is applied to the design of a time-
domain equalizer in a form which requires no prior
knowledge of statistics such as correlation func-
tion or power spectrum. A practical equalizer
structure is discussed and a bound for the rate
of convergence is obtained using Kantorovich
inequality. :

Introduction

Consider a PAM baseband system given in Figure
1. The equalizer w = {w(u); - LlSuSLz} is a

linear discrete filter with L stages, where

L= L1 + L2 + 1, and its input and output are
related by
Ly
y() = ] wwx(k-u) (1
u= —Ll

We define the squared error distortion cri-

terionl’2 by
(2)

P=7 {y(k) - s()}? = 27 + ) s2 (1)
k k

where J 1s the following quadratic function of
L-dimensional variable w.
(3)

J=%<E,Bz>- <, b>

Here < , > means inner-product.
matrix whose entries are given by

R isan L x L

R(u,v) = E x(k-u)x(k-v), - LISu,vSL2 (4)
and b is an L x 1 matrix:
b(u) =,Z‘x(k—u)s(k), - LISUSL2 (5)

k

It is clear that R 1is a non-negative definite sym-
metric matrix and the value w* that minimizes J
is unique if R is positive definite.

Hestenes-Stiefel Algorithm

The conjugate gradient method due to Hestenes

and Stiefel3 is an iterative algorithm to solve a

set of simultaneous equations
Ru=%b (6)

where R is an L x L positive definite matrix.
This method is an L-step iterative one, i.e., the
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algorithm is applied to give successive appro-
ximations to the solution and, if computations are
done with complete accuracy, the solution is ob-
tained after M iterations where M<L. A full
and lucid description of Hestenes-Stiefel algorithm

has been given by BeckmanA.

Clearly the same algorithm can be applied to

find w that minimizes P of (2). Let ¥, be

an arbitrary starting approximation to the solu-
tion vector of (6). The direction of the first
move, P, is the same as in the steepest de-

scent method, i.e.,

=b-Rw (€3]

25 = %o =% ‘
Then the following iterative formulae (for i20)

give successive approximations {Ei} that lead to
the solution w¥* = 37;2:
_ 2
o = |5, 1% 7 <pys Rpp> (8a)
Ve TE YOy By %)
£i+1=b'—3'¥i+l=£i_ai§'gi (8¢c)
_ 2 2
Bi - |£i+l| / IEil (8d)
(8e)

Bisl " L1 T B By
In the above formulae x;
at point w,., |£i| is its Euclidean norm, By is

is the gradient of J

the direction of search to the next approximation,

and o, is the optimum step size.

After M iterations with M<L, iy will be
equal to the solution w* if all computations are
done with no loss of accuracy. Many relations hold
among the quantities appearing in (8a) through (8e):

gy £ =0 i) (92)

<'P‘i’ B_.Ej> =0 i= j (9b)

; =0 i< j (9¢)

<p.s I.>
IR g% 123 (94)
<ry» Rp;> = <pys Rpy> (9e)
(9£)

<£i’ B..Ej> =0
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Using the properties (9a), (8c), and (9d), we ob-

tain alternative expressions for o, and Bi'
@ = <Iy> By / <py» Rpy> (10a)
By = - <Eyiy» Rpy>/ <py, Rpp> (10b)

Equation (9b) shows that the direction vectors
{Ri= 1=0,1,..., L1} form a set of R-conjugate

or R-orthogonal vectors and span the space EL.
The squared error distortion decreases at each
step of the iteration:

1 2
T 793 =77 Ry I /<Ry Rpy> =
1. 4
-5 51"/ <pys Rpy> (11)

Some other salient relations that hold among
the quantities appearing the iterative formulae are

oy - wr] > |w, - w¥| 1> (12)

and -1 -1
Wy - wh R T(wy - wh> > w, - wh, R (w,-w*)>
i<j (13

These results indicate that if we stop the iterative
process at any step, the last obtained approxima-
tion is the best in the sense of being the closest
to the true solution, whether the metric is defined

by either {5,_§>1/2 or by <x, R x>1/2

Equalizer Structure

Although (7) and (8) appear to require computa-
tion of the auto-correlation function R(u,v),
these formulae can be written in the following form
by substituting the definition (4) Initialization:

wo(u) is arbitrary, - LISuSL2 (1l4a)

po(v) = ry(u) = - EX(k—U)eo(k) (14b)

where eo(k) is the error of the initial estimate
yolk):

eglk) = yy(k) - s(k) (1l4c)
For 1 2 0:
Ly
qi(k) = Z Pi(u)x(k—u) (15a)
u= -L
1
ag = Iz, 1% 7 a ])? (15b)
4l T T oy Ry (15¢)
Ly
yi+l(k) = 7 wi+1(u)x(k-u) (15d)
u= —L1
ei+1(k) = yi+l(k) - s(k) -’ (15e)
riq(w = Zx(k e, (k) (156)
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2
= lz1% 7 Izl - (158)

Biyp T I PRy By (15h)
Sequence qi(h) of (15a) is obtained by passing the

sequence x(k) into a transversal filter By and
2
[a; €)1

Figure 2 is a block diagram of an automatic
equalizer (i.e., s(k) is known) or an adaptive
equalizer (in which the decision output s(k) is
used instead of s(k)) based on the iterative pro-
cedure (l4a) through (15h). The transversal fil-
ter wi+l(u) and the cross—correlator are common

is its norm square or energy.

to most of the existing equalizersl’z. The major

additional hardware is a transversal filter pi(u).

Other elements in the block diagram are mostly for
the purpose of storing vectors and scalar numbers.
The operation of each block will be self-explana-

tory by referring to the formulae (14) and (15).

If we set B, = 0, the structure is equiva-

i
lent to the steepest descent type equalizer. If
we use only blocks marked by * and replace ey

by a constant, then the structure is reduced to
the equalizer studied by the previous authorsls?

It has been shown in many optimization problems5

. . 6,7
and in the previous study of array processors ’

that the H-S5 algorithm provides a faster conver-
gence than the usual gradient or steepest descent
method.

Rate of Convergence

Although we know that the algorithm converges
to the optimal solution in a finite number of steps,
we are also interested in the convergence behavior
of the first few iterations. We will obtain an
expression for bound on the rate of convergence
and will see that the ratio of the greatest and
smallest eigenvalues of the matrix R determines
the speed of convergence.

We obtain from (11) that the squared error
distortion sequence Pi decreases according to
the relation

Pio1 =B - <1y x, >2 / <y Rpy> (16)

On rewriting Pi as

P, =<b -Ruw "l(g—ggi)>+

= =
[ls()|]% - <b, B> a”n

we obtain the minimum value of {Pi} as follows:

[s()]% = <w*,b> = [s() - y*(+),8(*)]
(18)
where [x(*), y(*)] 1is an inner-product of se-
quences x(h) and y(h). y*(k) of (18) is the

output of the optimum equalizer w*. Alternative
expression of P* is obtained by using b = R w:




pro= [[s()]12 - <wr,R wh> = [[s()]]?
2
- Jly* | (19)
From (8c) and (19) we obtain
-1
Pi = ﬁzi’-g > + P* (20)
Therefore by substituting (20) into (11) we have
4
- x = - * -
Pyyy - PR =By - P* - |n |/ <pys Ry

4 -1
= (Pi - P%){1 - |£i| / <P.i’_R_ 2i><£i’3 £i>}

(21
By using a simple manipulation, we have
2 2 2
|£i| - |£il . <‘Ei’.§ 'Ei> - ‘I_il
<t ,Rr,> <p,Rp;> <rLRrp> T1<pRppd
(22)
Then from (21) and (22) )
* = ( *{1 =% £}
P - Pk = (P, - P -
w ! apRrp<rLE s
(23)
where fi in (22) and (23) is
<r ,R I >
f, = _i__.i._ (24)

i <Ry RE,>
It can be shown from (8e) and (9b) that fi > 1.

Let the largest and smallest eigenvalues of
the L x L matrix R be ¥y and My respec-

tively. Then applying Kantorovich inequality
(Appendix A)

2

_ (n +UL)
|rll' < <r,R £><r,R ‘r> 54——1———— | |4 (25)

- - = /= = Hy, K

1L

to (23), we obtain an upper bound on Pi:
P, < P* + p2i(p, - P¥%) (26)
i 0

where

TR
o = —1—+—L- 27)
¥y T

A spectral density P()A) can be defined for
the auto-correlation function R(u) of a discrete
process x(k).

v .
Rw =3 [ e Mear, u= 031,42,

2m
(28)
A quadratic form in the covariance matrix R can

then be expressed in the spectrum form

<%,R x> = 7— f

2 .
wrx = [ | xwe™ ova @9
u

Using the relations

Inf P(X) < P(A) < Sup P(X) (30)
A A

and
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L L

2 X 2
z x(u)e+1uA|2dA - z |x(u)|2 - |x|2
L

v= =Ly vs - Ly

l kit
rrR
(31)

We obtain the following expression which holds in-
dependent of L1 and L,.

2
Inf P(A) < ‘é’%_T;. < Sup P(}) (32)
A x A

Therefore the maximum and minimum eigenvalues of
R are bounded as follows:

w > Inf P(R) (33)
A

Hy < Sup P(N) (34)
A

In fact, as L, and L2 go to infinity, the maxi-

1
mum and minimum eigenvalues attain the boundss.
From (27) and (33) we obtain

Sup P()) - Inf P(M)
Sup P(X) + Inf P(X)

(35)
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Appendix A

9,10

Kantorovich Inequality of Equation (25)

We assume without loss of generality that

le = 1. Then we want to prove the following in-
equality. 2
-1 (uy +wp)
1 < <v,R v><v,R “v> % (A-1)
- == - My U
1L
with
lvl =12 (-2)
where
uIZuZZ v ZuL>0 (A-3)

are the eigenvalues of a positive definite matrix
R. Let b5l el W be orthonormal eigenvectors

corresponding to eigenvalues of (A-3).

Consider the (x-y) plane with L points lo-
cated at (ui,ull), i=1,2,...,L. They are on

the curve xy =1 and these L points span a
convex region S. Let

Lo
x*=<v’gx>=23

v u (A-4)
i=1 i1
and
-1 L 2
y* = <v,R "v> = Z a, (a-5)
. i=1
where
ai = <y, _u_i> (A-6)

The point (x*,y*) 1lies in the convex region S for
any vector Vv, since
E a = IZ‘ w.u,5? |y
i=1 i=1
Therefore the maximum value of x*y* is given by
¢, where X y = ¢ touches the line connecting

12 =1 (a-7)

the points (ul,uzl) and (uL,uil). The value ¢
can be obtained as
2
(uy +wp)
¢ =g (A-8)
M1 M

It is easy to see that the minimum value of
x*y* is unity. Thus Kantorovich inequality of
(A-1) has been proved.
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