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Simultaneous Adaptive Estimation and Decision 
Algorithm for Carrier Modulated Data 

1 ransmission Systems 

Abstract-The problems of sequence  decision,  sample  timing, 
and carrier phase  recovery  in  a class of linear  modulation  data 
transmission systems are  treated from the  viewpoint of multi- 
parameter estimation  theory.  The  structure of the  .maximum- 
likelihood  estimator is first obtained,  and  a  decision-directed 
receiver is then  derived. These  receivers are  different from the 
conventional  one in that  the carrier phase is extracted from the 
signal  components  themselves  in  an  adaptive  fashion. 

The structure of this  adaptive  demodulator and detector is then 
extended to the  case  in  which  the  channel  characteristic  is  un- 
known,  and  the  algorithm  for  adjusting  the carrier phase  and 
sample  instant is  discussed  in combination  with  that of adaptive 
equalization. 

I. INTRODUCTION 

TH" E 
i RROR in  carrier  phase  acquisition  along  with 

sample  timing  error  and  intersymbol  interference is 
one of the major  obstacles of high-speed digital  data-trans- 
mission systems [l]. In  t,he  conventional  pulse-amplitude 
modulation-vest(igia1 ' sideband (PAM-VSB) (or -single 
sideband (-SSB)) systems, the phase of the demodulator 
is controlled by a phase-locked loop (PLL) t,racking the 
phase of a reference carrier  (sometimes called a pilot 
carrier), which is added  in  quadrature  with  t'he  modulat- 
ing  carrier. The following are  the difficulties associated 
with  this convent.iona1 technique. 1) The phase jitter of 
t,he pilot, carrier,  caused by  data components  near  t,he 
carrier  frequency,  cont.ributes to  error  in  the phase  esti- 
mate  and hence  results  in  additional  distortion of the 
demodulated  signal. 2) The phase  characteristic of the 
t,ransmission  media tends  to be highly  nonlinear  near 
t.he cutoff frequency region,' a t  which the pilot  carrier is 
located for the  purpose of efficient bandwidth ut,ilizat'ion. 
Thus  the amount, of phase  shift  (averaged  over  the  signal 
spectrum band), which the modulated  signal  components 
receive, is different  from the phase  shift of the  pilot car- 
rier. In  other words, the  phase  estimate based on t.he 
carrier is not t,he optimum  value  to be used for  demodu- 
lat,ion.  This  error,  too,  results  in  distortion of the de- 
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ample, [ I ,  p. 361 and [2]. 
1 This is typically the case ill telephone  channels. See, for ex- 

modulated waveform (sometimes called phase-intercept 
distortion) [SI. 

In  convent.iona1 PLL systems, the modulated  signal, 
which contains  much more energy than  the pilot  carrier, 
as far  as  the acquisition of carrier  frequency and  phase 
is concerned, is in effect regarded  as an interfering com- 
ponent, or noise. Such a treatment  may be quite  natural 
in analog  communication  systems  in which a signal proc- 
ess is essenbially a  random process, usually a Gaussian 
process [4]. In  digital data communication  systems, on 
the  other  hand,  it would be more natural to regard the 
signal  as a sequence of known (at  least  partially) wave- 
forms  modulated  by ,a random sequence. 

In  this  paper,  the problem of sequence decision, de- 
modulation,  sampling, and equalization  for a class of 
linear  modulation  systems [l] is treated from the view- 
point of mult,iparameter  estimat,ion. It will be.clear  that 
any  deviation of the receiver from its  optimum  character- 
ist,ic would be reflected in  additional  distortion of the 
demodulated signal. Hence the error-control  signal  should 
be obtained  from  distorted  output. It is  shown that tlhe 
sampled  values of the  demodulated signal  provide a suffi- 
cient  statist,ic for controlling the  carrier phase and  sample 
timing of t.he receiver. It is shown that  the maximum- 
likelihood receiver (R4LR) is realized by  modifying the 
conventional receiver to  the one of recursive type. The 
structure of an  adaptive  demodulator  and  sampler is then 
derived where the control  signal is obtained  from the 
decision output sequences, rather t.han  from the contin- 
uous waveform as  in the tradit.iona1 PLL or  in  the  Costas 
loop [l], [ 3 ] - [ 5 ] .  The convergence problem of this deci- 
sion-directed receiver (DDR) is discussed by  applying 
Robbins-RIonro methods [SI-[SI. 

The  structure of this  adapt,ive  demodulator  and  sampler 
is further extended to  the case in which the channel  char- 
act,erist,ic is unknown. This  adaptive  algorithm for adjust- 
ing  the  carrier  phase  and  sample  instant is discussed in 
combination  with that of adaptive equalization which has 
been extensively  studied by  Lucky [1], [SI, [lo] and 
others [11]-[lS]. The  joint  equalization,  carrier acquisi- 
tion, and t,iming recovery for PARI-VSB (or -SSB) sys- 
tems  have been studied  independently  by  Chang [l4], 
[15] and  by  the  present  author [16]. This  paper is in- 
tended to provide a unified treatment for  a class of linear 
modulation  systems  extending the earlier work. 
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11. MAXIMUM-LIKELIHOOD  RECEIVER 
Let {a,) be the  data sequence and wo the carrier  fre- 

quency. If we assume that W O  is larger than  the modulat- 
ing  signal  spectrum bandwidth, a concise representation 
of such a signal is given in  terms of the complex envelope 
[17]-[20] which we denote by s ( t ) .  The functional  form 
of s ( t )  depends  on the modulation scheme. For example, 

PAM-DSB 

s ( t )  = {E a n f ( t  - nT - 7)) exp ( j 4 )  ( l a )  
n 

PAM-VSB (or -SSB) 

s( t )  = [E an( f(t - nT - T) - j j ( t  - nT - T ) ) ]  exp ( j + )  
n 

(1b) 

quadrahre amplitude  modulation (&AM) 

~ ( 2 )  = {E (ai,n + jaz.n)f(t  - nT - 7) I exp ( j + )  (IC) 
n 

digital PM 

~ ( 2 )  = { E exp (jan)f(t - nT - T >  1 ~ X P  ( j + )  ( Id)  
n 

differential PM 

s ( t )  = IC ~ X P  (jbn)f(t - nT - 7 )  I ~ X P  
n 

bn = b n - 1 +  an mod 2a  (le) 

PAM-PM 

s ( t )  = {E a n  exp (jbn>f(t - nT - 7) 1 exp ( j + ) .  (If)  
n 

Here + and T represent the carrier  phase  and  delay time, 
respectively, which are unknown to  the receiver. The 
function f ( t )  in ( l a )  and  (lb) represents the baseband 
signal element,, and j ( t )  of (Ib) is a linear  transformation 
of f ( t )  and is equal to  the Hilbert  transform of f ( t )  in 
t’he case of SSB modulation.2 

Signal forms of (1)  have a common representation 

~ ( 2 )  = {C c n f ( t , -  nT - 7) I ~ X P  ( j + )  (2) 
n 

where (c,) is a  real or complex number  relating to  the 
information sequence {a,). For example, cn = al,n + ja2+ 
in  &AM  and cn = cion in digital PM. Similarly, f ( t )  is a 
real or complex function  representing  a  signal  element, 
e.g., f ( t )  is complex for VSB (or SSB). The  actual wave- 
form to be transmitted  is given  from the definition  of the 
complex envelope by 

Re { s ( t )  exp ( . h o t )  1 (3) 

* The representation of an SSB signal  in terms of Hilbert  trans- 
form is widely used [l], [19]. It is rather  straightforward  to  extend 
this concept to represent  a VSB signal [l]. 
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and the receiver input is denoted by Re { x ( t )  exp ( juot) } 
where 

x ( t )  = r ( t )  + n(t) .  (4) 

Here, r ( t )  , the complex envelope of the received signal, 
takes  the form 

r ( t )  = { C c n g ( t  - nT - 7) 1 exp ( j + )  ( 5 )  
n 

where 

g ( t )  = f(t) ‘8 h b ( t ) .  (6) 

In  (6), h b  ( t )  is the impulse response of the baseband 
equivalent of a  given  channel h ( t )  and is in general a 
complex function [all, and ‘8 represents  convolution. 
That is, Fourier transforms of h ( t )  and hb ( t )  are related by 

{;(u + W O ) ,  I W I < w 
H b ( W )  = (7) 

elsewhere 

where W corresponds t,o the  bandwidth of a low-pass 
filter which follows the  demodulator. W can  be chosen 
equal to or greater  than Wr, the  bandwidth of the signal 
element f ( t )  [Zl]. 

As shown by ( 5 ) ,  the received signal is a  known wave- 
form  with  unknown  parameters +, T, and { cn) . We assume 
that,  the  additive noise is a  Gaussian process with zero 
mean  and covariance  function NoK ( t , t ’ ) .  If the noise is 
stationary, K(t,t’) = K ( t  - t ’ ) ,  and if it is white, K(t,t’) = 
6 ( t  - t ’ ) .  Let P,+,(x) and Pn(x) be the probability meas- 
ures under  the  hypothesis that  the signal is present and 
absent,, re~pectively.~  Then  the likelihood-ratio function 
is given by 

(8) 
where the inner  product [x,r]K is defined by 

[x,r]K = [: /-: x* ( t )  K-’ ( t  - t ’ )  T ( t ’ )  dt dt’ (9) 

where K+(t - t ’ )  is the function4 which satisfies 

1-1 K-’(t - t’)K(t’ - t ” )  dt’ = 6( t  - t ” ) .  (10) 

where i(t) is  any  function whose Fourier  transform  is 
unity  in  the frequency  range I w I < W.  

venient to introduce  these  two  hypotheses  in  order to define the 
Although the problem  is not a  detection  problem, i t  is con- 

likelihood-ratio function of (8). 
* The inner product of (9) can be well defined using the repro- 

ducing  kernel Hilbert space  method, even if K-’(t,t’) does not 
exist. See [22]-[24]. 
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By substitut,ing (5) and (6) into (9) , we obtain MLEs are  asymptotically  (i.e.,  for  a high SNR or  for a 
large size of data) unbiased.  Under the  asymptotic assump- 

n tion we can neglect t.he noise component of the mat,ched 
filt,er output z,, obtaining 

[rc,r]K = zn*cn a Z*‘C 

where t,he complex-valued vectors c and z represent the 
sequences (c , )  and ( z,) which may be of an infinite zn c m g ( t  - ‘ I z T  - ‘1 exp ( j 4 )  1 
length.  The asterisk and prime  mean complex conjugate 
and transpose,  respectively. The  random  variable zn is a  .exp ( - j & )  8 q * ( - t ) ] t = n r + ;  

nl 

linear  observable of x ( t )  defined by 
= C R ( ( n  - m ) T +  i - T )  exp[-j(& - (P)]c,  

m 

-g*( t ‘  - nT - T )  exp ( - j+)  dt dt‘ where & and i are  the est.imat’es of 4 and T used in  the 
receiver. Then  applying Taylor’s series expansion to  

= [ { z ( t )  exp ( - j + ) ]  8 q * ( - t ) ] t = n ~ + r  (‘‘1 R ( ( n - n z ) T + i - ~ ) e x p [ j ( & - # ~ ) ] a r o u n d i = ~ a n d  

where q ( t )  is the solution of the integral  equation & = 4, we obtain 

K ( t  - t ’ )q ( t ’ )  dt’ = g ( t ) .  

In  (12), the real and  imaginary  parts of z ( t )  exp ( -j+) + (i - T )  c,*@ (n  - m )  T)C, 
correspond to t,he so-called in-phase and  quadrature com- 
ponents of t’he  demodulator  output’.  The  function q*( - t )  
represents  a complex filt,er (Appendix I)  matched to  the + (+ - C n * j (  (n  - 772) T)Cm 
signal g ( t )  , and  thus z, is the sampled  value of t,he matched 
filter output,. Similarly, we obtain 

m n  

2 m n  

+ higher  order  terms exp [ - j ( &  - 4) ] 
[ r , r ] ~  = cn*Rnnpcn~ = c*‘Rc (14) I 

n n f  

where R represents  a complex-valued Hermitmian (or self- 
adjoint)  matrix whose components Rnn. are given by 2 

(i - T)Z 
c*’( -R)c 

1 
In L(rc I c,T,+) = ~ (z*’c + c*’z - c*’Rc] 

2Nn 

is skew symmetric  and hence  it’s quadratic form  is  always 
zero : 

1 
C*’RC = cn*A( (n  - 7n) T)cm = 0. (19) 

-~ ( C  - R-’z)*’R(c - R-’z).  (16) m n  

2No On defining quant,ities u,2 and ub2 by 

The last expression shows that sampled  values of the 
matched  filter  out,put  provide  a sufficient stat&ic for 
extracting all the parameters. 

The maximum-likelihood estimates (RILE) of param- 
eters c, r ,  and 4 are those  values which jointly maximize 
t-he expression of (16). First we demonstrate that  the 

No 
u,2 = 

c*f( -R)c 
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where C is a posit.ive constant.  Thus we see that  the 
MLEs of 4 and T are  asymptotically  normally  distributed 
with the  true values as  t,heir means and  with  variances 
ug2 and a?, respectively. It is known that u? and uo2 of zn is then obtained from and (25) : 
(20)  and  (21) correspond to Cramer-Rao lower bounds, 

The second and  t,hird  terms represent  intersymbol  inter- 
ference  terms  introduced  when the demodulator  phase 
and  sample  timing  are  not  correct.  The  error  variance of 

that is, the MLEs are  asymptotically efficient [25]-[27]. ~ ; 1  - Cn 1 2 1  = N~[R-I-J,, + I [R-lRc]; 12 

(16) is maximized by choosing 6 such  t.hat + ad2 I [R-'cln 1' (26) 

For given  est'imates ? and $, the log-likelihood ratio of 

J = (6 - R-'x)*'R(6 - R-~z) (23) 

is minimized. Thus we see that  the maximum-likelihood 
decision rule is  equivalent  to a generalized minimum- 
distance decision rule. If the information  sequence c is 
independent  from  digit to digit, the decision rule  is real- 
ized by  the bit-by-bit  detection  method  in which the 
sequence R-1z is passed into a decision box (e.g., an 
amplitude-threshold detector if c  represents an amplitude 
sequence). If c is a  correlated  sequence like outputs of a 
convolutional  encoder [as], or  a  correlative level encoder 
[29] (or a part,ial response channel),  t'hen  the maximum- 
likelihood decision rule takes a  form quite different  from 
the conventional  bit-by-bit  detection  method [30]-[34]. 

Multiplication  by the  matrix R-l corresponds to  the 
(two-dimensional)  equalization which removes intersym- 
bo1 interference  completely  when the  demodulator  phase 
6 and  the sample  timing i are exact. Thus t'he  sequence 
R-'z is obtained  by  passing the received waveform z ( t )  
into  the  demodulator,  the  matched filter, the sampler, 
and  then int,o the equalizer. This  opt'imum receiver struc- 
ture  has been derived by  Tufts [35], who reached this 
configurat>ion based on  the criterion that  the  output noise 
power be minimized with zero intersymbol  interference. 
The solution under  t'his  criterion is in  fact  the minimum 
variance  unbiased estimate of the sequence  c and is known 
to agree  with the  MLE when the noise is  Gaussian [25]- 
[27]. A further relat,ionship  between the  matrix R-l and 
the equalizer is summarized  in  Appendix 111. 

Let us denote  the equalizer output  by E ,  i.e., 

E = R-'z. 

where [R-l]n,n denotes  the (n,n) element of the  matrix 
R-' and  [aln means the  nth component of vector a. The 
right  side of (26) could have been derived  from the 
Cramer-Rao lower bound  extended to a complex-valued 
random  variable [3S]. It should  be  remarked  here that 
the development  from ( 8 )  to  (26) is analogous to  radar 
parameter estimat,ion problems [3S]-[41]. The RtLE has 
also been applied to  the  estimation of t,he time of arrival 
and signal waveforms in  array processing [42],  C4.31. 

Since we know that t.he log-likelihood funct'ion ( 1 G )  is a 
concave (at  least  locally)  function of parameters  c, T, 4, 
we can  apply the gradient  t,echnique [44], [.57] (or  the 
steepest  ascent  method) , if the initial  estimates  are  within 
the convergence region. We will defer  t'he convergence 
problem  till the end of Section 111. Taking  the derivat.ives 
of the log-likelihood function  with  respect to 6 and ?, we 
obtain 

a In L 
a? 

~- - 2 Re { i*'6} 

(27) 

(28) 

where the  nth components of sequences &/a+ and i are 
defined by 

Note  that E is not  the MLE, since we know that informa- 
tion sequence takes on  only  discrete  values,  whereas E is d 
an analog  value.5 Equation  (16)  indicates  that E is nor- = [$ ( z ( t )  exp ( - j&  @ * * ( - t ) I ]  (30) 
mally  distributed,6  and the variance is calculated by  apply- 

which is the sampled  value of differentiated  waveform of 
the matched  filter  output. From (27)-(30), we obtain  the 

t=nT+? 

In  other words, we take  into  account a priori probability of 
random  variable c. We could have included this in our formulation iterative estimat'ion  formulas 
by multiplying (8) by  the prior probability of c (and those of 7 and 
4, if available).  Such an  estimate is called the unconditional maxi- 
mum-likelihood estimate [27]. 

discussed in [17],  [36], and [37]. 
Complex-valued Gaussian random variable and vectors are 

= 6% - ai I m  (&*'zzj, ni > 0 (31) 

?;+I = ? i  + pt Re ( i i * ' t i } ,  pi > 0 (32) 
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Sampler Equalizer 

Correlotor I : Re { Z 2,) 

Correla!or II : I m  { 1 2 2.) 

- Complex  Signal Flow 

0 Operotion On Complex  Sign01 

Fig. 1: Maximum-likelihood  receiver  and  decision-directed  receiver. Heavy lines  represent  complex  signal flows or 
operations on complex signals. 

where zi = z(&,?;), and 2, is t.he estimate of the informa- 
tion sequence at  the  it 'h it'erat,ion, i.e., i t  is t.he legitimate 
sequence t,hat minimizes 

J = (2 - R-lzi) *'R (t - R-lz,).  (33) 

The  structure of the maximum-likelihood receiver 
(MLR) is  given in Fig. 1, where the estimated  sequences 
converge to  the  MLEs 7", 6, and i: 

lim zi = 7" (34) 

lim & = 6 ( 3 5 )  

lim cz  = c. (36) 

i- m 

i-b m 

. . . .  
i-b m 

The  optimum gain  sequence ai and p; in (31) and ( 3 2 )  
are chosen in such  a  way that  the next  approximation 
gives the point, (?i+l,&+l) that maximizes the log-likeli- 
hood function (16) over  all  points  on the line of action 
of the gradient  passing  t,hrough (it,&). The  optimum 
values of ai  and pi are derived in Appendix IV, when 
(?i,&) are close' to their t,rue  values  and  the  SNR  is high. 
These  values  are 

f f i = - - -  
1 0-92 

c*'Rc No 
- 

1 p .  = ~- - - 
c*'(-X)c 

where u+2 and ur2 are Cramer-Rao 
(See (20) and (21).) 

111. DECISION-DIRECTED 

(37) 

bounds of 6 and ?. 

RECEIVER 

The  MLR obtained  in  t,he  preceding  section  is of a 
recursive type,  that is, t.he received signal  is processed 
repeatedly unt,il t.he estimate of unknown  parameters con- 

which  Taylor's  expansion of the  log-likelihood  function around 
' We mean here that  the  point (?&) belongs to  the region in 

(T,+) gives a good approximation. 

verge to  their final values.  Although this recursive algo- 
rithm provides us with the best  estimate we can  obtain, 
this is clearly % ~ n  impract,ical scheme, sincewe have  to st.ore 
all the  data received during  t.he  observation  period.  More- 
over,  computat.ion must be  performed  for the whole data 
by  applying  the formulas (31)-(33) iteratively.  We  shall 
be able, however, to develop  a  more  practical  estimation 
algorithm  by modifying the  structure  obtained before. 

Let  us divide the observation  int,erval  into  sequential 
disjoint  subintervals of N digit  length.  Then  the observed 
data z ( t )  , 0 5 t < m , is transformed  into a sequence of 
random processes z ~ ( t ' )  ,zz( t ' )  , - - -,x+ ( t ' )  , 0 i t' I N T ,  
such t,hat 

z ( t  + ( k  - l )NT),  0 5 t' 5 N T  
Zk(2') = 

(0. elsewhere (39) 
where k = 1,2,3, - - e .  We assume that  the processes zk(t') , 
k = 1,2,3 - . .  , are independent,ly and identically  distrib- 
uted.  Then we shall  be  able to  apply  to  our problem the 
Robbins-Monro stochastic  approximation  method [SI. 
Sakrison [7], [SI discusses extensively  applications of 
the stochastic  approximation  method to  parameter esti- 
mation  problems in various  communication  systems. His 
results are  directly applicable to  the present  problem. Tong 
and  Liu [45] applied'the  stochastic  approximation  method 
to  the automat,ic  equalization  problem. 

Let L(zk 1 T,$ )  be t,he likelihood function defined for 
the kt.h interval: 

~ ( z k  I T,+)  = exp 1;F 2No ( [ z k , n ~ K  + [rk ,xkb  - [ rk , rkk ) }  . 
1 

(40) 
The  true values of I#J and 7 will be those  values 6 and ? 
for which the expected  value of the gradients of the log- 
likelihood function  associated  with the parameters 6 and 
? are zero: 

(41) 
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and 

where E means the expectation  with  respect to  both  the 
additive noise process nk ( t )  and  the  data sequence c k .  

The Robbins-Monro method is an algorithm that uses 
the sequential  observations { x k ( t )  , k = 1,2, - - - } to iter- 
atively  estimate the values of I$ and 7 which satisfy (41) 
and (42). As will be shown later,  the Robbins-Monro 
method  requires less computation than  the  MLE method 
discussed in  Section 11. Furthermore, the Robbins-Monro 
method  can yield asymptotically efficient esbimates, so 
that for  a  large  number of observations the error  variance 
is as  small  as  can  be  obtained by  the  MLE method. 

On  applying the Robbins-Monro method, we generate 
the sequence of estimates { & ]  and { i k ]  by  the following 

(43) 

(44) 

Note  that (43) and (44) are similar to (31) and (32), 
with the exception that  in  the present  recursive  formula 
t’he  sequentially observed data (2, ( t )  } is used only once, 
whereas in (31) and (32), the  data 5 ( t )  observed over 
the  entire period is processed repeatedly. 

The second terms of (43) and (44) include the informa- 
tion sequence c k ,  not  their  estimate &. This condition is 
clearly  met in  the  initial  training period during which 
some sequence of known pattern  is  sent.  The condition 
will be  practically satisfied in  a DDR  as  far as  the  majority 
of decision outputs  are correct and  estimates of T and .I$ 
are improved  as the  number of iterations increases. 
Strictly speaking, however, there is the possibility of a 
“run  away”  in  the decision-directed approach. This occurs 
when the detector  makes  a series of errors  resulting in a 
degradation of parameter  estimates which, in  turn,  results 
in a further performance  deterioration. A DDR  for syn- 
chronous  detection was investigated by  Proakis et al. [46]. 
Their  study showed that  the  run away,  though acknowl- 
edged as  a  possibility in  theory, was not observed in 
simulations.  Another successful application of the  DDR 
approach  is the adaptive channel  equalization  done by 

DDR is quite difficult because of the dependence  intro- 
duced in each  iteration.  Davisson  and  Schwartz discuss 
the run-away  problem in  estimating  unknown  prior  prob- 
abilities in a binary  detection  problem [47] and  in esti- 
mating unknown  transition  probabilities of a Markov 
sequence [48]. The run-away  problem in  the  DDR will 
be further discussed at   the end of this section. 

We now make t.he following assumptions. 
Assumption 1) The processes ( Z k ( t ) ,  k = 1,2, * - } are 

independently  and  identically  dist.ributed, that is, the 
additive noise is  stationary  and  independent among the 
subintervals,  and the information sequence is also sta- 
tionary  with zero mean and  with correlation  funct,ion 

E [ C k , i C k , j * ]  = so@pi-j, for all k.  (46) 

Assumption 2 )  There exist  constants 0 < C+ I Cgl < w 

and 0 < C, I C,‘ < w , such that 

or equivalently 

.Im ( t r  [R(i  - T )  -a] exp [ j ( &  - I$)]} 

5 C,’(& - I $ ) 2  (49) 

-Re { t’r [R(i - 7) -a] exp [ j ( &  - I$)]) 

- < C,‘(i - T ) 2  (50) 

for  any 6 and i in  the convergence region. In  other words, 
the convergence regions 6 and i are  determined  by (49) 
and (50). 

Assumption 3) For all  values of i and & in  the conver- 
gence region, we have 

Assumption 4) The gain sequences { Cyk) and { @ k )  are 
positive, monotonically decreasing, and  satisfy 

Lucky [l], [lo] and  by  others [12],-[13]. Analysis of a 
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and c is known  (for example, during  the  initial  training  period), 
the convergence to a local maximum seems hardly a 

m 00 

f f k 2  < c @ k 2  < (54) problem. The log-likelihood function of (16)  can be 
k-1 k=l written,  in the absence of noise, as 

Then  it can be shown  (Appendix V) that  the sequence 2No In L ( x  1 c , i , d )  
of estimates { &} and {ik} converge to  their  true  values  in 
mean-square : = 2 Re { Ccn*R((n - m)T+ i - r)cmexp [ j (&  - +)I] 

m n  

IimE[(& - 4)2] = 0 (55) 
k- w 

lim E [ ( %  - T ) ~ ]  = 0. 

The choice of the gain sequences affect both t,he conver- 
gence rate  and  the  error variance.  Sequences which satisfy 
(53) and (54) are  then (64) is  approximated  by 

k- w 
(56) If the sequence c is of a sufficient length  and is independ- 

ent, i.e., 

E[cn*cm] = SOfin--m,O (65) 

f f k = l c 6 '  2 
A 

- < f i l l  
1 

(57) 
2No In L ( z  I c,i& 

= KS0[2 Re ( R ( i  - T) exp [ j ( 4  - 4)]} - R(0)]  

where K is the size of the sequence c. For a given  modu- 
From t,he  results  established by  Chung [49] we know  lation scheme, signal waveform, and channel  character- 
that sequences ist.ic, (66) is a  function of i - r and 6 - 4. We see from 

(66) that  the convergence to a local maximum  should 
A  B 

f fk  = C' k lobe of the function R( t )  observed at  the matched  filter 
@k = - (59) not occur if the init,ial  error (i - r )  is within the main 

give the most  rapid convergence of r j k  and i k  to 4 and r, 
respectively. For  this choice of f f k  and @k, the  asymptotic 
distribution of k 1 1 2 ( $ k  - 4) and k 1 I 2 ( i k  - 4) are bot,h 
Gaussian wit,h zero mean  and variances [50] 

output. 
If the sequence c represents the  ihformation  in a  multi- 

phase  modulation  system  (see ( Id) ) ,  i.e., if { cn} takes 
on  one of L discrete  phases,  say, 

Therefore the asymptotic  variances of (60) are minimized 
by choosing 

and hence 

lim E[k'/'(& - 4) l2 = d+' (62) 
k-m 

lirh E[/c'/~(?~ - .)I2 = d?. (63) 

The right-hand sides of (62) and (63) are  equal  to  the 
attaihable lower bound  on t.he  mean-square  error of un- 
conditional  est,imates [38]. Therefore we can  conclude 
that  the Robbins-Monro  method  can yield the asymp- 
totically efficient estimate so that, for a sufficiently long 
period of observation, the error  variance  is  as  small  as 
can be  obtained by  any  other method. 

Before closing this section, an  important  question asso- 
ciated  with the  MLR  and  the  DDR should  be  answered; 
namely,  a possible convergence to  a local maximum  rather 
than  to  the  true values ( ~ , 4 ) .  If the information  sequence 

k- w 

then  there arises a  problem of ambiguity  in the DDR. 
In  other words,  if c is some information  sequence,  then 
c exp ($A)  is anobher legitimate sequence. Therefore, 
ohCe the  phase of the demodulator  falls  in the convergence 
region of phase 4 + l A ,  it wili converge to 4 + IA rather 
t,han t,o the  true  value '4. This  ambiguity  problem will 
be solved by using the differential  phase  coding [l]. This 
coding is usually  adopted  together  with the comparison 
detect'ion  method in which the phase of the preceding 
digit  is used as  the reference [Sl], [52 ]  for the present 
digit. The  binary  antipodal signaling is equivalent to  the 
phase  modulation of L = 2, hence the ambiguity  problem 
can  be solved. However, in a  multilevel  amplitude-modu- 
lation  system  there  exists no coding  method to compen- 
sate  for  this possible ambiguity of the phase, unless some 
redundancy is introduced  in the sequence c. 

An alternative  method  is  the use of a  pilot  carrier  as 
in  the conventional PAM-VSB (or -SSB) system.  Let A 
be  the  amplitude of the pilot  carrier which is added  in 
quadrature  with  the  modulated carrier. Then  the complex 
envelope of the  transmitted signal  is 

so(Q = s ( t )  + j A  exp ( j4 )  (68) 
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where s ( t )  is defined by ( 2 ) .  Correspondingly, the re- 
ceived signal  is 

x(t) = r ( t )  + j B  exp ( j 4 )  + n.(t> (69) 

where r ( t )  is  given by (5),  and B is a complex number 
given by 

B = A I_-h*(t)  dt. 
00 

(70) 

Then  the log-likelihood ratio  function  is  given  by  the 
following 

2No In L ( z  I c,i,&) 

= 2 Re ( [ r , x l ~ }  - [T,T]K + 2 Re [ j B  exp ( $1 ,ZIK 

The first  two terms  are  the  same  as (S), and  the  last  two 
terms  are  not  related  to  the received input x(t).  A new 
term  to be  added to  the receiver is then 

Re [ j B  exp ( j & )  ,xIK = Im /- x ( t )  exp ( -j&) dt}  
ko --m 

where the  constant ko in (71) and (72) is 

= S(K(t)} ,=o > 0 (73) 

which is the zero-frequency component of the Fourier 
transform of K ( t )  . The  operation represented by (72) 
should,  in  reality,  be achieved by a  filter  with some band- 
width  (e.g., DLL)  rather  than  an ideal integrator  in  order 
to  track a possible phase jitter or a  frequency  shift of 
the pilot  carrier.  Notice that  the multiplicative  factor B* 
is required to compensate  for the phase  shift which the 
pilot  carrier receives in  the transmission medium. If both 
the noise process and  the sequence c have zero mean, we 
can use the following approximation: 

in  t>he case of the  MLR. Similarly, the variance of $k in 
the ;DDR  is 

- No - 
So t r  (RQ) + 1 B I2NT/ko (76) 

where N is the number of terms  in each subinterval (see 

The analysis  in this section has been performed only 
for the case where the observation interval is divided into 
sequential  disjoint  subintervals. This is solely because the 
stochastic  approximation  method  can  be successfully 
applied  under this assumption. In  practice, however, one 
may  want  to  update i and & at  the digit  rate, Le., a t  
every T seconds. Such an algorithm may be explained as 
a  discrete version of a PLL system.  Performance  analysis 
of a  discrete PLL seems difficult, since the Fokker-Planck 
equation [4], [53] cannot be well defined in  this case. 

IV. ADAPTIVE RECEIVERS FOR UNKNOWN  CHANNELS 

In  the previous sect,ion it has been assumed that  the 
channel response is  known and  time  invariant.  Matched 
filters are used at  the demodulator  output,  obtaining  the 
maximum signal-to-noise ratio.  Equalization  filters  are 
represented  by the N X N matrix R-' (which becomes 
a stationary filter  as N approaches  infinity). In  actual 
situations, however, the channel  characteristic is not 
exactly  known; moreover, it may  be slowly changing  with 
time. In  this section, an  adaptive algorithm  for  adjusting 
the carrier  phase  and  sample  instant will be discussed in 
conjunction  with that of adapt,ive  equalization.  Adaptive 
equalization  has been extensively  studied  by  Lucky [l], 
[lo] and  by  others [ll]-[13]. In  our proposed scheme 
the demodulator,  sampler,  and  equalizer work inter- 
actively to seek the  joint optimization. 

Since the channel response function h b  ( t )  (see (7) ) is 
not known  exactly,  t'he  signal waveform g ( t )  and  the 
matched  filter q*( - t )  cannot  be specified. Therefore, we 
are no longer able to define the likelihood ratio  function 
in a  meaningful  way. Let  the  matched filter q*( - t )  be 

(39) 1 * 

I 1:012To 

replaced by some low-pass filter, and  let  the sampled out- 
2 Im /: x(t) exp ( - j & )  dt E COS (6 - 4) put be  denoted  again  by zn. The equalizer (w,} defined by 

(94) is no longer valid, since the  unit signal response 
(74) function observed at  the low-pass filter is not  equal  to 

R ( t )  . Thus we must change the equalizer to  an  adaptive 
where TO is the integration period. Thus  the ambiguity of one. The criterion we choose here is minimization of the 
the phase  can  be  avoided by resorting to  the pilot  carrier.  distance function 
From (22) and (74), the variance of the  phase  estimate 
& is improved to J = ( C  - WZ)*'P(C - WX) (77) 

1 where W is a  Toeplitz  matrix whose ( i , j )  component is 
var {& )  = 

l/u+' + I B 12To/koNo equal  to w+~, and P is some positive  definite  matrix. The 
vector Wz represents the equalizer output sequence. Note 
that (77) is similar to (23), or the second term of (16). 

I i I > M ,  and let, us choose the simplest cost matrix 

No - (75) Let  the equalizer  be of a  finite size, i.e., wi = 0, for - 
c*'Rc + J B (2To/ko 
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Demodulator Sampler Adoptive \ Eoualizer 

Fig. 2. Adaptive receiver. 

P = I, the  identity mat,rix. Then  the performance  index 
J becomes the  sum of mean-squared  errors: 

M 

J = 1 cn - wizn--i 12. (78) 
n i e -M 

In  order t,o minimize J ,  its  gradient  with respect to 6, i, 
and wi must be  obt.ained: 

aJ M M 

= 2 Re [X { (c, - wizn-;)*(  jwirzn-.i#) ] ]  
n i--M i'--M 

where 

is the equalizer output  (analog  voltage), whereas c,, is the 
true sequence which takes on  discrete  values. In   the  DDR 
{c , ]  is  substituted  by  the decision output ( h]  , where we 
assume the majority of the decisions are correct.  Similarly, 
the gradient of J with  respect to i is 

= - 2  Re [X (c ,  - 6,)*vn] 
n 

where 

which is obtained  by passing the sequence (in) into  the 
same  filter  as the equalizer. 

The  tap gain ( 2 0 % )  of the equalizer is also adjusted 
according to  the gradients 

which is obtained by cross correlating the equalizer output 
sequence wit.h the equalizer input.  The  structure of the 
adaptlive receiver derived  above is diagrammatically  shown 
in Fig. 2, where y is the gain to be  multiplied  with the 
gradient of (83). Here  again the demodulator  and  filter 
take a complex form  as explained in  Appendix I. 

V. CONCLUSIONS AND REMARKS 
The problems of sequence decision, demodulation,  and 

sample  timing in carrier-modulated  data-transmission sys- 
tems  have been treated  from  the viewpoint of multi- 
parameter  estimation  theory. A general structure of the 
MLR was obtained  for a class of linear  modulation sys- 
tems such as  PAM-DSB, PAM-VSB (or  -SSB), QAM, 
digital PM, differential PM,  and  PAM-PM.  Asymptotic 
expressions for the variances of the  MLE have been de- 
rived. 

A DDR has been  derived  based on  the MLR obtained. 
Convergence and  asymptotic efficiency of this  sequential- 
type receiver have been shown by  applying  the Robbins- 
Monro st,ochast,ic approximabion method. 

The  structure of the receivers obtained  in  t,he  present 
paper is different  from the conventional one in  the  method 
of extracting the carrier  phase. It has been shown that  the 
carrier  can  be  estimated  from the modulated  signal com- 
ponents  themselves.  This new structure suggests the use 
of a  pilot  carrier  only  for the purpose of solving the phase 
ambiguity, if needed. It is  expected that distortions of 
demodulator  output  obtained  by  the conventional PLL 
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technique will be greatly reduced. It has been shown 
analytically also t#hat sampled  values of the  demodulator 
output provide  a sufficient stat,istic for controlling the re- 
ceiver. Thus  the  algorithm is suitable  for  digital imple- 
mentation. 

The  structure of the  DDR is then extended to  the case 
in which the channel  characteristic is unknown. The algo- 
rithm for adjusting  the  carrier phase and sample  timing 
is discussed in  combination  with that of adaptive equal- 
ization.  Equalizers thus  obtained eliminate both  inter- 
symbol  and  interchannel  interferences. In  the proposed 
scheme, the demodulation,  sampling,  equalization,  and 
sequence decision algorithms work interactively  together 
to seek the  operating  point of the  joint optimization. 

Throughout  this  paper,  iterative  estimation  formulas 
were derived from the method of the steepest  descent. The 
analysis  can be extended to different  algorithms  such  as 
the  conjugate  gradient method [54]. Applications of the 
canjugate  gradient  method  to  equalization  and  to  other 
linear  filter  synthesis  problems  under the minimum mean- 
square-error  criterion  have been discussed by Devieux and 
Pickholtz [55] and  by  the present author [56]. It is 
known that convergence rates of the  steepest descent 
method  and t,he conjygate  gradient  method  are  geometric 
when the  optimum g ’n coefficients are chosen [l2], [56], 
C571. 7 

APPENDIX I 

COMPLEX-ENVELOPE AND COMPLEX-FILTER 
REPRESENTATION 

The complex-envelope representation of a  narrow-band 
signal has been used in  the  literature [17]-[20]. In  this 
appendix we simply state  the relation between equations 
and  the corresponding structures, which may help the 
reader to apply  our  results  stated  in a general form to 
the modulation  system he specifically designs. 

Demodulation 

z ( t )  exp (-.$I. (84) 

x ( t )  is the complex envelope of the receiver input;  thus 
the  actual  input is written as Re ( x ( t )  exp ( & , t ) ] .  The 
term z ( t )  exp ( -j&) contains the real part (or inphase 
component)  and the imaginary part (or quadrature com- 
ponent).  The block-diagram representations are given  in 
Fig. 3. 

Linear Filtering 

z ( t )  = y(t) 8 h ( t ) .  (85)  

Let y ( t )  be the  input  to a  linear  filter h ( t )  and  let z ( t )  
be the corresponding output.  They  are all complex func- 
tions. Letting y ( 2 )  and h ( t )  be decomposed into real and 
imaginary  parts, 

y ( t >  = y“’(t) + j P ( t )  

h ( t )  = h(”(t)  + jh@)( t )  

277 

Fig. 3. Demodulator: complex representation and its imple- 
mentation. 

Fig. 4. Linear filter h(t) = h(l)(t) + jh@)(t) .  

we have  t)he following matrix  representation: 

We  thus  obtain Fig. 4. 

APPENDIX I1 

NEGATIVE DEFINITENESS OF g(t - t’) 
From  the definition of (15) 

R ( t  - t’) = lrn /rn g * ( u  - t )K- l (u  - u’) 
--m  --m 

-9  (u’ - t’) du du‘. (86 )  

Since the covariance  function K ( u  - u’) is a positive- 
definite  function, so is its inverse  kernel K-’(t - t’). Then 
it immediately follows that R(t  - 2’) is positive definite. 

The second derivative R (  t - 2’) is obtained  by differ- 
enhiating R ( t  - 2’) with  respect to t and ( - t ’ ) ,  i.e., 

= - Ip, g*(u - t)K-’(u,u’) 

. g ( ~ ’  - 2’) du du‘. (87) 

It is then clear that &(t - t ’ )  is negative  definite: 
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for any function x ( t ) ,  where APPENDIX I V  

APPENDIX I11 

MATRIX R-l AND EQUALIZER 

If the dimension of vector c is N ,  then  the  matrix R 
is an N X N positive-definite Hermitian  matrix (see (15) ) . 
Furthermore, R is a  Toeplitz  matrix [58]. When N is 
finite, the  operator R-I can  be regarded  as a nonstationary 
linear  filter since R-I is, in general, not a  Toeplitz  form. 
However, if N is sufficiently large, that is, if the  auto- 
correlation  function R ( t )  of (15) is virtually zero for 
I t I > N T  (where T is the  bit  interval),  then R-I can  be 
approximated  by a st.ationary  filter  such as a  transversal 
filter. This  asymptotic  relation  may be  best  understood by 
applying the z-transform  method. 

Let R ( z )  be the z transform of the sampled  autocor- 
relation  function R ( k T ) ,  k = O,f l , f2 , . . . , i . e  ., 

m 

R ( z )  = R ( ~ T ) z - ~ .  (90) 
k-- m 

OPTIMUM GAIN SEQUENCES ai AND pi 

Define the following performance  index I($,?,;) : 

I($,?,;) = z*’; + ;*’z - ;*‘Re (96) 

which is proportional to the log-likelihood function of ( 1 6 ) .  
The performance  index after  the ( i  + 1) th  iteration  is 
given by 

l i + l  = z;+I*’;;+I + ;,+1*’~,+1 - ;;+l*’R&+l. (97) 

Substituting (31) and (32) into (97) and  expanding 
around a, = 0 and P ,  = 0, we obtain  the following for- 
mula  under a high SNR condition,  approximating the 
performance  index by a parabola: 

Ii+l = I ,  + [Im { z,*’c) ]{ 2a; - a?c*’Rc} 

+ [Re ( i*’c) ] {2P;  - p2”c*’(-l?)c). (98) 

Here we replaced & by c, since within the convergence 
region we can  assume that  the maximum-likelihood deci- 
sion output sequence  should be close to  the  true sequence 
after some iterations.  Then  the  optimum choice of at and 
P i  of (37) and (38) immediately follows. 

Then  the z transform of the equalizer output { & }  is APPENDIX V 

PROOF OF CONVERGENCE FOR (55) AND (56) 

wheres The essence of the procedure  employed in  the following 
proof is found  in Sakrison [7]. On defining the  quantities 

z(z;$,?) = x. x k ( $ , ? ) x - k .  

m 
(92) p k  and q k  by 

k=-m 1 
The equalizer l / R ( x )  is realized by a transversal filter - N o  
with tap gains { w,)  which are  in general complex numbers, 

k - - Im { ck*’zk} (99) 

1 m 

The coefficients w; are  obtained  from (93) as 

(93) 

where j = ( - 1) l I2 .  Furt’hermore, the entries of the N X N 
matrix R-1 and  the  set of coefficients { w i ]  possess the 
following asymptotic  relation: 

w ,  = lim [R-’]k,k+i, for all k.  (95) 

Then t,he  first term of (26)  is asymptotically  equal  to 
Nowo, where wo is the center tap gain of the equalizer. 
From tshis last result we see that  the center tap gain is a 
posit,ive real  number.  This could have been  derived  from 

N- m 

(94). 

(43) and (44) become 

On  subtracting  true  values from both sides of (101) and 
(102) and  squaring, we have 

( $ k + l  - 6)’ = ( d k  - 4)’ + 2akpk($k - 4) + f f k 2 p k 2  

(103) 

(?k+l - T)’ = (?k - T ) 2  + @kqk(?k - T )  + P k 2 q k 2 .  

(104) 

Because of Assumption 1) of Section 111, the  kth esti- 
mates d k  and ik are  random variables which depend  on 

*The z is the z-transform variable, and Z is used to  denote x l (  t )  ,x2 ( t )  , - - - ,Zk-l  ( t )  , but  not  on X k  ( t )  . Therefore, we 
the z transform of the random sequence of (12). obtain  the  expectation of p k  and p k 2  conditioned on ?k 
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and &: 

E C p k  I i k , $ k ]  = - E[Im ( c k * ’ z k ( i k , & ) ) ]  
1 
NO 

1 
NO 

= -1m ( t r   [R( i -~ )@]eXp  [ j (&-4) ] )  

4 Z(ik - 7 , 8 k  - 4) (105) 

E h k 2  I ik,&] = Z 2 ( &  - 7,& - 4) + var ( p k ) .  (106) 

By  substitut,ing  (105)  and (106) into (103), we obt’ain 

E[(dk+l - 412 I i k , d k l  

= (& - 4)2 + 2a,,(& - 4 ) Z ( i k  - T,& - 4) 

+ ak2{l2(ik - r,& - 4) + var p k )  

5 (& - 4)’[1 - 2akC4 + ~tk~C+’~] + ~1k~d4~. (107) 

The  last expression was obt,ained by use of Assumptions 
2) and 3).  Then  taking t,he  expected  values of bot,li sides 
of (107)  wit’h  respect to i k  and &, and using the  notation 

b,, = E [ ( &  - 4)2] (108) 

we obtain 

ba+l 5 b k  (1 - fLakC4 + c~k~C4’~) + ak2d4‘. (109) 

The  rest of t.he proof is the  same  as  t’hat of Sakrison 
[7, eqs. (17)-(28) 1, and we can show 

lim b k  = 0. (1 10) 
k- 00 

Thus  t’he sequence (&]  converges to 4 in  the mean  square. 
The proof for the convergence of ( i k )  is exactly  the same. 
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