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Distance Measures and Asymptotic Relative Efficiency 
HISASHI KOBAYASHI, MEMBER, IEEE 

Abstract-The relationship between distance measures and 
asymptotic relative efficiency is discussed. It is shown that the ratio 
of the Bhattacharyya distance or J divergences of two test statistics 
is equivalent to asymptotic relative efficiency. Two-input systems 
are discussed as examples, and the performances of the polarity 
coincidence correlator (PCC) and the correlator are discussed in 
terms of the distance measures of reduced data. 

HE NOTION of a distance measure between two 
probability measures is widely used in statistics. 
Grettenberg [l], Kailath [2], and Kadota and 

Shepp [3] discuss the application of some of these meas- 
ures to communication problems. 

Let pi(z) and pz(s) be density functions of probability 
measures P,(z) and Pz(x) defined over X, a space of 
observations x, under the hypotheses HI and H,, respec- 
tively. Let L(x) be the Radon-Nikodym derivative of P, 
with respect to P,, i.e., the likelihood ratio 

L(x) = Pz(X>lP1(X>* 0) 

Then many of the distance measures currently used can 
be written in the form [4] 
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(2) 

where $,( *) is a continuous convex function on (0, a), 
f( .) is an increasing real-valued function of a real variable, 
and E,[ -1 is the expectation under the probability meas- 
ure P,. Typical examples are the following. 

J Divergence [5] 

J, = E,[(L(x) - 1) In L(x)]. 

Bhattachuryya Distance (B Distance) [2], [B] 

B, = --In pz 

where pr is defined by 

pz = h(xh(~~~~'* dx s 

(3) 

(4) 

and is called the Bhattacharyya coefficient [2], or Hellinger 
integral [3], or affinity [7]. 

In many situations, it is desirable to consider con- 
densed data rather than the original data, i.e., to deal 
with a statistic T(x) rather than with x. For a given 
statistic T(x), the amount of discrimination between H, 
and H, provided by T(x) will be defined by the distance 
B, or Jr: 

B, = -hpp, PT = 1 2/p(T I HJPO’ I Hz) dT 6.9 
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and 

J, = El[hg / ;;;.I + E2[hlf-#gg. (7) 

It can be shown [4] that each of these measures is no 
larger than the corresponding expression when T is re- 
placed by the original data x, i.e., B, 6 B, and J, 5  J,. 
The equality in these relations holds if and only if T(x) 
is a sufficient statistic. Therefore, the ratio of B, to B, 
may represent the efliciency of T(x), and the same thing 
can be said about the J divergence. 

Let T, and T, be any two consistent test statistics 
for testing H, : 0  = &-, against H, : 0  > B. (or 8 < 0,). 
Let the data of T, and TB consist of n, and np indepen- 
dent observations, respectively. The most frequently used 
criterion for comparing the efficiency of two statistics is 
the ARE (asymptotic relative efficiency) defined [8] by 

where the limiting operation is taken under the con- 
straint that the errors of types I and II of T, and TB 
are each kept fixed. 

The smaller the distance, the more difficult it will be 
to descriminate H, from H,, and hence the larger the 
amount of data that will be required to achieve the as- 
signed performance. Therefore, it is clear that some 
relationship exists between ARE and the ratio of the 
distance measures. Assume that T, is asymptotically 
normally distributed whatever the value of 0 may be, with 
mean M, (0) and variance 

me> e2 8,. 

Assume that the first (m - 1)th order derivatives of 
M ,(e) are zero at e = eo, i.e., 

M&i)(e,) = 0 i = 1,2, *** ) m  - 1 

and M&“‘(B,) z 0. Then it can be shown [6], [9] after 
some manipulation that the B coefficient between 0 = t$ 
and e = 0, + 60 is given by 

PT,(eO, 8, + 68) = 1  - i 5  ‘Iasrn ( > + o(se”m) (9) 

where 

I = E am In p(T, I fh> ___- a,m de” 

Therefore, the B distance provided by the statistic T,(X) 
is 

BT,(eO, 8, + se) = i (L-)24a,m + o(f@T. (11) 

For m  = 1, the quantity I,,, is equal to Fisher’s infor- 
mation measure [lo]; hence, I, ,% may be called a general- 
ized Fisher’s information measure. On assuming that 
the asymptotic distribution of TB behaves essentially 
in the same fashion as T,, it follows that 

BT8/BTu = [$$;)]2/[sf]2. (12) 

Let 

This relation defines the constants c, and r. We  define 
the ejjicacy of T, by 

JC%M 1 l/tn .r 
E, = lim 

nz’m! Da(&) < a. (13) noem 
The efficacy defined here is a generalization of the term 
given by Capon [ll]. Then, keeping n, = nB, we have 
the following asymptotic relation: 

lim  BTe(eO, e” + se) = (E/E )2mr 
68-o BT.(eO, e. + se> @  o  

= A;;“. (14) 

If m  = 1 and r = 4, as for many problems, then BT, 
approaches ABa as 60 approaches zero. 

Similar results can be obtained for the J divergence, i.e., 

JT,(e,, e, + se) = z  2mIa,m ( > + o(se”“l> (15) 

and hence 

JT,&, e. + 669 = E&doo, 4, + 669 60+ 0. (16) 

Therefore, it follows that 

Bdb, = JTB/JT. + A;:” 66  --j 0. (17) 

Let us consider a detection problem in a two-input 
system, where the stochastic signal s(t) is common to 
both channels, say “channel a” and “channel b.” Noises 
are additive and independent, i.e., 

x,(t) = e112.3(t) + n,(t) t = 1,2, a.. ,N (18) 
x,(t) = Ps(t) + n&t) 

where s(t), n,(t), and n,(t) are real Gaussian discrete 
processes, independent of each other and with zero mean 
and correlation 

E[sUMt’~l = P.(t) &,ct 
EMh4f)l = -&dh(t’)l 

Here e is the signal-to-noise ratio 

= P*(tj 6,,,,. 

parameter. Consider 
the hypothesis testing problem: 0 = 0 against tJ > 0. 
The B coefficient between the two hypotheses based on 
the observed data 

x,(t) and x*(t) t = 1,2, . . ..N 

is given by 

do, e> = fi l.1 + 2hW’“[l + h4>Y (19) 

where p(t) = P.(t)/P,(t). Therefore, the B distance is 
given by 
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WA 0) p,(o, e) = 2 (1 + 2ep(t)j-1’4 

= a 2 [In (1 + eep(t)j - $ In (1 + 2eap(t))]. 
t=1 

(20) 
t-1 . 

II 
1 + h4> _ h40 

Now consider the case where the data x0(t) and xb(t) 
1 + 2ep(t) i 2(1 + 28&j) (27) 

are passed through hard limiters, the outputs of which and 
will be denoted by y,(t) and yb(t): B,(O, e) = -In ~~(0, e). (2% 

Y&j = sgn Gl(4 Let e << 1 in (20), (22), and (26); then 
and 

Y&j = sgn X&j t = 1, 2, ... , N. Bz(O, 0) = $2 P2(0, (2% t 1 
The B coefficient and the B distance provided by y.(t) and 
g*(t) are given, after some manipulation [9], by B,(O, e) = $ g pL2(2), (30) 

do, 0) = ft a {[I + fsin-l l :‘$z,]“’ Bz(O, 0) = g g P2(0. (31) 

+ C 
2 . -1 b.4) l/2 

’ - Rsln 1 + eep(t) 11 (21) Taking the ratio of these distances, we obtain B,/Bz = 
3(2/r)’ and B,/Bz = 3. These quantities are equal, 

and respectively, to the ARE of the PCC and the correlator, 

B,(O, e) = - In p,(O, e). (22) 
with respect to the optimum detector [13]. This is the 
case since the optimum detector T,,,, the polarity coin- 

Now consider another reduction of the data obtained cidence correlator Tpcc, and the correlator T, are suffi- 
by defining a new random process z(t) as the product cient test statistics (for 0 << 1) of x, y, and x, respectively, 
of the outnuts of the two channels, i.e., for distinguishing between the two hypotheses. These 

z(t) = x&j *x*(t) t = 1, 2, . . . . N. (23) 
systems are given by 

The distribution density of z(t) is known [12] and is given 
by 

To,, = g 44 * (dt) + x&>l”, (32) 

p@(t) 1 e) = i KIWI e-waa(t)z(t) TPCC = 2 /dt> .va(t) .gdt), 
t=1 

-Ko(lz(O I vba(t)wbb(~)) * (24) T, = 2 p(t) *x(t). (34) t=1 
Here W(t) is a 2-by-2 matrix function and is the inverse 
of the covariance matrix function of the vector process ACKNOWLEDGMENT 
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i.e., 

where 

w(t) = wa&) 
[ 

wadt) 
1 

= J/y-‘@ ) (25) 
%&j Wbb(4J 

The function K,( .) in (24) is the modified Bessel function 
of the second kind and of order zero. The B coefficient 
based on 

40 t = 1, 2, .“) N, 

can be calculated for weak signals, i.e., for .9 < 1, as 
follows: 
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Nonsingular Detection and L ikelihood Ratio  for 
Random Signals in W h ite  Gaussian Noise 

T. T. KADOTA 

Absfracf-This paper  is concerned with the mathematical aspect  
of a  detection problem (a random signal in white Gaussian noise). 
Specifically, we obtain a  sufficient condit ion for nonsingular detection 
and  derive a  likelihood-ratio expression in terms of least-mesn- 
square estimates. The problem itself is old, and  the likelihood- 
ratio expression is also well known. The contribution of this paper  
is a  relatively elementary and  self-contained derivation of the 
likelihood-ratio expression as well as  the nonsingularity condition. 

I. INTRODUCTION 

ONSIDER a problem of optimally detecting a 
random signal in white Gaussian noise. One mathe- 
matical treatment of such a problem is to interpret 

it in terms of the integrated signal and noise. Thus, the 
signal portion is a time integral of the given signal process, 
and the noise a standard W iener process. We  regard 
the detection problem as one of discrimination between 
the signal-plus-noise and the noise processes. When 
optimality of this discrimination is defined in the sense 
of the Neyman-Pearson hypothesis test, the solution 
of the problem consists of obtaining a sufficient condition 
for nonsingularity of the two processes and expressing 
their likelihood ratio in terms of the observable. 

It was conjectured that when the signal-plus-noise 
measure is absolutely continuous with respect to the 
noise measure, the likelihood ratio takes the same form 
as the one in the sure signal-in-noise problem, except 
for the fact that the signal is replaced by its least-mean- 
square estimate. Inasmuch as our interest is in the mathe- 
matical proof, we refer to Kailath [l] for the historical 
account and physical interpretation of this likelihood- 
ratio expression. In a special case where the signal is a 
diffusion process, the conjecture was proved by Duncan 
[2]. Kailath [l] and Wong [3] gave more general proofs 
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under the condition that the signal has finite average 
energy and is independent of the noise. Kailath [4] later 
replaced the independence part of the condition by a 
weaker condition that the signal-plus-noise and the 
noise measures are equivalent. In applications, finiteness 
of average signal energy is not restrictive, but mutual 
independence between the signal and the noise is a serious 
restriction. For example, in communication systems 
with feedback the signal is a function of the past noise; 
thus, it necessarily depends on the noise. Unfortunately, 
this dependence makes the two measures no longer 
equivalent. The purpose of this paper is to establish the 
likelihood-ratio expression under a much weaker inde- 
pendence condition. 

We  prove that if the signal has finite energy with 
probability 1 and if it is independent of future increments 
of a delayed version of the noise (delay can be arbitrarily 
small), then the signal-plus-noise measure is absolutely 
continuous with respect to the noise measure; and if, 
in addition the expectation of the signal energy is finite, 
the likelihood ratio is given effectively by the same 
expression. We  remark that in general neither of the 
first two conditions is necessary for absolute continuity. 
For example, if the signal is Gaussian, there is Shepp’s 
necessary and sufficient condition [5], which is weaker 
than our two. In fact, we explicitly show that our first 
two conditions imply his, and our third coincides with 
the first in the case of Gaussian signals. In applications, 
however, it is inconceivable that a signal should have 
infinite average energy in a finite time interval. Also, 
dependence of a signal on additive noise is typically 
through feedback, which necessarily introduces some 
delay. Thus, though mathematically restrictive, these 
conditions seem physically acceptable. 

Since this paper was submitted, our second condition 
has been relaxed by eliminating the delay [6]. Furthermore, 
assuming absolute continuity rather than equivalence, 
Kailath and Zakai (private communication) have verified 


