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ABSTRACT
Distance measures and related criteria in estimation and
detection are discussed, and the Bhattacharyya distance and J-
divergence are studied in detail. One of the results is that
the ratio of the distance measures of two test statistics is
equivalent to asymptotic relative efficiency. Two-input systems
are discussed as examples.

1. SOME DISTANCE MEASURES AND THEIR COMMON PROPERTIES

The notion of a distance measure between two probability
measures is widely used in statistics. Grettenberg [1], Kailath
[2]., and Kadota and Shepp [3] discuss the application of some
of these measures to communication problems. In this treatment
distance measures and related criteria in statistical communi-
cation theory are considered.

Let p,(x) and p,(x) be density functions of probability
measures P (x) and P, (x) defined over X, a space of observations
x, under the hypotheSes Hy and H., respectively. Let L(x) be
the Radon-Nikodym derlvatlve of f‘ with respect to Py i.e.,

P, (%) 11
L = .
) = 5 (1.1)
Then many of the distance measures currently used can be written
in the form [4]
£1E, [&(1) 1] (1.2)

where ¢(-) is a continuous convex function on {0,»)}, f£(-:) is an
increasing real-valued function of a real variable, and E, [°]
is the expectation under the probablllty measurxre Pl' Typlcal
examples are:

(a) ZKullback-ILeibler numbers [5]

Py (%)
Jpy(x) 1n

1(1,2) ax

E 1n L] (1.3)

B, () 1B
P, (%)
1(2,1) = [py(x) ln =~ B
(b) J-divergence [5]
T = 161,2) + 1(2,1) = E,[(1~1) 1n 1] (1.5)

(c) Matsushita's measure of distance [6]

dx = By [L In L] (1.4)

= 2. 41/2 _ 24 1/2
d = [[WE, (R - /B (®) )“ax]1™ % = [E) (V-1 7177 4,
(d) Kolmogorov's measure of variational distance
1 1
k=73 [lp,(x) - py(x)| ax = 5 E|L - 1] (1.7)
(e) Bhattacharyya distance (B-distance) [2]
B=-1n p (1.8)
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where p is defined by

p = [VB () p(0) dx = E; WV ] (1.9)

and is called the Bhattacharyya coefficient [2], or
Hellinger integral [3], or affinity [6].

An important theorem can now be derived which relates the
Bayes risk to quantities of the form of Eq. (1.2) and which has
direct application to signal selection problems: TLet m = (r ’"2)
be the prior probability set where T, is the prior probabili%y

of the hypothesis H., i = 1,2. ILet C.,. be the cost assigned if
H. is chosen when Hi is true., Let X, be a subspace of X such
that x, = {x|H, is &hosen when x obsdrved), i = 1,2. If the

criterlon is mInimization of average risk, then by the well-
known Neyman-Pearson lemma, X. should be chosen as follows:

T (Cyp7 Cqpy)
1 T,y e % = x X
2 721 22

Let @ and B be two signal sets (or communication systems, in
general) which are to be compared under the criterion of the
Bayes risk. The Bayes risk when the signal o is adopted, is
given by

R(Q,m) = M Cq + FyCoy + [ [MyCoLy () + mCilp i (x)dx  (1.10)

Xal

where C! = C..-C , C) = C,,-C and where X _.,L (x), etc. are
self—ex%lana%%ry}2 on éefin%%g 22R(B,ﬁ) in ex%%tly the same
way, the following theorem can be stated.

X, = {xlL(x) <

Theorem 1
R(a,m) < R(B,m) for all sets of prior probability m =
(ﬁl,ﬂ2) if, and only if

E,[9(n,)] 2 El[¢(LB)] (1.11)
for all continuous convex functions ¢(.).

Proof

The proof will be found elsewhere [8] and can be obtained
by generalizing the argument given by Karlin and Bradt [7].//

On letting P_(a,m) and P_(B,m) be the error probability
under the signal Sets a and B, respectively, the following state-
ment can be derived from Theorem 1:

Corollary 1
P (a,m) < Pe(B,ﬂ) for all sets of prior probability m =

(ﬂl,ﬁz? if and only if .
. BIP(Ly ) = B, [0(Lg)]
for all continuous convex functions @¢(-).

Proof
see [7,8].

By contrapositive relations, Theorem 1 and Corollary 1 are
equivalent to the following:

Corollary 2
R{a,m) > (B,m) or, equivalently, P _(a,m) > Pe(B,n) for

some set of prior probability m = (ﬁl,ﬂ'2 if and only if
<
B [8(L,)] < B [9(Lg)]
for some continuous convex function ?(-).
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Grettenberg [1] and Kailath [2] applied Corollary 2 to the cases
of the J-divergence and the B-distance, respectively and dis-
cussed the signal selection problem.

2. THE BHATTACHARYYA COEFFICIENT AND THE BAYES RISK

It will be shown in this section that an upper and lower
Iound of the Bayes risk is given in terms of the Bhattacharyya
coefficient p, which is a generalization of the inequality re-—
lation for the probability of error given by Kailath [2]. The
Bayes Risk under the probability set m is

R(M) = MCy, + MyCoy + }j; [myCop, (x) =M Cipy (x) Jdx  (2.1)
1

Consider the following quantity which may be regarded as gener-
ization of Kolmogorov's measure of variational distance:

K(m) =3 [Im,Cip () = m,cip,(x) |ax
X
= 3m(Cyp+Cy,) + dmy(e,,re,)) - R(M (2.2)

An upper bound of K(m) is obtained from the Cauchy-Schwartz
inequality as follows:

1/2

l ' 1 2 L} ] 2
K(m) < Shmcy + me)” - 4m,m,C 007 ] (2.3)
A lower bound of K{m) is
1
> L ' W T
R(m) 2[rrlc1 + m,C5 2 "1”2C102 o] (2.4)
From Egs. (2.2) - (2.4) an upper and lower-bound of the Bayes
risk is given by
2ﬂlﬁ2CiCé 02
Ro(n)+ SR(n)sRO(ﬂ)+Jﬁlﬂ2cicép
1 ) / L} t 2 4 L} ) 2
nlcl+n202+ (nlcl+n2c2) —4m m,CiCop (2.5)

where Ro(ﬁ) + m,C

= MCi1 * MaChy-
Let us adopt a simpler but less strict lower bound;

Mm%
—_— L. < < W I
Ro(M + —=gr—=Gr-p R(m) = Ry(m) + 4m,m,CICT (2.6)
171 '2¢2
When Cl = C22 = 0, C1 = C21 1, the average loss is equal to
Pe(ﬁ), %he e¥ror proba%ility, and Egs. (2.5) and (2.6) become
uqm5ﬁ1ﬁ2p2 -
< Pe(n) < Jnlnz - p (2.8)
2
1 - / 1 - 4Trl1‘r2p
and
2
< <,/ .
™ TP Pe(n) ™, p (2.8)
Thus we see that Eq. (2.5) - (2.9) make the minimization of

p a reasonable criterion of optimality. Minimization of p is
equivalent to maximization of the B-distance defined by Eq.
(1.8).
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) another distance measure frequently used is the J~divergence
of Eq. (1.5). Unlike the B-distance, no upper bound on Pe(ﬂ)
in terms of J has been givenl although a lower bound is

P (m) = mm, p2 > ™, exp(-J/2) (2.9)

Because of this fact, Kailath [2] claims that the B~distance is
a better criterion for signal selection problems than J-diver-
gence. Another superiority of the B-distance is shown in cases
where the average with respect to unknown parameters is required,
such as in non-coherent reception problems. The next section

is intended to demonstrate this fact.

3. - APPLICATION OF THE B-DISTANCE TO COMMUNICATION PROBLEMS
Example 3.1 Detection of a gignal with Unknown Phase and Ampli-
tude

Let the observable be the continuous signal x(t) such that
under Hy x(t) = n(t) (3.1)

under H, = x(t) = as(t) + n(t) (3.2)

where s(t) is the complex envelope of a known signal and a is
a complex Gaussian variable [9] with probability distribution

p(a)dodor = ——  exp(- £5°) dada (3.3)
[+ Da

The process n(t) is the complex envelope of a stationary Gaussian
noise process, with zero mean and covariance

E[n(s)n*(t)] = R(s—t) (3.4)
The B-coefficient between H1 and H2, given a, can be calculated
as
2
1
o(a) =exp (- Flls(e) | o a® (3.5)
H(R)
where Ils(t)|| is the norm square of s(t) on the reproducing
H(R)

kernel Hilbert space generated by the covariance function R(s-t).
on taking the expectation of Eg. (3.5) with respect to G, we
have

Egle(a)d (3.6)

where 5
= llste) II - Dy

H(R)

Here the quantlty M may be regarded as the §/N ratio. Then the

B—-distance is 1
B = 1In(l+ Zu) (3.7)

This result can be applied readily to a signal selection problem
in the same way as Grettenberg [1] applied the J-divergence to
the detection of a completely known signal [8].

I;‘or the particular case of selection between two Gaussian prob-
ability measures, we have [3]

AT, expl(3/2)” Y4 > po(m > mym, exp(-3/4)
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Example 3.2 Radar Parameters Estimation

The following problem was originally studied by Gretten-
berg[l] by the J-divergence method. ILet T and A be the time
delay and doppler-shift frequency of the returned echo. The
T-\A plane can be divided into a set of resolution cells, which
Grettenberg calls a message space M:

M= {n= (Tm,km)i (3.8)

Let w(t) be the complex envelope of the transmitted signal.
Assuming that the amplitude is known and is common to all cells
m in the range of interest, the observed data under the hypoth-
esis H is given by
38 j2mh_t je
x(t) = e ™ w(t-T )e T h n(t) = ™ w (£) + n(t) (3.9)

The phase 0  is not measured by the observer and hence is assumed
to be a random variable, uniformly distributed between 0 and 2ft.

The B-coefficient between H and H_ (m,q € M) is given after
some manipulation [8] as follows: E

2
1
M%ﬂ@=ew[—szw-w4m%mﬂ (3.10)

The reproducing kernel inner product which appears in Eg. (3.10)
can be written in terms of the generalized ambiguity function
as follows:

j2mA_t j2mh t -j(6_~6 )
o (6) W (8)] - = [w(t=7 e T w(e-tye” Ty e M A
4 TH(R) 4 H(R)
“56, (3.11)
= Xw(Tm—Tq,km—kq) e
where

qu = Gm - Gq (3.12)

Then Eq. (3.10) can be written as
p(Hm:Hq) = expl- % [x, (0.0} - IXW(Tm—Tq:Km-Xq)ICOS 81} (3.13)
where 6 = emq - arg. xw(Tm—Tq,Km—kq) (3.14)

Now the averaged B-coefficient is given by

Eglp(H )] = expl- 3 %,(0,0) 11,1 %lXW(Tm—Tq,Xm—lq)l] (3.15)

Therefore the B-distance is

_ 1 1 _ _
B(Hm,Hq) =5 %,(0,0) = 1n 1,[ 2|xw(¢m Tq,Km xq)|] (3.16)
The maximization of the B-distance is equivalent to the minimi-
zation of the absolute value of the ambiguity function; this
latter approach is well known in radar signal design.

4. DISTANCE MEASURES AND ASYMPTOTIC RELATIVE EFFICIENCY

Thus far we have considered the distance between two prob-
ability measures defined on the space of the observed data x
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and the relation of this distance to performance criterion such
as the Bayes risk and error probability. Let us turn our atten-
tion from the observed raw data to condensed data, i.e., to a
statistic T(x). Estimation and detection procedures can be
regarded as data reduction processing and can enable us to dis-
criminate between alternative situations.

For a given statistic T(x), the amount of discrimination
petween H. and H., provided by T(x) will be defined by the dis—

tance B oY J: 2
By = -lnp, . where py = | JolT/E B(T/8,) 4ar  (4.1)
and
p(T/H,) p(T/H,)
JT = El[lnmz—)_ 1 + E2[ln 'WI:II)_] (4.2)

It cah be shown [4] that each of these measures is no larger than
the corresponding expression when T is replaced by the original

. S S 3 3 -
data x, i.e., BT Bx and JT JX. The equality in these re

lations holds if and only if T(x) is a sufficient statistic,
Therefore the ratio of B_, to B_ may represent the efficiency of
T({x), and the same thing can bé& said about the J-divergence.

Let T, and TB be any two consistent test statistics for
testing H,: 0 = 80 against H,: 8 > eo (or 8 < GO). Let the data

of T and T, consist of n_ and n_, independent observations, re-
spectively.” The most freauentlyaused criterion for comparing
the efficiency of two statistics is the A.R.E. (Asymptotic
Relative Efficiency) defined [10] by

n
lim = (4.5)
9*80 B
where the limiting operation is taken under the constraint that
the errors of type I and II of T _ and Ts are each kept equal.
The smaller the distance, tBe moredifficult it will be to
discriminate H., from H., and hence the larger the amount of data
that will be réquired %o achieve the assigned performance.
Therefore it 'is clear that some relationship exists between
A.R.E. and the distance measures. Assume that T is asymptoti-
cally normally distributeg whatever the value of 8 may be,with

ABG. =

mean M_(8) and variance D_(8), 8 = 8 . Assume that the first
(m—l)s% order derivatives of Ma(e) are zero at 8 = BO, i.e.,

(i) = - _ (m) ;
My (60) =0 for i = 1,2,...,m-1 and M, (6,) # 0., Then it can

be shown [8] after some manipulation that the B-coefficient
between 6 = 90 and 8 = eo + 88 is given by

m
by (9985768 = 1 - ETLLE I M L (4.6)
where m (m)
in p(T/8) 5, My (8)
I, . = B — R R R (4.7)
! 39 a o)

Therefore the B-distance provided by the statistic Ta(x) is
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m
L8 201 4 ooqee™ . (4.8)

B (eo’eo+69) =8 m! o, m

T

o
For the case m = 1, the quantity I is equal to Fisher's in-
formation measure; hence I may BeMcalled a generalized
Fisher's information measuré. On assuming that the asymptotic
distribution of T, behaves essentially in the same fashion as
it follows thgt

Ta,
Mém) (62 m{™ (s )2
By / By = (] /[y (4.9)
8 a T Bt o a' o
Mém)(eo) m-r
Let ————=—— ~ C_°nh as n_—». This relation defines the
Da(eo) aa a
constants = and r. We define the efficacy of Ta by
u{™ (g ) oy
E_ = lim | —9;—-—51—-——-] < w (4.10)
a mr '
n_-—to n m: D_(6 )
a o o' o

The efficacy defined here is a generalization of the term given
by Capon [1l1]. Then, keeping n_ = nB, we have the following
asymptotic relation: «

L BTs(90,60+69) . £y 2m-r _ o -
B. (0.0 +88) E_ - -
860 Bp (95:9,+89) Ea Ba
a BT
Ifm=1and r = %, as is the case for many problems, then-g——
8

asimilar results can be obtained for the J-divergence, i.e.,

. 69™ 2 3m

JTa(60,60+66) _(ET—) 'Iq,m + 0(86087) (4.12)
and hence

JTQ(BO,BO+68) = 8 BTG(60,60+66) as 8§6-0 (4.13)
Therefore it follows that

2m.r
B,/ B, = J, /J -~ A (4.14)
Tg Ty, Tg" " Ty Ba

5. THE DETECTION PROBLEM IN TWO—-INPUT SYSTEMS
Let us consider a detection problem in a two-input system,
where the stochastic signal s(i) is common to both channels,
say "channel a" and "channel b". Noises are additive and inde-
pendent, i.e.,
x_ (1)

%, (1)

where s(i), na(i) and nb(i) are real Gaussian random processes,

JB s(t) + na(t)
J8 s(t) + n ()

i=1,2,...,N (5.1)

il
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independent of each other and with zero mean and correlation
Els(D)s(3)] = Po(i) &5 . Eln,(i)n,(3)] = Elny (1) my (3)] = B (415

Here & is the signal-to-noise ratio parameter. Consider the
testing hypothesis problem: © = 0 against 8 > 0. The B-coeffi-
cient between the two hypotheses, based on the observed data

xa(i) and xb(i), i=1,2,...,N is given by
N -
0,(0,8) = TT 1+ 20-w()1%% 1+ seu()1™Y? (5.2
i=1
where M(i) = Ps(i)/Pn(i). Therefore the B-distance is given by
N
B,(0.0) =3 I [In(1+8u(i)) - 5 In(1+20u(i))]
=1 (5.3)

Now consider the case where the data x_(i) and x, (i) are passed
through hard limiters, the output of which will Be denoted by

Yo(1) and y; (i):
ya(i) = sgn xa(i) and yb(i) = sgn Xb(i) , 1i=1,2,...,N

The B-coefficient and the B-distance provided by ya(i) and yb(i)
are given, after some manipulation [8], by

N : —
p,(0.8) = M2 { Jﬁ+% sin"1 WU . A % sin” P 2 B(1)
i=1

1+0-u4 (1) 1+6-u(1)
(5.4)

and
By(O,G) = =1n oy(O,e) (5.5)

Now consider another reduction of the data obtained by
defining a new random process z(i) as the product of the two
channels,i.e.,

2(i) = x (i) -x (i) ., i=1,2,...,N (5.6)

The distribution density of z(i) is given, after some manipula-—
tion [8], by

_ B 1 8p (i) z ()
p(z(i)/8) = SXP \ TTrzou(n) -p (i)-~‘L X
(1) /28R (D) - "’
(5.7)

K (1+9ugil}|zgi)l 3

o\n(1+2 u(l)).Pn(l)
where K.(°) is the modified Bessel function of the second kind
and of order zero. The B-coefficient based on z(i), i =1,2,...,

N can be calculated for the weak signal case, i.e., for 8<<1,
as follows:

N . ; 2
_ S =1/4 146 CoBu(i 1-1/2
P,(0.8) = E (1+28u(i)) [Tiiﬁﬁ%%)' B es e il

{5.8)
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and

Bz(o,e) = -1n p,(0,8) ' (5.9)
Let 6 <€ 1 in Egs. {5.3), (5.5) and (5.9): then we will have
02 N -
B _(0,0) =7 I po(i) (5.10)
i=1
92 N2
B _(0,08) = —5 I u7(d) (5.11)
Y 2t i=l
g2 ¥
B_(0,8) = T Mo (5.12)
z i=1

Taking the ratio of these distances, we obtain By/Bx =-%b%)2

and BZ/BX = %. These quantities are equal, respectively, to the

A.R.E.'s of the Polarity Coincidence Correlator (P.C.C.) and the
Correlator, with respect to the optimum detector [12]. This is
the case since the optimum detector T , the Polarity Coinci-

dence Correlator Tpcc’ and the Correlgggr Tc are sufficient test

statistics (for 8 << 1) of x, y, and z, respectively, for dis-
tinguishing between the two hypotheses. These systems are given
by

N

Topt = ifl mi) - b (5) + Xb(i)}z (5.13)
N

Tpee = 131 W(1) -y, (1) -y (D) (5.14)
N

Tc = z u(l)'z(l) (5.15)
i=1
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