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ABSTRACT

-ect procedure for estimating unknown parameters is a condi-
ation when no a priori information concerning the possible

= parameters is available. [t is well known that the Cramer-
gives a lower bound on the vuariunce of conditional estimates.
"!..he observer has some a priori knowledge concerning the value
rs. Under these circumstances the estimates should
al. In this treatment the Cramcr-Ruu inequality is extended
sous estimation of many parameters (real or complex) when
ledge is available. Lower bounds are given in terms ot the
r's information measure matrix.

are applied to the estimation of pulse trains. The

acy in the simultaneous estimation of signal strength,

, and doppler-shift frequency is given in terms of quantities
signal waveform. It is shown finally that these lower
ained asymptotically by the maximum likelihood estimator as
al-to-noise ratio increases.
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dure for estimating unknown parameters is a condi-
(1; when no a priori information concerning the possible
eters is available. It is well known that the Cramer-
g}m a lower bound on the variance of conditional estimates.
onditional estimate of a single unknown parameter a {real
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o tedp(x/o)ax = u + b (1) {1.1)
X

lled the bias of the estimator a(x). Then the variance of
ﬁ'own following inequality under some regularity condi-

T (1.2)

r's information measure [2,4,5] given by

e (1.3)

(1.2) holds only when, for all xeX,

= k(o) (2oE R(x/0),* (1.4)
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where k{a) is a function which does not depend on x, and * indicates

complex conjugate. ~
A lower bound for the mean square error between the estimate a(x)
and the true value a is readily given by

re hHermitisn matrix, weere I-1(2) s the inverse of I17.).
By considerinz only the diagonal element, we have -

2 k k .
X , - _ R . b, S .
E |a(x) - o [22 |bla) |2+ 1+ b'(a) var[;i(x) ]-\In(g)2 Lo a5+ R lg-)'r] NERE
X I(a) (1.5) X m=]1 n=1 3\."“ T, in
- ’
Particularly in the case of an unbiased estimator, Egs. (1.2) and b {a) . (2.7)
(1.5) reduce to -
- da
E |a(x) - @ |2 = var a(x) = I—%—T (1.6) > ’ -
. . a . efore the mean square error of the estimator a(x) satisfies
B 2 - k k b, (a)
2. CONDITIONAL ESTIMATE OF MULTIPARAMETERS ._[x).ui | = | bv(g) l‘- + I 1 (6 . i = )’ 1-1(0)“}n
Assume that the probability density functions p (x/a) = : 1 m=1 n=1 3a -
p(x/al, @. -« ,0a) , xeX, for the observation x, is known except abi(_n_) . m (2.8)
for a fingte number of unknown but fixed parameters a., G,, = = = » O =
Let Ei(x) be & conditional estimate of a, having & bias bi(a), i.e. n
8 (xIplxfa)ax = ay +byla) , 1=l ===,k (2.1) uality in Egs. (2.7) and (2.8) holds only vhen
- _ 3log p(x/2) *
We assume the following regularity conditlon: (x) et bi(g) = Jil Kij (x) ( 3GJ ) (2.9)
3 a o oa 3 . B . e set of functions K. .(x), - - - , K. (x). If the d,(x)
an s ai(x)p(x/g_)dx = il (x) an p(x/g)dx, i, =1, .. .k (2.2 unbiased estimator, Ea%. (2.7) a.nd,(2%5) reduce to 1
which is equivalent to |2 = var t;i(x) = [ I'l(g) 1. . (2.10)
+ Bbi(g) = 75 (x) 3log p(x/2) (x/a) ( x Bt
i Ba, Faglx b, plx/a)dx 2.2p) . (2.10) holds only when
k
a *
Then the covariance matrix of & set of camplex random variables X Kij(x) {Msglﬁ } (2.11)
=1 J )
- - g plx/a * a), * . .
ul(x), - - -, ak(x), {alo aa(x ) Yo - - -, {alo e X )}, is described
by [4,5) 1 k [DITIONAL ESTIMATE OF MULTIPARAMETERS
¥y N he previous §ections it was assumed that no a priori knowledge
V(E) A(E‘_) (2.3) ers was available. However, in many cases the observer has
a#(a) I(a) ' priori knowledge concerning the value of the unknown parameters.
e circumstances, the estimate should be unconditional [1].
where V(a), I(a), a(a) are k x k submatrices defined by _h, be any unconditional estimate of a single unknown parameter
v, (a) = E{ (a,(x) - a, - b, (a))(a,(x) ~ a ~ b (a))*] (2.4) iy
W $T R 3T : ¥(x)] =/ a<x>p<x/a>aa= a+ bla) (3.1)
X
_ 3log p(x/a) ¥ 3log p(x/a) '
Iij(g) =E[( ) =] (2.5) can be shown [12] that the variance of this estimate satisfies
X aai an ng inequality under scme regularity conditions:
_ - 3log p(x/a) =r7 T | %(x) - a - bla) |2 plx/a)o(a)dxda
8yy (a) = EL(&;(x) - ay - b, (a)) 7, ] Siph
3b. (a) o . 2
=8y, — , 1,0 =1,2, - - -,k (2.6) Il"f"(“)'
J ~ E[1(a)] (3.2)

The matrix of Eq. (2.3) is a nonnegative definite Hermitian matrix.
It can be showa that V{a) - A(a)I~1(g)a%*(a) is also a non-negative
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The equality of Eg. (3.2) holds only when

(a) = K (3_1_053.51’5&)]'

a{x) —a~-Db (3.3)
e), and for same constant K.

for all xeX, ac O (the parameter spac
%(x) and the true value of a is

Now the mean square error between

given byl | 1+ EDb'(a) |2
EE | %0 -a|? ZE[ba) 2 —2— (3.4)
a x a E I(a)
a

In the particular case when ¥(x) is unbiased for all a, then b(a) = 0,
and Egs.(3.2) and (3.4) will reduce to

var[d(x)] = E_%—T:Y

a,Xx a

EE [§(x) - al® = (3.5)

a X

consider the multiparameter case. Let g = la,, = == »a.]
be the set of unknown parameters to be estimated based o% the probab*lity
density function p(x/a) and & priori probability density function ala).
The discussion of the previous section can be applied in an analogous
fashion, and the following conclusion will be obtained: let ‘Gi(x) be an

unconditional estimate of ay such that

Now let us

£ ¥ (p(x/a)ax = aobyla) 1Tl ook (3.6)

-1,% {5 a non-negative definite Hermitian

Then the k x k matrix V - 4 I
k x k matrices such that

matrix, vhere V, I and A are

vij:g v (g) L] i, = 1, - -~ K (3-7)

i)
IiJ=E Iij(g) (3.8)

(a) (3.9)

>
W
12 =
o>

i) i)

and where Vv, (a), I,,(a) and &, (a) bave been defined by Eqs. (2.4),
(2.5), and 138, tdnsidering Anly the diagonal elements of the matrix

v - A I-1a¥%, we have

varfE (x)] = EE | ¥;(x) - oy - by(a) |2

¢

.:-. error of the estimate Z.i\x) satisfies

2
i (x) - oy 122 E o (@) |?
a
1; k ( abi(u) 1 (a)
+ (6, +E—1=)Ir 8b; (a
m=1 n=1 im N Bum ! n.]m(‘sin‘E al—— )'
in Eqs.(3.10) and (3.11) holds only when R
k
()= T K (M)'
§ 5 5 i3 3, (3.12)
all :m?x, and for some set of constants K. ., - - - K
se of unbiased estimators, Eqs. (3.10) end (Ell) reduc'e {lé
: - v -1
| ;_11::) -a; [€ = var [2,(x)) = [1 N (3.13)

a,x

?Tm; JOINT ESTIMATION OF RADAR PARAMETERS

ytion of the conventional Cramer-Rao inequalit,

tion of redar parameters is not new [6.Tc]1. Ba:';dng;(il;Sié *

s, we attempt to formulate a more general treatment of the

r estimation problem using Eq.(3.13). In particular
knowledge r:?nt_:erning unknown parameters is taken into

(b) no limitation is placed on the number of parameters

y estimated, and (c) it is not required that the power

e additive noise be bandlimited or flat.

: on between this approach and the method of maximum likelihood
=11c [ B8] and Kelly et. al. [ 9,10] will also be discussed

a given signal is transmitted periodically and that M returx;ed
erved. Assume also that the radial velocity of the movin,

_ int and that the variation of the target range can be ¢

e i-th observed data is giver by

w(t-1)exp(jamt) + ni(t) ,i=1,---, M (4.1)
e signal amplitude, T the time delay, and 2 the doppler-

. The quantity a is a complex Gaussian random variable

e magnitude is Rayleigh distributed and the phase is uniforml
Pie@ween 0 and 2v. Eq.(L.1) can be written as v

= o . sy (gomit) + "@ 2 s(t;a,7,0) + N(t) (.2)
. Kk K ab, (a) - ab, (a)
m:l nil (6,0 * i_a"m ) (1 in (6, +§ 3a_ ) (3.10) _-x s - .
2 1 “J n, {t)
128 ay ! (1)
1. Middleton [1] and Hancock and Wintz [3] slso give a lower bound for I 2 = o N(t) = (4.3)
the error of unconditional estimate which is quite different from IR i .
Eqs. (3.2) end (3.4): T i i !
a i i {
[1] pege 9k3, Equation (21.6) b } ) ! :
[3]1 pege 123, Equation (5-13) Xa(t) IO‘MJ n(z)

22




* * M *

R.=Ela o ] and dada = M da da.. Th iori 111
The noise process N(t) is assumed to be an M-variate complex-valued i T T ¢ ® prioTi probebiiity
stationary Gaussian analytic process with h

: ons of T axlmd » are not specified here. Instead we impose the
EMN(t)] = 0 and E[N(s)N (£)] = R(s-t). geendition:
||2 =4, ; & constant (L.14)

h(r)

turn specifies the admissable range of 1 and ).
some manipulation, the averaged Fisher's information matrix
ned as follows:

The likelihood ratio is well defined and is given by | Jwlt-t)exp(2mit)

MX/a,T,0,) = exp{[s('),x(')] + [x(7),8()] - [S(').S('),](R)} (L.b)
H(R) H(R)

where [ s ] is the reproducing inner product on the reproducing
kernel Hilbert space generated by the covariance matrix function R(s-t) -1 .
(121 = u (R ) , i =1, - - - M (4.15)
Assume that the covariance matrix function is separable so that 1J
P2 -1
R(s-t) = Ry r(s-t) (5.5) , = BBy trace [RgRy"] (4.16)
where ijc an M x M constant matrix and r(s-t) is a non-negative . =0 ,i=1,--- M b 17
definité scalar function. Then the reproducing inner product cen be . ’ (b.17)
written as 2T2
M M = 8r°T%y trace(R R-l]
F().e()] = £ © e (),e(0] (R (4.6) \ ¥ SN (4.18)
H(R) 1-1 J=1 h(r) 1,J
where fi(t) is the i-th element in an M-dimensional function F(t). =0 y i=1,--- M (4.19)
The inner product [ ’h@ is the reproducing inner product on the
reproducing kernel Hilbe! g space generated by r{s-t).
Let us restrict our attention to unbiased estimetors which simulta- B-z -1
nemzsly)estimate M+2 unknown parameters: Gy, = - - , 7, and A. In + b T By trace [RgRy ] (4.20)
Eq.(2.5) set a,=a., i=l, - - - ,M; o, =75 and o =). After straight- .
forvard computdtidn, the entries of Winer's inf‘orm’gtgon matrix I are and T are the effective bandwidth and duration of the signal
i w(t), defined by

cbtained as follows: ,

1,,(a,1,4) = |Iw(t-T)exp(JE'ﬂt)I|2 R3] L i,3=1, - - M T (o)
i N
h(r) iJ b h{r) (b.21)
. -1 2 2 )
- 2 ®  bn | ow(t) ]
I JT,A) = 2 t- (jemt 4.8
Al = 2 [Gestnn| | grye (x.8) e
I (et = - We(t-rexp(gemit) w(t-rexp(yemt)] 7 ped . - 2 . 2
T h(r) [Ry iJ ) (b9 = Jf—:gy— ag / un? s J%((%;——'—df (u.22)
- 2 g -
I,,(a.1,2) =2 {32t w(t-1)exp(32mrt) |lh(r)°_,'3;1l_,_ (%.10) and P(f) are the Foumjer transforms of the signal w(t) and
nce function r(s-t#respectively. The quantity pis defined

I“(g,-:,x) = [w(t-1)exp(j2nit),jant w(t-t)exp(_ijAt)g(rBR;l] s, (4.11) I';'C'.'.], sont w(t)]
hir

i) )
. . _ 3
1,(a,10) =2 Re [<w(t-1)exp(J2mit),J2nt w(t-t)exp(samt)] _a_Rulg (ki | wle) [ [ fere wit) ] (4.23)
h(r) . . h(r) h(r)
jori di t i ti te
i,e;ethe a pr1?r1 distribution function of .the complex Gaussian multivariate averaged information matrix is
B * * _ * ﬂ 0
o(a)dada = = exp(-a Rslg) dada. (4.13) .
(2n) " aetRg " ! (b.2b)
I(7.)
2L 25



where the submatrices I(a) and 1(1,\) are given by

- -1
Ila) = v Ry (4.25)
and B2 pT B
e ee
I (1)) = 81°u trace [RES'] (4.26)
2
pTeBe Te
On inverting 1 and considering only the diagonal terms, we obtain
R, )
EE|% (0 -a 2> M1, 1=1,2,---M (4.27)
a x u
- 2 1 .
EE | T(X) -1 {%, 252 2 -1 (k4,28)
a x 8n Be(l-o ) u trace [RSRN ]
and 1
v -
EE [ 1|3 81°T2(19°) b trace [R RNl] (4.29)
e S
a x
5. UNCONDITIONAL MAXIMUM LIKELIHOOD ESTIMATION

a lower bound for the mean square error of

s have been calculated by use of
The derivation of these results,

inimum variance unbiased

In the previous section,
unbiansed estimation of radar parameter
the generalized Cramer-Rao inequality.
however, indicates neither the existence of the m
estimator nor its structure.

Maximum likelihood estimatiom, when & priori ki
is available, is called unconditional maximum likelihood estimation [1].
This is equivalent to the method of inverse probability used by Woodward
and others[ll,B]. In this section the structure of unconditional maximum
likelihood estimators (UMLE) is obtained and it will be shown that their
error variances approach the ultimate accuracy given by Eqs.(L.27)-(k.29)
as the output signal-to-noise ratio increases without bound.

If the & priori probability of T and A is denoted by o(t1,A)}, the UML
estimate is the set of a,r, and X which maximizes the quantity

L(X3a,1,0) = A(X/a,7,2) ola)olt,)) (5.1)
or, equivalently, the quantity
-1
-1 -1 -1 -1 -1
log h(X/a,1,2) o (a) o (1,0) = -1 a=(Rg™+ wRy ) Ry £]*[Rg+uRy ]
-1 -
S N | N S R P | M
la-(Rg+uRg™) Ry el + "Ry [Rg™+uRy 1 Rye +log(2n) det Rg
(5.2)
where
1 Jamit c
e =le , and ci=[u(t—r)e ’xi(t)]h(r)’ i=1, --, M
M (5.3)

Since ¢ is a Gaussian multivariate depending on T and A, the UML estimate

~ ¢ s :
¥(X) and A(X) are those that maximize

26

novledge unknown parameters

*ge+ logo (1)) (5.1)
=1co-1 A7t
Ry [Rg + wRy ) Ry (5.%)
estimate &(X) is given by
-1
=1 -1,77 -1,
= [Rg™ + uRyT] RE (5.6)

]
hir)

ider the case where the output signal-to-noise ratio is
v high [8,9,10]. 1In this case, the second term of Eq.(5.4)
ble and the first term is given approximately by

. et x (1)

(5.7}

r,A) is a generalized ambiguity function of the signal wave-
and is defined by

er“‘t,u(t-r)er“‘t]

Xaa) = fw(t-T) (5.8)
hir)
6(s-t), the X, reduces to the conventional ambiguity
ng the existence of Taylor's series expansion of |x |2
) and using the quantities Te, B , and ¢ defined il the
ction, we obtain [12] €
¥-1 DB2 BT Y-1
> 42 . _ e e e
exp (-4n"ua Rg"a . . . (5.9)
x-
by oBeTe Te A=}
't side of Eq.(5.9) is proportional to the a posteriori
of 1 and A, we have
=1 " EX(x)] =2 (5.10)
= .i. 1
81°B"(1-0")u a Ry'a (5.11)
1
s o 2 2 * -1
S Tﬁ(l—o JuaRia (5.12)

true value of the signal amplitude under observation.
I of Eqs.(4.28) and (4.29) are obtained when the
of Egs.(5.11) and (5.12) are averaged with respect to

-1
= nrue{RsRN ]. After 1 and ) are estimated, the UML

2 is given by Eq.(5.6). v
shown [12] that this UMLE a(X) satisfies the condition of
therefore possesses minimum variance, i.e. from Egs. (3.10)
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and

If the output signal-to—noisi ratio is large enough so that the
minimum eigenvalue of u RSRﬁ >> 1, then Eq.(5.14) becomes

This last expression is equal to the right side of Eq.(4.27).

the UMLE %(X) becomes unbiased end approaches the ultimate lover
bound given by the Cramer-Reo inequality.

3] = ! 3 -1y
var[a, (X)) = [{I + uRgRy ) RgRy Rg(T + uRgRy ) APPENDIX

ii
DERIVATION OF EQ.(3.2)

- (3.1) we have
bla) = / Bx)p(x/u)dx (h1)

x/3) is & probability density, it follows that

] (5.14)

2 -1
= [Rg(TnRRET) 1y

=

|Xi(x) - ai|

12
®

I ptx/a)dx (a.7)

he regularity condition which permits us to differentiate

ect to a inside the integration with respect to x, we have

L(A-1) and (A-2).

; Loal

Va) = £ %00 BRI gy (8-3)
X

EE| Ki(x) - ai|2 = [RN]ii (5.15).

a x u
Therefore, as the signal-to-noise ratio increases without bound,

_  2log p(x/a)
0 i Ta plx/a)dx (A-k)

a) be an arbitrary function of a. On multiplying Eq.(A-4)
subtracting the result from Eq.(A-3}, we have

_m;-i(au>-ru>)ﬂﬂ%§i&lpumnn (8=5)
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ﬁtaﬂi K. After taking expectation with respect to x
and using Eq.(A~k), the result isc
E [¥(x)] = a + b(a)

(A-9)
-9) is & necessary (but not sufficient) condition for
of Eg.(A-7) to hol Therefore the lower bound of
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