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Image Data Compression by Predictive Coding

I: Prediction Algorithms

Abstract: This paper deals with predictive coding techniques for efficient transmission or storage of two-level (black and white)
digital images. Part I discusses algorithms for prediction. A predictor transforms the two-dimensional dependence in the original data
into a form which can be handled by coding techniques for one-dimensional data. The implementation and performance of a fixed
predictor, an adaptive predictor with finite memory, and an adaptive linear predictor are discussed. Results of experiments performed on
various types of scanned images are also presented. Part Il deals with techniques for encoding the prediction error pattern to achieve

compression of data.

Introduction

Data sources such as facsimile transmission signals and
digitized images to be stored in a computer memory con-
tain a substantial amount of redundancy. Source coding
[1] techniques (also called data compaction or com-
pression) can be used to efficiently encode the outputs
of such sources. There are two obvious applications of
these compression methods. The first is in communica-
tion systems. By encoding the source, we can transmit
the information over a communication channel in a
shorter time period. Alternatively, we could use a channel
with a smaller bandwidth to transmit the coded data
(hence the often used term *‘bandwidth compression™).
The second application is in storage systems, which can
be used more efficiently by reducing the amount of data
to be stored.

In this paper we discuss some theory and methods for
compressing two-dimensional black and white image
data through the use of predictive coding. Part Il [2]
describes encoding techniques designed to achieve com-
pression. Before going into detailed discussions on the
particular approaches taken, we briefly review some of
the recent progress in the general area of image compres-
sion. Techniques in the art of compressing two-dimen-
sional image data can be classified into two categories:
1) time-domain (or space-domain) encoding and 2)
transform-domain encoding. The time domain techniques
that appear practical are mostly of the prediction-com-
parison type. This includes schemes like delta modulation
and differential pulse code modulation [3]. Most studies
of such systems are based on the classical communication
theory approach. The first information theoretic treat-
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ment of this subject was done by Elias [4], who called
the technique “‘predictive coding.” In predictive coding
the dependence inherent in the data can be removed by a
good predictor that transforms the original data into a
form such that successive data symbols are nearly in-
dependent of each other. The transformed data can then
be encoded by techniques applicable to independent
sources. Application of predictive coding to compression
of pictorial data has been reported by Wholey [5] and by
Arps [6]. Recent results in the theory of data compres-
sion systems that use prediction and interpolation have
been discussed by Balakrishnan [7] and by Davisson
[8]. Applications of their studies to weather satellite
pictures are reported by Kutz and Sciulli [9].

The transform-domain methods [10-12] include the
application of Fourier, Hadamard-Walsh, Karhunen-
Loeve, and other transforms. In all these methods a
block of data samples is decomposed into a set of coef-
ficients of orthogonal functions, and the coefficients are
transmitted. Compression of data is obtained by elimi-
nating insignificant coeflicients or by reducing the number
of levels of quantization in the transform domain. There
is, of course, some d'egradation in the reconstructed
image. With the advent of fast transform methods [13-
15] that are particularly suited for high-speed digital
computers, the transform techniques have recently re-
ceived considerable attention. ‘

For comprehensive treatments of the subject. the
reader is referred to the recently published books by
Huang and Tretiak [16], Andres [17], and Rosenfeld
[ 18], and to a special issue of journal papers [19].
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Image-data compression systems with predictive
co§|ing
In the present work our main interest lies in efficient
source coding of two-dimensional digital image data, i.e.,
data from sources that are discrete both in spacé and in
amplitude [20]. Typical examples are the quantized
values of facsimile scanner output and graphic display
data of computer systems. We limit ourselves to those
cases where the amplitude is quantized to just two levels.
Figure 1 illustrates a communicatjon system that uses
predictive coding. Assume a two-dimensional data source
sti, ), 1=i=1, 1 =j= J, in which the value of each
picture element (pel) s can be either 0 (white) or 1
{black). We can expect the value of pel s(/, j) to be close-
ly related to the values of its neighboring pels, s(i — 1,
J= 1), sti—1, /). sti—1,j+ 1), s(i. j— 1), etc. (Fig.
2). It is therefore possible to predict s(/, j) with a high
probability of success from the values of neighboring pels.
This is the function of the predictor in Fig. 1. The set of
points on which the predictor bases its prediction of the
generic pel (i, j) is called the memory set M of the pre-
dictor. For example, in the case of the 4-pel predictor of
Fig. 2, the memory set is

M={s(i—1,j—1),s(i—1,]),
sG—1,j+ D si.j— D} (1

The output $(i, j) of the predictor module is compared
with the actual value s(i.j) and an error signal e (/. ) is
derived from the operation

eli, ) = s(i, j) @ s, J), (2)

where @ means modulo 2 addition, an operation that can
be realized by an EXCLUSIVE OR circuit.

If the two-dimensional data s(i, j) are read by raster
scanning, they are transformed into a one-dimensional
time series denoted by s(n), where n = (i — 1)J +j and
1 = n = I1J. The sequence s(n) is first read into a buffer
memory. The 4-pel predictor of Fig. 2 is given at time
n the values s(n—1), s(n—J+ 1), s(n—J), and
s(n—J — 1) from the memory and it generates s(n), a
predicted value of s(n). The original data s(/, j) tend to
be highly redundant so most predictions are found to be
correct. This results in an error pattern e¢(#) [or equiva-
lently e (i, j) ] which is very sparse in binary 1’s.

The error signal is encoded by some efficient data com-
pression scheme and is then transmitted or put into a data
storage system. At the receiving end, or in retrieving the
data from a storage system, the decoder recovers the error
signal from its encoded form and the original data are re-
constructed by passing e (i, /) into a circuit that contains a
predictor in its feedback loop (Fig. 1). The structure of
this predictor and its prediction rule should be identical
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Figure 1 An image data compression system with predictive
coding and decoding.
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Figure 2 Two-dimensional data and their prediction based on
the neighbors.

to those of the predictor at the transmitter side. The s (i, j)
are reconstructed according to the inverse rule of (2):

s(i, j) = e(i. ) @ (i, j). (3)

The system represented by Fig. 1 can be extended to
multilevel (grey level) signals, e.g.. the case in which the
s(i, j) take on m different levels, 0. 1.--- m — 1. The
mod 2 additions in (2) and (3) should then be replaced
by mod m subtraction and mod i addition, respectively.
The prediction error pattern e (i, j) is therefore an m-level
pattern, with few non-zero values, since most predictions
will be correct.

The information in the error signal e (i, ;) is precisely
the information in the original image s(i,j) because either
can be obtained uniquely from the other. Note that pre-
diction by itself does not achieve any compression.
However, a substantial difference in the efficiency of
coding may occur depending on whether one encodes
s{i, jy or eli, j). An efficient code for s{i,j) would re-
quire that a large number N of pels be encoded simul-
taneously. This imposes two requirements on the en-
coding:
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Figure 3 An image data compression system with adaptive
predictor.

1. There must be an active memory that stores the past
N or more terms of s (i, j).

. There must be a codebook memory that lists the code-
words for all possible patterns of N terms. The num-
ber of entries in the codebook is 2.

[9)

Furthermore, if each block is encoded independently,
the inherent dependence between adjacent blocks is not
exploited. In predictive coding, on the other hand, the
error sequence e (i, j) is. in most cases, approximated by
the output of a memoryless (zero-memory) source be-
cause the serial (or spatial) redundancy is removed by
the predictor. As discussed in Part II, this latter result
allows convenient encoding of data without resorting to
a large codebook.

Prediction algorithms

e Predictors and criterion for optimalitv
One problem in the design of a predictor is the choice
of the memory set. Clearly, points adjacent to the point
to be predicted are the most useful and should be con-
tained in the memory set. We also restrict the memory
set to contain points that have been scanned prior to the
point currently being predicted. (It is possible to con-
struct look-ahead predictors which violate the above
constraint, but the advantages, if any, of such predictors
have not been investigated.) It is advantageous to have
as large a memory set as possible, but since the com-
plexity of the predictor grows with the size of the memory
set, practical considerations generally limit the memory
set to contain only a few points, generally less than 10.
For a given memory set, the “‘best predictor™ is defined
as one that requires the minimum number of bits for the
transmission of its error pattern. However, we need a
more specific definition to get meaningful results. The
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Figure 4 Adaptive linear threshold logic predictor with N = 4,

purpose of predictive coding is to remove the redundancy
from the image pattern. If the predictor does a good job
of redundancy removal the error pattern can be con-
sidered to be a completely random pattern. If we make
the assumption that the error pattern is truly random, the
compression obtained by encoding the error pattern is
determined only by the prediction error probability.
Therefore we choose the minimization of prediction error
probability as our criterion of optimality. In practice, a
predictor does not remove all of the redundancy in the
image, only a substantial portion of it. Consequently the
error pattern is not completely random. However,
assuming the error pattern to be random is the most
pessimistic assumption and it gives us a lower bound
on the performance of the compression system. Another
justification for choosing the minimization of prediction
error probability as the optimality criterion is its prac-
ticality in analysis and implementation.

Definition A predictor is called optimum if the prediction
error terms e(i, j) [or e(n)] contain, on the average, the
least number of 1’s, which identify prediction errors.

If the size of the memory set is N (i.e., an N-pel pre-
dictor). the set can take on 2" different states (or values)
N

which we denote by M, k=1,2,---,2".

» Fixed predictors
Assume that the data sequence is stationary and we are
given the conditional probability

q{1/M,) = Pr{s = ||memory set = M, }, (4)

forall k=1,2,--- 2" We further assume that prediction
is performed pel-by-pel according to a fixed prediction
rule. Then we obtain the following theorem for an optimal
fixed prediction rule.
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Theorem 1 If the memory set takes on state M,, then

A::{O if g(1]M,) < 0.5: (5)

1if g(1|M,) = 0.5.

The minimized probability of prediction error is given by

2

pP,= 2 r(M) min {g(1|M,). 1 —q(1]M)}. (6)
k=1

where

r{M,) = Pr {memory set= M, }. (7)

The proof of the above theorem is given by a straight-
forward application of the well-known Bayes’ decision
rule [20]. In actual applications ¢(1|M,) should be
obtained empirically.

The appropriate choice of a memory set must be left
to the designer’s judgment since there seems to be no
general way of defining an optimal memory set. However,
one can see intuitively that performance would be im-
proved by expanding any given memory set. This, in fact,
can be proven under the same assumption made in the
theorem. We state this fact as a separate theorem.

Theorem 2 The probability of prediction error of an
optimal fixed predictor is not increased by expanding the
memory set.

The formal proof is given in [20] and is lengthy: it is
based on the concave property of the function f(x) =
min (x, 1 — x).

One of the disadvantages of a fixed predictor is that
the size of the decision table grows exponentially with
N, and hence its dimension becomes huge when N gets
large. It is possible to reduce the predictor complexity
to some extent by applying techniques from switching
theory, such as Karnaugh maps [21] or the Quine-
McClusky reduction method [22].

* Adaptive predictors

A fixed predictor of the type discussed above is justified
if the statistics of the data [i.e., g(1]M,)] are known or
available in advance (e.g., by prescanning) and if the
data from the source are stationary. The adaptive pre-
dictors provide solutions that are practical when data
statistics are unknown or nonstationary. The use of
these adaptive predictors requires no extra channel
space: The predictor at the receiver operates in exactly
the same manner as the one at the transmitter side, and
updating of its prediction rule can be done synchronously
with that of the transmitter because the adaptation is
controlled by the signal s(i, j), which is available at both
ends of the system (Fig. 3).

Adaptive threshold-logic predictor
The predictor output § forms a finite set of discrete levels
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(0 and 1 in our case), so any of the pattern classifier or
discriminant functions can be used as a predictor [23].
The simplest type of adaptive classifier is a linear learning
machine or adaptive threshold logic unit (TLU).

Let {x. x,,--+ x,} be values of data in the memory
set of dimension N. For example, in the case of the 4-pel
predictor of Fig. 4. these x’s at time # are

x,=sth— D, x,=sh—J+1).x,=s(n—J), and
x,=stn—J+1). (8)

Define an (N + 1)-dimensional vector x by
x= (1, x,, %, x ), (9)

and consider the following linear function of the vector:

N

F(x)= 2 wox, o = (w, ), (10)

i=1
where w is an (N + 1)-dimensional vector,

w= Ong, Wy, iy, i), (1)

and the w,’s are real numbers. For practical purposes the
w;’s can be integers. This condition is met automatically
if the initial values of w and « of (13) are integers. Then
the prediction is done according to the following simple
rule:

. {0 if F(x) < 0;

“UifFx) =0, (12)

This linear predictor can be made adaptive by the fol-
lowing rule: The initial choice of the weight vector w may
have any value. The w is modified only when the predic-
tion fails. That is. let the new weight vector w’ be

w'z{‘wax’fﬂ‘zlands:o; (13)

w—axifs=0and 5= 1.

The choice a = 0 for the coefficients determines the sta-
bility and convergence speed of the predictor. Several
rules for choosing o are known [24, 25]. The simplest
types are a) fixed increment rule, where « is any fixed
positive number, and b) absolute correction rule, where
o is the smallest integer greater than |{w, w)|/|x/".

In its usual applicdtions to pattern recognition, the
adaptation of this discriminant function is done in a train-
ing period that precedes the test period. Although this
operational mode is also applicable to the problem at
hand, we can provide a more attractive mode in our ap-
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the small computers need to be backed up, they can have
a link to the large central computers.

Since in many experiments the raw events can be con-
verted easily into a more economical format, or frequently
even rejected as useless after the simplest geometrical
checks, another way of “stretching” the capacity of the
on-line computers is to perform a maximum of simple
logical operations on the data before they enter the
computer. This reduces the amount of valuable memory
taken up by buffers for useless information and leaves
much more memory (and also time) for programs treating
the useful data. The system designed for the experiment
on line to the 360/44 is an attempt in this direction.
Defining the center of a cluster of triggered wires in a
wire spark chamber by special hardware is another.

ist, for although a huge effort went into each program,
the result was usually a program extremely efficient in
execution time and space usage. With the arrival of newer
computers, with support of on-line applications even
extending as far as time-sharing systems, the tendency has
been to program in machine language only those opera-
tions which would be extremely inefficient in a higher level
language, for example handling the input/output and
buffering, and to make use of the flexibility of the system
and the high level languages for most other tasks. However,
in some applications it has been found that the high over-
heads imposed by these systems, often written for process
control applications, have put such restriction on the data-
taking capacity as to outweigh the advantages given by
the flexibility.

PPN e S i VTR NSRS oWl o o Ve Gl " ad e e e A S dnd

DARY NUMOZR $O8T CL.
6638 *250 35BuBoc | o-3u5204 L—“—‘ﬂb—lm‘: - oo 85 camo___eact, S5 3D
Ser Page t Ll 40 v g o Q

FOR ‘ugiupte
PN

OP 1
E45-05-0C A. Inspect fromt fare of frort fhimge for galling.

B> Rxcosnive galling sy be repaired per 72ni3-2-ARY
B. Inspect fromt fece of front flange for corrosion.

(1) Corrision {m permitted to s devth af .010 {rch mx.

S~

C. Insvest lugs far wxoessive wear.

(1) Lugs worn o less tham 250 inck ir width ers ot
repairadle.

{2) Lugs oot excesding adove limit nay be Tepalred
por 72-43-01-ART. )

DETam

G

WEAR LIMIT
.3700

300 MIN PN 438476
+250 MON ALL OTHERS

{POR WELDING;

Y
DETAIL (
sevun. F nevoare /27863 pesosammen

L |

HOUSING - COMF . FRONT BEARING
“wwTYTCTIT

cano race_2 AIEJ

OP. D¥ 1., Preliminary Inspactian:
b 18 81 gee Figure L.
A. Dimensional Check
(1) Inepect the housing ID Index No. L and the dimension from
the frant fuce of the retaining lip to the rear face of
the flange, Index No, 5. If either or both dimensions
are not vithin limite, chromivm plate and grind in accord-
ance with T2-21-02-AN5.

(2) Finish thickness of plating shall not exceed .00 inch
depth.

5. Vieusl Inspection
(1) Inspect bearing Jornal and rear flange fromt lip face
for scoring and vear indicatiod. Repair by grinding
and pleting in accordance with Section 72-21-02-ARE

(2) Inspect for cracks. No cracks permitted.

wev,w0. A nce.oare 2 uco.rianuce 2T

aconsen_£__

(b)

(c)
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plication. That is, there is no need to set up a training
period separate from the test period. We can operate this
learning machine in an adaptive mode all the time without
any interception or prescanning.

So far we have discussed only the linear learning ma-
chine because of its simplicity. However, essentially all
types of learning machines and discriminant functions
can be used as adaptive predictors. A ® function [24] is
defined by

P(x) = wy+ w fi(x) +w,fo(x) + -+ w, /o, (x),  (14)

where f(x), i=1, 2,---, M, are any real functions of x.
For example, they can be chosen to extract important
features of patterns. Another class of pattern classifiers is
“layered machines™ [24, 25]. A layered machine is a net-
work of TLUs, organized in layers. This class includes
the piecewise-linear discriminant function machines and
the “a-perceptron.”

Adaptive predictor with finite memory
In the fixed predictor discussed previously, an optimal
prediction table must contain one bit of information for
each state M, of the memory set, k=1, 2,- -+, 2", The bit
indicates whether the conditional probability ¢(1/M, ) is
greater than 0.5. But prior to setting up the decision table,
one needs to estimate g(1/M,) by prescanning or some
other means. Now, by assigning a few extra bits to each
entry of this decision table, we can develop a practical
scheme that does not need prior knowledge of data statis-
tics, We associate with each state M, a counter C,. Let
each counter have L bits (L = 1}; therefore C, can count
from 0 to 2" — 1.

The prediction and adjusting algorithms proceed as
follows. For a given memory set M,, predict according to

: — AL-1
._{llka_Z (15)

“loife, <2t

After the value of a pel is predicted, the actual value at
that pel is used to update the up-down counter C, as fol-
lows: Its new value is

c _{min fC,+1.2"—1}y  if s=1,
=

max {C, — 1, 0} if s=0. (16)

Typical behavior of C, is illustrated in Fig. 5 in which a
two-bit counter (L = 2) is chosen. The memory set takes
a state M, at times n,, n,, ny,- - -, during which C, moves
either up or down according to the rule (16). In this ii-
lustrative example a transition takes place from one re-
gion to another in which statistical properties of the image
patterns are different: In region A g(1/M,) appears to
be larger than 0.5 and in region B, less than 0.5. Predic-
tion errors occur at times r,, n,, A, and n,. The behavior
of C, can be treated as a one-dimensional random walk
with reflecting barriers at C, =0 and C, = 2" — 1 [26].
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Figure 7 Predictors used in the experiments.

The appropriate choice of bit-size L for the counter C,,
should be a compromise between two conflicting factors:
If L is small, the value of C, is susceptible to irregular or
noisy data; on the other hand, if L is large, it takes a large
number of data points to reach convergence and also to
accomplish a transition from one region to another.

Many interesting variations of the update algorithm
(16) are possible. For example, we could make the con-
tents of all counters decay with time to the median value.
Or, if the behavior of certain states is correlated, we could
update more than one state each time, and so on. How-
ever, we have found through experiments that the value
of reducing the prediction error rate by adopting such
variations is negligible in comparison with the increased
complexity of the algorithms.

Experimental results and conclusions
The techniques of prediction discussed in the previous
section have been applied to data from three different
sources: a page from the IBM Journal of Research and
Development [Fig. 6(a)]) and two line-drawings from a
machine jobshop [Figs. 6(b) and 6(c)]. The size of the
documents from which the data were obtained is 8% in. X
11 in. and the scanning resolution is 125 pels per inch,
i.e., each pel is 8 mils (0.2 mm) square.

Figure 7 lists the memory sets of the predictors used in
this experimental study. When fixed predictors are used,

IMAGE DATA COMI



VUTLIRIL UCOWIIAEALLE D 1D AW PACLELLSE W RASWNRI sassn Sra raseegs

logical operations on the data before tHey enter
computer. This reduces the amount of valuatle memo
taken up by buffers for useless information and [eav
much more memory (and also time) for programs treatir
the useful data. The system designed for the experirne

An lima tn tha 1RN. A4 ic an uttamnt in thic directin

Figure 8 Source data s(i, j) and prediction error e(i, j) dis-
plays for the journal page experiment.

20% or more of the entire page is prescanned to derive an
optimal predictor rule. Adaptive linear predictors are
applied with the initial setting w, =0 fori=0, 1,---, N and
no prescanning. Finite-memory adaptive predictors start
with every counter set to half its capacity, i.e., C, = 24,
k=1,2,---.2"

Figure 8 shows a portion of a scanned image s (i, /) and
the corresponding prediction error pattern e (i, j} when a
4-pel adaptive linear predictor is used. The prediction
error patterns obtained for the other types of predictors
look quite similar to this example. Table I summarizes
the performance of the three predictors applied to the
journal page image and it clearly shows that the finite-
memory adaptive predictors excel for this type of image
data.

Figure 9 shows plots of the prediction error rate of 4-
and 7-pel adaptive predictors with finite memory as the
counter size L is changed. The 7-pel adaptive predictor
with L = 3 yields the lowest prediction rate, 4.79 percent.

An adaptive linear predictor, on the other hand, does
not yield high performance. This seems to indicate that
the linear constraint on a predictor is too restrictive. A
substantial performance improvement is achieved by en-
larging the memory set from N =4 to N = 12, but the per-
formance is still not as good as that of the other types of
predictors. Therefore, if one wants to build a learning-
machine type of predictor, he should probably use piece-
wise-linear or polynomial predictors.
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Table 1 Experimental results on journal page image (125 pels
per inch).

Prediction error

Type of predictor (percent)
7- pel ﬁmte memory adaptlve (L=13) 4.79
7-pel fixed (prescanning) 5.14
4-pel finite-memory adaptive (L = 3) 5.16
4-pel fixed 5.85
12-pel adaptive linear (= 1) 6.14
4-pel adaptive linear (a = 1) 7.22

Table 2 Experimental results on machine jobshop charts (125
pels perinch).

Prediction error (percent)

Type of predzt tor ChartA  Chart B
7- pel ﬁxed 2.24 1.25
4-pel finite-memory adaptive 2.30 1.20
4-pel fixed 2.37 1.35
12-pel adaptive linear (a = 1) 2.50 1.52
4-pel adaptive linear (a = 1) 2.79 1.67

Table 2 summarizes the results obtained on the ma-
chine jobshop charts A and B. We observe again the
superiority of the ﬁnite-memor)'/ adaptive predictor over
the other types. The results from chart B show that the
4-pel finite memory adaptive predictor surpasses even the
7-pel fixed predictor.
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