L. R. Bahl
H. Kobayashi

Image Data Compression by Predictive Coding

Il: Encoding Algorithms

Abstract: This paper deals with predictive coding techniques for efficient transmission or storage of two-level (black and white) digital
images. Part I discussed algorithms for prediction. Part 11 deals with coding techniques for encoding the prediction error pattern. First,
we survey some schemes for encoding if the error pattern is assumed to be memoryless. Then a method is developed for encoding cer-
tain run-length distributions. Finally, some experimental results for sample documents are presented.

Introduction

In Part I [1] we discussed several prediction algorithms
for transforming a two-dimensional binary image into a
prediction error pattern. Because this transformation is
deterministic and invertible, it is possible to reconstruct
the original image from the error pattern. The purpose of
this transformation is to convert the two-dimensional re-
dundancy of the image into a form that is suitable for easy
encoding. It is generally much simpler to encode the error
pattern than the original image. The efror pattern can be
approximated as the output of a binary memoryless
source which produces 0’s with probability p (the proba-
bility of correct prediction) and 1's with probability p.
(the probability of prediction error) =1 —p. Many
schemes for encoding the output of a memoryless source
are known in the literature. The first half of this paper,
which is a discussion and comparison of three such
schemes, is intended to be tutorial in nature. The second
half of the paper is the development of an encoding
scheme that is useful when the memoryless source as-
sumption is not justified. Finally, we present some ex-
perimental results related to the compression of the three
sample documents discussed in Part [.

Encoding the error pattern by memoryless encoding
schemes

The error pattern is assumed to be the output of a mem-
oryless source producing 0’s and 1's with probabilities
p and p,, respectively. The entropy H (p) of this source
is known to be

H{p)=-plog, p— (1 —p)log, (1—p), (0
which is equal to H (p,).

R. BAHL AND H. KOBAYASHI

It follows from Shanrion’s Source Coding Theorem
[2] that the maximum possible compression G ., that
can be achieved by encoding this source is
G oy = —— 2)

H{p)

There are three basic properties of a code that are of
interest to us: 1) efficiency, 2) stability, and 3) ease of
implementation. By efficiency we mean the closeness
with which the code comes to achieving G ;... the upper
limit on compression for a particular value of p. By sta-
bility we mean the code’s efficiency over a range of pre-
diction error probabilities. This is important in an image
compression system where many different types of
images having varying prediction error rates may be
processed. By ease of implementation we mean the sim-
plicity of the hardware or software needed to do the en-
coding and decoding.

To encode the error sequence we first decompose it in-
to blocks that can be of either a fixed or a variable length.
Each block will be assigned a codeword and these too
can be of either fixed or variable length. Clearly, assign-
ing fixed-length codewords to fixed-length error blocks
cannot provide any compression. We will consider one
example of each of the three other possibilities: 1) fixed
to variab]e encoding, 2) variable to fixed encoding, and
3) variable to variable encoding. A comparative evalua-
tion follows the description of the three encoding
methods.

o Huffman encoding — fixed to variable
The error sequence is decomposed into fixed-length

IBM J. RES. DEVELOP.

1
T

Compression gain G
-~
[

A | I |] | i
Y090 0.92 0.9 0.96 0.98 1.00

Prediction probability p

Figure 1 Compression gain of Huffman codes.

blocks and then a Huffman code [3] is used for encoding
the blocks. Huffman coding is the most efficient fixed-to-
variable length encoding method. If the fixed-block size
is N, the Huffman code will have 2" codewords, one for
each of the 2¥ binary patterns. From our assumption that
the error pattern be regarded as essentially random, it
follows that the probability of a particular pattern is
pkpe‘v'k, where & is the number of 0’s in the pattern. These
probabilities can be used to construct a Huffman code.
We do not discuss the process of constructing the code
since that is well known. For Huffman codes it is not
possible to derive a closed form for the compression gain.
However, it is known that the average number of bits. ¢,
needed to encode each error digit is bounded by

Hipy=c<H({p) +N"". 3)

Thus, the compression gain G is bounded by

MARCH 1974

4] | _t |
v 0.90 0.92 .94 0.96 0.98 1.00

Prediction probability p

Figure 2 Compression gain of three specific Huffman codes
with N = 10,

1

—— > (‘l

Hipy

Hp)+ N

Figure 1| shows the relationship between the actual
compression gain G, and the prediction probability p for
N =1, 2,4, 8. and 10. The compression gain was ob-
tained by actually constructing the Huffman codes for
various values of N and p and then determining their per-
formance. Figure 1 also contains a plot of G .=
I /H (p). which is the upper bound on compression. It
should be noted that each curve in Fig. 1 does not neces-
sarily represent a single code, but a sequence of codes,
each optimal for a particular value of p.

The stability of a fixed Huffman code can be seen in
Fig. 2, where we have plotted the performance of three
codes of block length N = 10. which are optimal at p =
0.90.0.94 and 0.98. respectively.

173

IMAGE DATA COMPRESSION

74

¢

Compression gain G

| | | 1 L |
/V 0.90 0.92 0.94 0.96 0.9%8 1.00

Prediction probability p

Figure 3 Compression gain of conventional run-length en-
coding.

Table 1 Example of a conventional run-length code withM=7.

Sequence Run-length Codeword
1 0 000
0l 1 001
001 2 010
0001 3 011
00001 4 100
000001 5 101
0000001 6 110
0000000 7 111

The implementation of Huffman encoding and decod-
ing must be done by some form of table lookup. A code
of block length N requires a table of size 2¥. For N = 10,
the table size is 1024, which is quite large. In particular,
the decoding of Huffman codes requires a considerable
amount of computational effort.

. R. BAHL AND H. KOBAYASHI

s Conventional run-length encoding— variable to fixed
There is a kind of run-length encoding in which the image
is first decomposed into runs of successive 0’s and runs
of successive 1’s. Then the lengths of these runs are en-
coded and transmitted. This type of run-length encoding
is usually applicable to images directly rather than to pre-
diction error patterns. Capon [4] and Huang [5] discuss
this type of coding in great detail. Another type of run-
length encoding, which is more applicable to the encoding
of prediction error patterns, is one in which we encode
and transmit only runs of 0’s that are terminated by a
single 1. It is this second type of run-length encoding that
we consider in this paper.

An example of conventional run-length encoding is
shown in Table 1. This kind of encoding has been dis-
cussed by Elias [6], Wholey [7], and Arps [8], among
others. The encoding process is in two steps. First, the
error sequence is decomposed into run-lengths. Columns
[and 2 of Table 1 show the correspondence between the
error sequence and the run-lengths. An upper bound M
(M =7 in Table 1) is placed on the longest run-length, so
if the number of consecutive 0's, L, is M or greater, then
each group of M 0’s is considered to be a run of length
M and the remaining bits are treated as a separate run-
length: M is chosen in such a way that M = 2" — 1 for
some positive integer N,

The second step is to assign codewords to each run-
length. In conventional run-length encoding each run-
length L is assigned a codeword, which is the N-bit binary
representation of L. Columns 2 and 3 of Table 1 show an
example of this codeword assignment.

It is a simple matter to derive an expression for G, in
this case. The probabilities of the run-length are given by

p(L) = Pr{run-length = L}

prop, forO0<L<M-—1;
= M (5)
Jel for L=M.
The average number of bits in each block, A, is then
M-1 1 _pM
A=MpM)+ ¥ (L+ 1)p(l)= =, (6)
L=0

Because all codewords have length N = log, (M + 1), the
compression gain is
A 1—p"

Ce=N=T—plog M 1)

(7)

Figure 3 shows the relationship between p and G, for
different values of M. Since each curve in this figure rep-
resents a single code, both the efficiency and the stability
of this method are evident from these curves. The imple-
mentation of this encoding method is quite simple. All
that is needed is an N-bit binary counter which has as its
input the error sequence. Its operation is as follows:

IBM J. RES. DEVELOP.

1) For each input of 0, the counter counts up by 1.

2) When the counter reaches its maximum value 2¥ 4,
it outputs a sequence of N 1’s and is then reset to 0.

3) When a run-length terminates, i.e., when the inbut isa
1, the N-bit counter outputs its contents and is then
reset to 0.

The operation of the decoder is similarly quite simple.

o Golomb’s run-length encoding —variable to variable
This method is due to Golomb [9]. We give a simple in-
terpretation of this encoding method. The first step is to
obtain the run-lengths, as we did in conventional run-
length encoding, except that no upper bound on the run-
length is assumed. The codewords for the run-length can
be constructed in the following simple manner. First,
find an integer m such that

PR 0.5, (8)

Once m is found, we partition the run-lengths into groups
of size m; the set of run-lengths {0, 1,2, - -, m — 1} forms
group A,: the set {m, m+ 1,---,2m — 1}, group A,: etc.
In general, the set of run-lengths {(k — 1'm, (k— 1)m +
-+ km — 1} comprises group A,. To each group is as-
signed a group prefix, which for group A, is k — 1 1’s fol-
lowed by a 0 and which we denote by 1*70. If m is
chosen such that m = 2%, each group contains 2" mem-
bers and an N-bit sequence (called the tail) uniquely
identifies each member within the group. The simplest
way of generating this tail for a run-length L is to con-
struct the N-bit binary representation of L — (4 — 1)m,
i.e., the binary representation of L modulo m. The code-
word for a run-length L which belongs to group A, con-
sists of its group prefix, 1%*7"0, followed by the N-bit tail,
L modulo m. The encoding process can be understood
from Table 2, which shows the Golomb code for m = 4.

It is not necessary to choose m to be a power of 2. In
this paper we consider only codes with m = 2% and p™ = §
because they are simpler to implement. Codes with
m # 2V are similar to the codes discussed here, with
some minor modifications which are discussed in Golomb
(9] and our earlier report [10].

We now obtain an expression for the compression
achieved by this method for the case when m = 2". For
an independent binary source, the run-length distribu-
tion is geometric in nature, i.e.,

Pr{run-length = L} = g (L) =p" p,for L = 0. (9)

Equation (9) is similar to (5) except that there is no
limit on the maximum run-length.

The average number of digits per block, A, is the aver-
age run-length plus one, i.e.,

> 1 1

A=14+SLp' - po=——=—- (10)
zﬂ pope=T P

MARCH 1974

12—
o =64
m=732
1+
10
ol
m=16
81—
7 —
m=28
61—
5|
4
m=4
3
o m= 8
‘3 2= 4 m=2
E 16
z 32
RIS 2
& 64
&
£
© A 1] | I | 1
v 0.90 0.92 0.94 0.96 0.98 1.00
Prediction probability p

Figure 4 Compression gain of Golomb run-length encoding.

Table 2 An example of Golomb’s run-length encoding for
m=4,

Group Run-length Group prefix Tail Codeword

A, 0 0 00 000
1 01 001

2 10 010

3 11 011

A, 4 10 00 1000
5 01 1001

6 10 1010

7 11 1011

A, 8 110 00 11000
9 01 11001

10 10 11010

11 11 11011

17¢

IMAGE DATA COMPRESSION

176

The combined probability of run-lengths belonging to
group A, is

km-1

P(AY= 3 pop=pr=2" (1)

L=(k—-1)m

Because each run-length in group A, has a codeword of
length N + &, the average codeword length is

c=N (N+k) - 2F=N+2. (12)
k=1

Thus
N+2 2-+log m

= - &M (13)
1—p 1—p

where m = —1/log, p. (14)

Even when m = 2" the above formula (13) is a close
approximation to the compression gain [10].

Figure 4 shows the performance of Golomb’s codes
for m=12,4,8, 16, 32, and 64. As in the case of conven-
tional run-length encoding, each curve represents a single
code. The curve for the upper bound 1/H (p) could not
be distinguished from the envelope of the curves plotted
in that figure.

Encoding can be done by an N-bit binary counter as in
the case of conventional run-length encoding. The opera-
tion of the counter is as follows:

1) Foreach input of 0, the counter counts up by 1.

2) When the counter overflows (i.e., when it reaches
m=2%), the encoder outputs a | and resets the count-
erto0.

3) When a run-length terminates, i.e., when the input is a
1, the encoder outputs a 0 followed by the contents
of the N-bit counter. The counter is:then reset to Q.

Decoding can similarly be performed in a simple way.
Circuits for encoding and decoding Golomb codes are
discussed in detail in our report [10]. Golomb coding is
closely related to Shannon-Fano [2] encoding. This
is also discussed in detail in our earlier report [10].

o Comparison of the three encoding methods

In our experiments with compressing real images, we
encountered prediction probabilities in the range of
roughly p = 0.93 to p = 0.99, which corresponds to pre-
diction error rates between about seven and one percent,
respectively. We are therefore interested in comparing
the performance of the codes over this region.

A comparison of Figs. 1, 2, 3, and 4 shows the supe-
riority of Golomb codes over both Huffman coding of
fixed lengths and conventional run-length encoding. The
main deficiency of Huffman codes is the poor perfor-
mance at higher values of p. For example, with p=0.98
and N = 10, Huffman codes achieve only 81 percent of

L. R. BAHL AND H. KOBAYASHI

the maximum possible memoryless compression. With
conventional run-length codes, the efficiency is about 92
percent and for Golomb codes it is above 99 percent. In
terms of stability, Golomb codes are superior, although
conventional run-length codes are almost as good.
Huffman codes are comparatively poor. In terms of
implementation, encoders and decoders for both Golomb
and conventional run-length codes require very little
logic, whereas Huffman codes require the storage of a
table of considerable size.

Encoding run-lengths with non-geometric distribu-
tions
In the preceding section we assumed the error sequence
to be the output of a binary memoryless source. In this
section we consider the encoding of error patterns which
do not meet this idealized situation. We limit ourselves
to run-length encoding because of its superior perfor-
mance in the memoryless case. Some schemes for en-
coding nongeometric run-length distributions have been
considered by Huang [5].

We have previously shown that for a geometric run-
length distribution, the average error sequence block
length is

A= (15)

where p, is the prediction error probability. This relation
must, however, hold for any run-length distribution. Con-
sider any binary source which produces 1’s with prob-
ability p.. Then in a sequence of length N, the number of
I's is N - p, as N — o, Because the number of run-
lengths is equal to the number of 1’s, the average block
length A is given by

N _ T,

}\: —
N-p. p.

(16)
For a memoryless source, the run-length distribution is
given by

g, =p -p, forL=0,1,2,-- (17)

Replacing p. by i and p by 1 —% we have
2 =(1‘-”—1)L-l for L=0,1,2, - (18)
t . A A '

The run-length entropy H, i.e., the average number
of bits needed to encode a run-length, is

H,=—Y% g log,g,. (19)

L=0

Substituting for g, from (18) we have

Hy=xlog, A\ — (A — 1) log, (A — 1) (20)

IBM J. RES. DEVELOP.

It is easily verified that H ; is the same as AH (p).

Now consider another general, non-memoryless source
that also has prediction error rate p, and hence average
run-length A. Let the run-length distribution be any
arbitrary distribution, denoted by

p,= Pr{run-length=L}, L=0,1,2, -, (21)

with average block length

s

A=Y (L+ 1)p,. (22)

L

[

0

The run-length entropy of this source, denoted by H,.
is given by

Hy==3% p, log p,. (23)

L=0

Theorem Among all sources having the same average
run-length, the source with geometric run-length dis-
tribution has maximal run-length entropy.

Proof We need to show that H, = H . Consider the
quantity

-y plog, g = > p,[(L+1)log, \—Llog, (\—1)]
L=0 L=0

=Alog,A—(A—1)log, A—1)
=H,. (24)
Then

o 8
H —-H;=73 p,log, (p_L>
L=0 L

= log, e i len(%). (25)
L=0 L

Using the well-known inequality In{x) < x— 1 forx = 0,
we have

hd g
HL—HcilogzeZpLG—O:O_ Q.E.D. (26)
L=0 L

The maximum compression that can be achieved by
any method which encodes the run-lengths of the source
specified by (21) is

A
Gy = —— (27)
HL
Since H, = H , we can see that if the distribution is non-
geometric, it is possible to achieve greater compression
for the same prediction error rate.

One obvious way of obtaining a compression close to
G .y would be to construct a Huffman code for the run-
lengths. Such Huffman codes are unattractive since they
require table-lookup encoding and decoding and, in

MARCH 1974

2
o
27

Izml ! : m, + m, + my, 1R m, +m,
! I
(| 1 } +my +om,
=1lp-- | ! i b
| | ;
l ! .
Y I | | -
' |
1
! i
R | 4
I
I
—~ |
<
S 4T -
o
=1
&
2 -5
{ ———
Figure 5§ Selection of parameters m,, m,, - from log, S(¢')
curve.

particular, the decoding requires considerable computa-
tion. We now develop a simple encoding scheme that we
have found to be fairly efficient for the kind of non-geo-
metric run-length distributions encountered in practice.
The encoding is most readily understood as a generaliza-
tion of Golomb’s run-length encoding method and we
refer to it as multi-mode Golomb encoding.

For the arbitrary run-length distribution of (21), let
us define a survivor function

¢ -1
S(¢)=Pri{runlength L= ¢}=1-7Y p,,

L=0

£=0,1,2," (28)

: N N.
Now choose a sequence of integers m, == 27!, m, = 22,
-+ m, =2 such that

Sm)y~1/2,

1

Stm, +m,) & 1/4,

~:S‘(m1 +mytomy) & 1/2%,
(29)

Run-lengths L in the range m, + m, +- -+ m, =L <
m, + m,+- -+ m, are said to belong to group A, and, as
in the case of Golomb encoding, are encoded by a pre-
fix 170, followed by an N,-bit representation L —
{(m, +m, + .-+ m,). A useful guide in constructing
such a code is to plot log, S (¢) against ¢ as in Fig. 5. The
way to choose m,, m,,* -, m,," - - is self-explanatory from
this curve. If the run-length distribution is geometric,
then the curve of Fig. 5 becomes a straight line and we
have m, = m,=:--=m,=--+= m, where p" & }, which
leads to a Golomb code.

The encoding rule for the multimode Golomb encoder
is similar to that of the usual Golomb encoder except that

17

IMAGE DATA COMPRESSIC

¢

Figure 6 Selection of m, g, and K for typical log, S(¢)
curve,

we need to keep track of how many times the run-length
counter has overflowed within a run. The modified en-
coding rule is

1) For each input of 0. the counter counts up by 1.

2) When the counter overflows for the kth time (i.e.,
when it reaches m, = 2™ a 1 is generated and the
counter is reset to 0.

3) When a run terminates before the kth overflow is
reached, an (N, + 1)-bit codeword is generated.
This codeword is a 0 followed by the N, bits in the
counter.

In practice, we have found that log, S(¢) is fairly well
approximated by two piecewise linear segments as shown
in Fig. 6. The parameters of the multimode Golomb code
are then chosen as follows:
[mu, 1=k=K;

k

(30)

m k> K.

B?
The values of m,_, my

ity we denote such a code by the 3-tuple (m
which completely specifies the code.

are evident from Fig. 6. For brev-
mg, K)

(M

Experimental results

Table 3 shows a comparison of the performance of
Golomb and multimode Golomb codes on the three
sample documents. For all three documents, the error
pattern generated by the 4-pel fixed predictor was used.
In the case of Golomb codes, we encoded the error
pattern with codes having m = 2, 4, 8, 16, 32, --- and
chose the code that gave the highest compression. The
multimode Golomb codes were designed by the method
outlined in the previous section. The upper bound on
compression as given by (27) is also included in the
table. This result is roughly the compression that would
have been obtained if we had encoded the run-lengths
by Huffman codes. In the case of the journal page we find

R. BAHL AND H. KOBAYASHI

that the multimode Golomb code achieves roughly 87
percent of the maximum compression, whereas the usual
Golomb code achieves 67 percent. Similar substantial
improvement in compression is found for the other two
documents.

Table 4 shows the actual compression obtained by a
predictive coding system on the three sample documents.
For each document we chose the three predictors [1]
which gave the lowest prediction error rates and encoded
the error pattern using a multimode Golomb code. Also
included in the table is the upper bound on compression
as given by (27) for each case. We find that the multi-
mode Golomb codes achieve compressions roughly 80
to 90 percent of the upper bound.

In the case of the journal page we found the code (4,
64, 24) gave the best performance. For the jobshop
charts the code (4, 128, 24) was better. However, the
code (4, 64, 24) when used on the output of the 7-pel
fixed predictor for the jobshop charts showed negligible
deterioration from the (4, 128, 24) code. One couid,
therefore, use the same code over a wide range of docu-
ments with very small loss in efficiency.

Comments

In this paper we have considered the problem of com-
pressing two-level black and white images. Our emphasis
has been primarily on practical schemes that are easy to
implement. There is, no doubt, room for improvement on
the results presented here. We find that multimode
Golomb encoding achieves roughly 80 to 90 percent of
the upper bound for run-length encoding. It should be
realized that the upper bound (27) is somewhat mis-
leading because, in a single document, many of the pos-
sible run-lengths do not occur. A Huffman code con-
structed for the run-length distribution obtained from a
single document would not assign codewords to non-
occurring run-lengths. However, in practice, it is nec-
essary to design a code which assigns codewords to all
possible run-lengths. The performance of any such code
would then have to be inferior to the bound given by (27)
for any particular document.

All the run-ltength distributions we encountered were
monotonically decreasing, i.e., P(L) decreases with in-
creasing L. The independence assumption of the second
section represents an attempt to model these distributions
by a geometric distribution, for which we know simple
and efficient encoding methods. In the third section we
attempted to model the distribution as segments which
are piecewise geometric, In particular, we concentrated
on two-segment approximations. The advantage of this
kind of approximation is that simple encoding and de-
coding algorithms can be constructed. Furthermore, the
encoder and decoder can be varied by changing a few
simple parameters, m_, m, and K. This would be ad-

IBM J. RES. DEVELOP.

Table 3 Comparison of Golomb and multimode Golomb encoding on error pattern generated by a 4-pel fixed predictor.

Golomb code Multimode G olomb code
Prediction S . e
error rate Parameter Parameters Upper bound
Document (percent) m Compression tm,, my K Compression G s
IBM Journal 5.85 8 2.93 (4, 64, 24) 3.81 4.36
Jobshop Chart A 2.37 16 5.75 (4,128, 24) 6.59 8.15
Jobshop Chart B 1.35 16 8.8 (4,128.24) 12.33 15.15

Table 4 Experimental results for three sample documents

Prediction
error rate

Multimode G olomb code

Parameters

Upper bound

Document Predictor (percent) (m, iy K) Compression G

IBM Journal 7-pel finite 4.79 (4, 64. 24) 4.33 4.82
memory

7-pel fixed 5.14 (4, 64.24) 4.13 4.61

4-pel finite 5.16 (4, 64.24) 4.10 4.57
memory

Jobshop Chart A 7-pel fixed 2.24 (4, 128, 24) 6.75 8.36

(4, 64, 24) 6.73 8.36

4-pel finite 2.30 14, 128, 24) 6.68 8.25
memory

4-pel fixed 2.37 (4, 128, 24) 6.59 8.15

Jobshop Chart B 4-pel finite 1.20 (4.128.24) 12.92 15.71
memory

7-pel fixed 1.25 (4. 128, 24) 12.74 15.65

(4. 64, 24) 12.68 15.65

4-pel fixed 1.35 (4, 128,24 12.33 15.15

vantageous in a situation where one may wish to adap- 2. C. E. Shannon and W. Weaver. The Mathematical Theory

tively change the code depending on the data being pro-
cessed.

It is evident that the efficiency of encoding could be
increased by approximating log, S(¢) by more than two
piecewise linear segments. This, however, would in-
crease the complexity of the encoder and decoder. which
we feel is not desirable. We have also not considered
the dependency between run-lengths. This refinement
could be done by making a Markov model for the run-
lengths and such a scheme might lead to higher com-
pression. Some work along these lines is discussed by
Arps [8]. Such schemes unfortunately lead to more
complicated encoding and decoding.

Acknowledgments
We are grateful to Jacques Mommens for providing us
with data on the performance of Huffman codes.

References

1. H. Kobayashi and L. R. Bahl, “'Image Data Compression
by Predictive Coding 1: Prediction Algorithms,” IBM J.
Res. Develop. 18, 164 (1974), preceding paper.

MARCH 1974

of Communication, University of lllinois Press. 1949.
3. D. A. Huffman, **A Method for the Construction of Mini-
mum Redundancy Codes.” Proc. IRE 40, 1098 (1952).

4. J. Capon. “A Probabilistic Model for Run-Length Coding
of Pictures.” IRE Trans. Inf. Theory IT-5,157 (1959,

. T. S. Huang, “‘Run-Length Encoding and its Extensions,”

in Picture Bandwidth Compression. edited by T, S. Huang

and O. J. Tretiak. Gordon and Breach Science Publishers,

Inc., New York. 1972, p. 231.

P. Elias. “Predictive Coding,” IRE Trans. Inf. Theory IT-1,

16 (1955).

7. J. S. Wholey. “The Coding of Pictorial Data,” IRE Trans.
Inf. Theory1T-7,99 (1961).

. R. B. Arps, “Entropy of Printed Matter at the Threshold of
Legibility for Efficient Coding in Digital Image Processing,”
Report No. 31, Stanford Electronics Lab., Calif., 1969.

9. S. W. Golomb, “Run-Length Encoding.” IEEFE Trans. Inf.
TheoryIT-12,399 (1966).

10. H. Kobayashi and L. R. Bahl, “Image Compaction by Pre-
dictive Coding: Fundamentals,” Research Report RC-3249.
1BM Research Center, Yorktown Heights, New York
10598, February 1971.

n

=)

o

Received September 19, 1973

The authors are located at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York 10598.

179

IMAGE DATA COMPRESSION

