
A New Prefetch Cache Scheme 

Shun-Zheng Yu and Hisashi Kobayashi 
Department of Electrical Engineering 

E-Quad, Princeton University, Princeton, NJ 08544 

Abstract-The criterion that existing prefetch schemes apply in 
prefetching documents from the origin servers into a proxy Web 
server is usually the probability of each document being 
accessed in the near future or the popularity of the document. 
This criterion is not optimum in minimizing the average access 
latency or maximizing the average hit probability because the 
factors that affect on the latency and the hit probability also 
include the response time and the updating cycle of the 
documents. In this paper, we derive expressions for the average 
latency, hit probability, cache capacity and required bandwidth 
for a general prefetch scheme. A new prefetch scheme that 
combines access probability, response time and updating cycle 
to determine the lowest average latency or the highest hit 
probability is proposed. Finally, some numerical results are 
presented. The required parameters of the prefetch scheme can 
be simply derived from the log data of the cache. Thus, our 
scheme can be implemented in practice. 

I. INTRODUCTION 
The World Wide Web traffic is increasing very rapidly. 

Caching is a useful technique to reduce the Web traffic and 
speed up the Web access by storing copies of popular Web 
documents in a proxy server close to the end users. Most Web 
caching systems in use today are demand driven, i.e., 
documents are fetched or validated only when requested by 
users. However, the cache hit probability that can be achieved 
by such a caching scheme is usually less than 50%. We can 
increase the hit probability by prefetching those documents 
which are very likely to be requested in the near future and 
can reduce latency, i.e. the user's waiting time in accessing 
the desired documents. 

There are many prefetch schemes reported in the literature. 
We believe that they can be divided into three types. The first 
type is predictive prefetching, which is usually based on the 
prediction of the access probability that a document will be 
requested in the near future. The prediction of the access 
probability can be based on the client's access history [ 1][2], 
links between the contents [3], and relationships between the 
contents and some other threads such as the client's mobility 
[4]. If its future access probability is high, the document will 
be prefetched into the cache. The second type is popularity- 
based prefetching, which depends on how frequently a given 
document has been accessed recently [5][6][7]. The most 
popular documents will be prefetched into the cache. The 
third type is interactive prefetching, which is based on the 
interaction between the cache server and the clients 
[8][9][10][11]. Activities between the cache and the clients 
are used to decide whether to prefetch specific documents. 
The prefetch decisions can be made either by the cache or the 
clients. This type of scheme can take advantage of the idle 
time between the moments when the client requests to push 
or pull the documents to the clients, and thereby can decrease 
the access time [ 121. 

As noted earlier, the criterion based on the probability with 
which a document is accessed in the near future or the 

popularity of the document is not optimal in minimizing the 
average access latency or in maximizing the average hit ratio. 
There are other important factors that should be considered. 
For example, if a popular document has a long freshness 
lifetime, it needs not to be prefetched frequently because its 
current copy in the cache will remain "fresh" for a long time, 
hence can be accessed many times before it expires. Thus, the 
hit probability associated with such a document is high and 
the access latency is low. The latency to access a given 
document is also related to the size of the document: a large 
multimedia document, for instance, may cause high latency if 
it has no copy in the cache when requested, because it takes 
much transmission time to transfer such document into the 
cache, Therefore, the important factors that we should 
consider in minimizing the latency or maximizing the hit 
ratio include the access probability, the update cycle and the 
size of each document. 

In this paper, we propose a new prefetch scheme. First, in 
Section 11, we build a general caching model based on the 
caching mechanism of HlTPA.1, and use this model to 
derive expressions for the average latency, the hit probability, 
the cache capacity and the bandwidth required for a general 
prefetch scheme. In Section 111, based on the discussion of the 
derived expressions, we propose a new prefetch scheme, 
which will minimize the average latency or maximize the 
average hit probability based on sorting a combined 
parameters that are extracted from log data of the cache. 
Finally, in Section IV, some numerical results are presented 
to validate our analysis, which confirms that the prefetch 
scheme based on the criterion of access probabilities alone 
cannot achieve the lowest latency or the highest hit 
probability. 

a.PERFORMANCE OF A GENERAL PREFETCH SCHEME 

A majority of Web servers and clients use the Hypertext 
Transfer Protocol (H'TTP) [14], which has several cache 
control features. The basic cache mechanism in HTTP/1.1 
uses the origin server-specified expiration times and 
validators, as described below. 

The "expiration" caching mechanism is to expect that 
origin servers will use the "Expires header" (or the max-age 
directive of the Cache-Control header) to assign future 
explicit expiration times to responses. Before the expiration 
time is reached the document is not likely to change. If the 
origin servers do not provide explicit expiration times, a 
HlTP cache can use other header values (such as the Last- 
Modified time) to estimate a plausible expiration time. 

The Last-Modified entity-header field value is often used 
as a cache "validator". When an origin server generates a full 
response, it attaches the validator to the response, which is 
kept with the cache entry. When a cache finds that a cached 
entry that a client is requesting has already expired, it makes 
a conditional request that includes the associated validator to 

0-7803-6451-1/00/$10.00 0 2000 IEEE 

350 



the origin server. The origin server responds with a short 
code "Not-Modified" (no entity-body) to validate that the 
cached entry is still usable if the entity has not been modified 
since the Last-Modified time; otherwise, it returns a full 
response including entity-body. Thus, it avoids transmitting 
the full response if the validator matches, and avoid an extra 
round trip if it does not match. 

In order to determine whether a cached entry is fresh, a 
cache needs to know if its current age has exceeded its 
freshness lifetime. The current age is an estimate of the time 
elapsed since the response was generated at the origin server. 
The freshness lifetime is the length of time between the 
generation of a response and its expiration time. H " / 1 . 1  
requires the origin server to send a Date header with every 
response, giving the time when the response was generated. 
The expiration judgement is performed in the cache when a 
cached entry is requested by a client: 

( 1 )  
If the cached entry is fresh, then the cache sends the entry to 
the client; otherwise, it sends a conditional request with 
associated validator to the origin server. The validation check 
is performed in the origin server: 

(2) 

entry-isfresh = ( freshnesslifetime > current-age ) 

Not-Modified = ( Validator = Lust-Modified time ) 
The caching in H" / l . l  is shown in Fig. 1, where 

Expiration time 

Current age 

freshness lifetime 

validator 

Date 

now 

request-time 

Last-Modified 

request 

Next Last-Modifier. 

time 

time 
Date 

time 

time 

"OW 

I time 

is the time at which the origin server 
intends that an entity should no longer 
be returned by a cache without further 
validation. 
is the time since the response was sent 
by, or successfully validated with, the 
origin server. 
is the length of time between the 
generation of a response and its 
expiration time. 
is a protocol element (e.g., an entity tag 
or a Last-Modified time) that is used to 
find out whether a cache entry is an 
equivalent copy of an entity. 
is the value of the origin server's Date: 
header. 
is the current (local) time at the host 
performing the calculation. 
is the (local) time when the cache made 
the request that resulted in this cached 
response. 

*time 

Fig. 1 .  Caching in H " / l .  I 

response-time is the (local) time when the cache 
received the response. 

Based on the H"/1.1 caching mechanism, we build an 
analysis model of caching, as shown in Fig. 2. Document n is 
modified in its origin server with cycle pa. The first request 
from a client to the cache in a given cycle can not be satisfied 
by the cache (i.e., "miss" a fresh copy) and must fetch a copy 
of the document from the origin server. The consequent 
requests in the cycle are satisfied by the cache with the 
cached copy (i.e., "hit" its fresh copy). If a request arrives at 
the cache between the expiration time and the end of the 
cycle, the cache must validate the cached copy before using it. 
The inter-arrival time of requests to document n is governed 
by a distribution Act). Because origin servers specify the 
expiration time based on its estimation or schedule to the next 
modification time (i.e., the end of the current modification 
cycle), the interval between the expiration time and the end of 
the cycle may have a stochastic or deterministic distribution. 
For reduction of access traffic, origin servers intend to reduce 
the interval. 

Now we define the variables required in the following 
analysis (see TABLE I). 

In the definition of the variables, we assume the total rate R 
of access traffic to the Internet from a given Intranet is finite, 
given by: 

N 

R = C R , ,  (3) 
"4 

and the ratio 

y, = R n l R  (4) 

represents the probability of access to document n, n=l,. . ., N. 
We assume that the inter-arrival time of requests to 

document n is exponentially distributed: 

f , ( t )  = R,e-Ral , n=l, 2, ..., N .  ( 5 )  

Then the probability g, that there is at least one request to 
document n during a given modification cycle is given by 

" n=1, 2, ..., N. (6) g = l-e-R"'* 

Suppose we observe k modification cycles. Then there will be 
on the average kg, such cycles in which at least one request is 
made to document n. The first request in a given cycle will 
miss a fresh copy of the document and must fetch it from the 
origin server. The consequent requests in the cycle use the 
cached copy. Thus, the average hit rate for this document is 
given by 

first consequent inter-amval time 1: ~ s t - ~ o ~ ~ c a l i o n  rimr Expiration time 

1 1 ,:" 1 1 11 ?.I 

1 \ 1 IR+l 

$ 
4, r,, 

L h h 

S.t.f"(t) + request Iequesu 

I I 
1 I .  ' time v v v 

K fl" P" 
t t t t t  t t t t  missing validate missing hit hit missing hit hit hit 

r, is the Lasr-Modification rime, and O is the expirarion rime. 

Fig. 2. Caching model 

35 1 



TABLE I 
DEFINITIONS OF VARIABLES 

I N [the total number of documents residing in various origin servers in] 

AT, 

lthe Internet. n=l. ..., N. 
U lthe average modification cycle of document n, is . ,  the interval 

the average delay imposed by the Internet, i.e., the interval between 
the "reauest rime" and the "resoonse~rime" of the cache, including 

establishing a connection is not' included. 

the receiving of the response from the cache when a "fresh" or 
"valid copy of the document is found in the cache, including the 

T T  

the tran-smiszion time of the ddcument, the round-trip time and the 
processing time, as shown in Fig. 1. Because persistent connections 
are the default behavior of anv HTTP/l.l connection. the time of - 1  

T., 

transmission time of the document, the round-trip time from the 
cache to the client and the processing time in the cache, as shown 
in Fig. 1. 
the total average delay imposed by the Intranet and the Intemet 
when there is no "fresh" copy of document n in the cache, i.e., T.. = 

y. 
J,(r) 

g, 

s" lthe size of document n. 
R. Ithe average rate of access to document n. 
R lthe total rate of access traffic to the Internet from the cache, i.e., the 

sum of [R,,}. 
the access probability, approximated by the ratio R,, /R. 
the distribution of inter-arrival time of requests to document n. 
which is assumed as exponential distribution. 
the probability that there is at least one request to document n 

]during a given modification cycle. 
p,, I the average hit rate for document n. 
n lthe average latencv increased when there is no "fresh" CODY of 

,""*"lllG.II 1, U, "1G *a*,.G, I.C., ,,,, - ," ,, - y" U1 

cp. (the average missing probability of document n, i.e., cp. = x, (1 - p. ) 
r lthe total number of documents that are prefetched to the cache. 

probability. D l r h a  t - m l  h:r 

lntpnrv for n nrefetrh crhpmp 

I ]documents from the origin servers to the cache. 
I 

(7) 

where k&R, is the total number of requests made to document 
n during the k cycles, n=1, 2, ..., N .  

Among the hit requests, there are some requests may arrive 
during the interval between the expiration time and the end of 
the cycle. They require the cache to validate the cached copy. 
Since the response with special code "Not-Modified" is a 
short message, the transmission time is small. For simplicity, 
we omit this delay or assume this delay is included in the 
average delay Tnc when a valid copy of the document is found 
in the cache. 

Now we derive general expressions for the average latency 
and hit probability of a generic prefetch scheme. Due to the 
limitation of the cache capacity, any prefetch scheme cannot 
cache all documents. Suppose that r documents are 
prefetched to the cache. By "prefetch" we mean the action 
that a proxy Web server takes by automatically caching and 
updating the r documents once they have expired, and this 
action is not driven by the client requests. Therefore, the 
average latency L for a prefetch scheme is given by 

where % is the access probability given by (4), p ,  is the hit 
rate given by (7), Tn,c is the response time from the cache, Tns 
is the response time from the origin server, and q, is defined 
by 

77, = ~"(1- p , )AT,  , n=l, ..., N (9) 

As is seen from (8), the average latency consists of two 
terms: the first term is solely determined by the document 
access rates { R n } ,  modification cycles {,U"} and response 
times { T,,c, T,,}, and is independent of a specific choice of 
prefetch scheme, which is the latency of a "no-prefetch" 
cache scheme (i.e., the conventional caching); the second 

term cq, is the latency reduction that a prefetch scheme 

makes. This reduction is determined by the number r and the 
selection of r prefetch documents and so depends on the 
specific prefetch scheme. 

r 

n-1 

The total hit probability is given by 

where R, is the access rate to document n, R is the total access 
rate, x is the access probability given by (4), and qn is 
defined by 

~ p ,  =y, ( l -p , ) ,  1z=1,2, ..., N .  (11) 

Obviously, cq, is the increment of the hit probability 

compared with the "no-prefetch" cache scheme. 
Now we proceed to derive expressions for the required 

cache capacity and bandwidth. Whenever a request misses a 
"fresh" copy of document n in the cache, the cache must fetch 
the current version of the document from the origin server. 
Thus, the fetching rate for document n in the cache is (I-pJR,. 
The freshness lifetime of the document will be pn-t,, where t, 
is the origin server's "Date" in terms of HllW1.1, i.e., the 
time of the first request since the present modification cycle 
has started. Thus, the average freshness lifetime of the 
document is given by 

R = l  

wheref,(t) is given by ( 5 ) ,  and g, is given by (6). The fetched 
document will be expectedly stored in the cache for the 
interval of the average freshness lifetime. 

In a prefetch scheme, the selected r documents are 
prefetched into the cache, while the other requested 
documents are dynamically stored in the cache as is done in 
the ordinary cache scheme. Therefore, the required cache 
capacity C is 

352 



where s, is the size of document n, and (7) is used to derive 
the last expression. Therefore, the prefetch scheme needs an 

extra cache capacity of cs,, (1 - p . )  compared with the 

ordinary cache scheme. Thus improvements in the average 
latency L and the hit probability P are obtained in exchange 
for the increased cache capacity. 

The total transmission rate required for transmitting 
documents from the origin servers to the cache should be 

r 

n d  

w r + 1  n=1 

where we used (7). Therefore, the prefetch scheme needs an 

extra transmission bandwidth of (1 - g m ) L  than the 

ordinary cache scheme. Thus, the improvement in the average 
latency and the hit probability is achieved at the expense of 
increased bandwidth usage. 

III. A NEW PREFETCH SCHEME 
We now proceed to derive a new prefetch scheme. First we 

discuss the derived general expressions for the average 
latency, hit probability, average cache capacity and average 
bandwidth usage of a generic prefetch scheme as follows. 

From (8), if we sort [ q,, n=1, . . ., N }  in the descending 
order and relabel them as: q,>q22q32 ... 2qN, then we choose 
the r documents that correspond to the r largest q,,  . . . , q,, and 
prefetch them into the cache. In this case, the average latency 
L is minimized. Obviously, the reduction in the average 
latency is determined by three factors: the access probability, 
the hit rate and the response time. The previous prefetch 
schemes in the literature cannot achieve the minimum 
average latency because their criterion is usually the access 
probability [ y,} alone, Among the three kinds of parameters, 
the average delay AT, imposed by the Internet has significant 
effect on the average latency. If it is small, that is, the 
bandwidth that the cache connects to the Internet is fast 
enough and the size of the document is small, then the 
prefetch scheme cannot be very effective in reducing the 
latency. 

From (lo), if we sort [CO,, n=1, ..., N )  in the descending 
order and relabel them as: (~,2q~2q?~...>q,,, then we choose 
the r documents that correspond to the r largest q,, . . . , ‘p , and 
prefetch them into the cache. In this case, the hit probability 
P is maximized, Since q,=q,AT,, the two criteria for sorting 
are almost equivalent if AT,’s are nearly equal. Obviously, a 
prefetch strategy based on the access probabilities { x }  alone 
cannot achieve the maximum hit probability. 

Equations (13) and (14) show that the average latency and 
the hit probability are improved at the expenses of increased 
capacity and increased bandwidth usage. The maximum 
number r of the documents that can be prefetched must 
satisfy all of the following constraints: 

I S 

4 4  ,U, 

(a) Increased cache capacity AC: 

“=l 

where AC is the redundant cache capacity that may be 
utilized by the prefetch caching, which is the difference 
between the given cache capacity and the part required for the 
conventional caching. That is, the prefetch scheme can be 
performed only when the cache capacity has redundancy. 

(b) Increased bandwidth usage AB: 

where AB is the redundant bandwidth that may be utilized by 
the prefetching, which is the difference between the possible 
bandwidth and the bandwidth required for the conventional 
fetch of documents. That is, the prefetch scheme should not 
congest the network or increase bandwidth cost. 

(c) Tolerable latency Lo: 

where L,, is the lower bound of the average latency, and AL is 
the difference between the higher average latency necessary 
for conventional fetch of documents and the tolerable latency 
&. That is, the prefetch scheme must be efficient enough to 
reduce the latency under the limit. 

(d) Minimum hit probability required P; 

where d P  is the difference between the required minimum hit 
probability Po and the average hit probability for conventional 
access to documents. That is , the prefetch scheme must be 
efficient enough to increase the total hit probability over the 
limit. 

Therefore, we design the new prefetch scheme as follows: 
(A)From the log file of the cache that record its access 

activities and the headers of responses from origin servers, 
determine the access rates [ R , } ,  the total access rate R, the 
modification cycles [p,), the document sizes [s,,}, and the 
response times [AT,]. For simplicity, the scheme only 
calculates the parameters associated with the potential 
candidates that may be included into the list of the prefetched 
documents. The document that has only one access record 
(i.e., no revisit) in the log or has not more than one 
modification cycle during the statistic period will not treated 
as “potential candidate”. 

(B) Calculate { x }  from (4); [ p , }  from (7); [ 7,) from (9); 

(C) The objective of the system performance is to minimize 
the average latency L. Sort { q.} in the descending order and 
relabel them as: r),2r)&q32.... 

{CP,} from(11). 

353 



(D) Determine the number r of prefetching documents, 
subject to the constraints ( 1 3 ,  (16), (17) and (18) for given 
AC, AB, AL,, and AP. 

(E) Choose the r documents that correspond to the r largest 
q,, . . ., 17,. Prefetch the r documents from origin severs to the 
cache as soon as the documents has expired in the cache. 

(F) Repeat the procedures from (A) to (E) with a given 
statistical cycle, such as several hours, several days, or 
several times the expected modification cycle: 

N 

F = CY ... 
"4 

We can also use the hit probability as the performance 
objective. The procedure is the same as minimizing the 
average latency except that we now sort parameters (cp,) 
instead of (q}  in step (C). 

Note that the prefetch scheme does not need to know the 
total number N of documents in origin servers and the 
accurate value of the parameters [q,) and (qn} over 
extremely long statistic period, because it needs only their 
relative values to sort the documents that have been accessed. 
Therefore, it can make statistics over a finite long period and 
based on a finite log data that records the accessed documents 
instead of all documents in the Internet. The reasonable 
length of the statistic period is several times the expected 
modification cycle of documents given by (19). 

IV. NUMERICAL RESULTS 
In our numerical analysis, we assume the results from 

Breslau et a1 [15]. They comprised more than 17M requests 
traced from six academic, corporate and ISP environments. 
They found that the distribution of documents requests from a 
fixed group of clients follows a Zipf-like distribution with a 
parameter a ranging from 0.64 to 0.83, and showed that the 
model where the web requests are independent and 
distributed according to a Zipf-like distribution can yield the 
asymptotic behaviors that the various observed properties of 
hit-ratios and temporal locality are indeed inherent to web 
accesses observed by proxies. Hence, we assume that the 
access distribution ( R n }  of documents follows a Zipf-like 
distribution, and select the distribution parameter ~ 0 . 7 5  in 
our numerical analysis. The total number of accessed 
documents recorded by the cache is assumed 500,000. The 
total access rate R is assumed as 4400 requests per hour. The 
modification cycles [pn) are assumed uniformly ranging from 
2 to 720 hours. The document sizes ( s n }  are assumed 
uniformly ranging from 0.5 to 25k bytes. The response times 
(Tn,$} and (Tn,c) are related to the document sizes and the 
transmission rates as well as the round-trip and processing 
times. Because persistent connections are the default behavior 
of any HlTF'l1.1 connection, the time of establishing a 
connection is not included here. We assume that the average 
Intranet transmission rate is 16Okbps, and the sum of the 
round trip and processing time is lOms, for all documents. 
The Internet transmission rates for individual documents 
must be different, depending on the bandwidth of paths from 
an origin server to the proxy Web server. We assume that the 
Internet transmission rates for different documents are 
uniformly ranging from 4 to 40 kbps, and the sum of round- 

trip and processing times are uniformly ranging from 50 to 
600ms. 

The numerical results are shown in Fig. 3 - Fig. 6. From 
Fig. 3 we can see that the average latency of the conventional 
caching (i.e., r=O) is 2.95 seconds. If we use our prefetch 
scheme based on the criteria of descending order of (q,} of (9) 
and prefetch 10% of the accessed documents, i.e., r=50,000, 
the average latency L of our prefetch scheme will be 1.993 
seconds, which means 32.45% reduction compared with the 
conventional caching. It is obvious that the conventional 
prefetch scheme that prefetches based on the access 
probability [r , )  only cannot achieve the lowest average 
latency, which can achieve only 16.71% latency reduction. 

From Fig. 4 we can see that the average hit ratio of the 
conventional caching (i.e., r=O) is 0.56. If we use our prefetch 
scheme based on the criteria of descending order of (cp,) of 
(1 1) and prefetch ~50 ,000  documents, the average hit ratio 
P of our prefetch scheme will increase to 0.65. It is obvious 
that the ordinary prefetch scheme that prefetches based on the 
access probability ( r , )  only cannot achieve the highest 
average hit ratio, which achieves 0.63. 

As the number r increases, the cache capacity for any 
prefetch scheme increases, as shown in Fig. 6. When 
r=50,000, the extra cache capacity required are 165MB, 
400MB and 576MB, respectively for the ordinary prefetch 
scheme, the maximum hit probability scheme and the 
minimum latency scheme. The expenses of increased 
bandwidth usage are 0.69 K B I s ,  3.1KBIs and 2.9KB/s, 
respectively for the conventional prefetch scheme, the 
maximum hit probability scheme and the minimum latency 
scheme when r =50,000, as shown in Fig. 6. Therefore, the 
expenses of increased cache capacity and bandwidth usage 
are omissible than the significant improvements in the 
average latency and the hit ratio. 

Max (criteria: hit prob. (cp.)) scheme 

p 2.4 Min latency scheme 
(criteria: ( qn )) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
I .U 

Prefetch number r (lo') 

Fig. 3. Average latency 

354 



0.64- 
Max hit prob. scheme 

& 0.62- 

I ' . , " ' . "  

0:s 1 115 2 2.5 3 3.5 k 4.5 b 
Prefetch number r (lo') 

Fig. 4. Hit probability 

Min latency scheme 
(criteria: ( qn)) 

280 

s H 2500 dinary'scheme I 

Max hit prob. scheme 
6.5. 

Y 6 -  
L5i 
m 

Min latency scheme 
(criteria: ( q,, 1) 

Ordinary prefetch scheme 
4.5 (criteria: ( ~ 1 )  

cr 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
G..J 

Prefetch number r (10') 

Fig. 6. Required bandwidth 

V.CONCLUSIONS 

From the analytical expressions and simulation results we 
obtained for the average latency, hit probability, cache 
capacity and required bandwidth for a general prefetch 
scheme, we have confirmed that the conventional scheme that 
prefetches documents solely based on their access 
probabilities { x }  is not effective in reducing the average 
latency or in increasing the hit probability. The optimal 

criterion should be our newly defined parameters {q , }  to 
minimize the average latency, or the parameters {cp,} to 
maximize the hit probability. These parameters to be used to 
rank order the documents for prefetching are readily 
obtainable from the log data of the cache. Thus, our prefetch 
algorithm is simple to implement in practical systems. 

REF%RENCES 

[ 11 2. Jiang and L. Kleinrock. "An adaptive network prefetch 
scheme," IEEE J. on Selec. Areas in Commun., vol. 16, 
no. 3, April 1998, pp. 358-368. 

[2] 2. Jiang and L. Kleinrock. "Web prefetching in a client 
environment," IEEE Personal Communications, vol. 5,  no. 

[3] K. Chinen and S .  Yamaguchi. "An interactive prefetching 
proxy server for improvement of WWW latency," in 
INET'97, Kuala Lumpur, Malaysia. [Online]. Available 
http:// www.isoc.org/ inet97/ proceedings/ Al/ A1-3.H"M 

[4] V. N. Persone, V. Grassi, and A. Morlupi, "Modeling and 
evaluation of prefetching policies for context-aware 
information services," Proc. of the Fourth Annual 
ACM/IEEE Int. Con$ on Client Computing and 
Networking {MOBICOM 98), Dallas Texas, pp. 55-65. 

[5] E. P. Markatos, "Main memory caching of Web 
documents," Computer Networks and ISDN Systems, vol. 
28, no. 7-11, pages 893-906, 1996. [Online] Available 
http://www.ics.forth.gr/proj/arch-vlsi/publications .html 

[6] A. Bestavros, "WWW traffic reduction and load 
balancing through server-based caching," IEEE 
Concurrency, January 1997, pp. 56-67. 

[7] A. Besavros, "Speculative data dissemination and service 
to reduce server load, network traffic and service time for 
distributed information systems," Proc. ICDE'96: 12th Znt. 
Con$ Data Eng., Mar. 1996, pp. 180-187. 

[8] V. N. Padmanabhan and J. C. Mogul. "Using predictive 
prefetching to improve Wold Wide Web latency," ACM 
SIGCOMM Comput. Commun. Rev. July 1996, pp. 22-36. 

[9] J. Griffioen and R. Appleton, "Reducing file system 
latency using a predictive approach," in Proc. Summer 
1994 USENIX Con..., June 1994, pp. 197-207. 

[lo] E. P. Markatos and C. E. Chronaki, "A top-10 approach 
to prefetching the Web," In Proceedings of INET' 98 
[Online]. Available: http://www.ics.forth.gr/proj/arch- 
vlsi/publications.html. 

[ l l ]  R. P. Klemm, "WebCompanion: a friendly client-side 
Web prefetching agent," IEEE Transactions on 
Knowledge and Data Engineering, vol. 11, no. 4, July- 

5 ,  Oct. 1998, pp. 25-34. 

Aug. 1999, pp. 577-94. 
[12] F. Li, C. Pei, L. Wei, and J. Quinn, "Web prefetching 

between low-bandwidth clients and proxies: potential 
and performance," performance Evaluation Review, vol. 
27, no. 1, 1999, pp. 178-187. 

[13] G. V. Dias, G. Cope and R. Wijayaratne, "A smart 
Internet caching system," INET 96 Conference. available: 
http:llwww.isoc.or~inet96~proceedingda4la4~3.htm 

[14] R. Fielding et al. Hypertext transport protocol- 
HTIT/l.l," Network Working Group RFC 1945, May 
1996, URL. ftp://ftp.isi.edu/in-notes/rfc2068.txt. 

[15] L. Breslau, C. Pei, F. Li, G. Phillips, and S .  Shenker, 
"Web caching and Zipf-like distributions: evidence and 
implications," IEEE INFOCOM, 1999, vol. 1, 126- 134. 

355 

http://www.isoc.org
http://www.ics.forth.gr/proj/arch-vlsi/publications
http://www.ics.forth.gr/proj/arch
ftp://ftp.isi.edu/in-notes/rfc2068.txt

