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Abstract

First, a definition of a good interleaver/permutation is
proposed for two block codes concatenated in parallel
and in series. We prove a lower bound on their size
and describe an asymptotically optimal construction of
a class of such permutations.

A simple way to implement these permutations is then
described. Finally, two examples are given to show how
constructed interleavers outperform standard uniform
block interleaver.

1 Introduction

Non-uniform interleavers are one of the key ingredients

for good performance of Turbo codes [5] and, more gen- -

erally, of generalized concatenated codes [3].

Designing good and relatively short interleavers is of
significant interest not only from a theoretical point of
view but also for applications. A good interleaver can
significantly improve the overall performance of a con-
catenated code. On the other hand, having to use an
extremely long interleaver would introduce too much of
a delay and storage requirement in the actual communi-
cation system. This would consequently limit the scope
of feasible applications of a given code.

Previous work on the subject of interleaver design in-
cludes the work by Ramsey [12], Andersen and Zyablov
(1], and Hokfelt and Maseng [9]. The first construction
technique leads to interleavers that do not inherently sat-
isfy the goodness criterion considered in this paper. The
latter two approaches design non-uniform interleavers by
a computer search, where an initial uniform block inter-
leaver is gradually modified with respect to a restriction
condition.

This paper first explores the construction of good non-
uniform interleavers, when two block codes are concate-
nated in paralle] or in series. Section 2 focuses on moti-
vating, defining and finding good permutations for two
codes concatenated in parallel and in series. In Section 3
we discuss practical implementation of constructed per-
mutations and simulation results of achieved interleaving
gain. Section 4 provides concluding remarks and direc-
tions for future work.
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Figure 1: A generic parallel concatenated code.

2 Permutations for Two Codes |
in Parallel and Series |

2.1 Motivating Good Interleavers

Consider a turbo code based on an binary (n, k) linear }
block code (not necessarily a systematic code) depicted ]
in Figure 1. A set of parities is created by each encoder. ;
The encoders, concatenated in parallel, are separated by §
a permutation 7. The systematic part of the data @, and
two sets of redundant bits 2, and 23 are transmitted over §
the channel. The overall rate of such a code is therefore
F-T-kz_w For simplicity of the motivation, we first consider
the case where the channel is a binary erasure channel
(BEC). 1

An iterative decoder for this overall code and chan- |
nel is depicted in Figure 2. The input to the decoder |
is (¥1,¥32,y3) and the component decoders will attempt |
to resolve the erasures in the stream y; to get the data §
z1. Because the channel is error free, no errors will be 1
created in this process, i.e., a bit can be either resolved |
with 100 % certainty or is left as an erasure. Each com- ]
ponent decoder will use the most recent available version |
of resolved data z,, denoted %, and an appropriate set |
of erased parities y; or y3. The component decoders are
connected in an iterative loop. '

In every step of the iteration; each component decoder
fixes blocks that contain a small number of erasures, but}
has problems resolving blocks with many erasures. Con-}
sequently, isolated erasures in the stream 23 can be re!
solved by the decoders in most cases, but consecutivey
erasures or clustered erasures will remain unresolved by
the decoder. ]

From the iterative decoder’s point of view, the taski
of the interleaver and deinterleaver is to break apart]
bursts of erasures in #; that may exist after each compo-]
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Figure 2: An iterative decoder for the code of Figure 1
nsmitted over the binary erasure channel.
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Figure 3: A 10x10 uniform block interleaver with bursty
erasures from Example 1. Dashed lines denote erased bits.

nent decoder. This will consequently simplify the task
of the next component decoder, because it will have to
deal with less clustered noise. An analogous observa-
tion about the role of the interleaver and deinterleaver
can be also made, when we deal with decision errors
or soft decisions. In both cases, clusters of bad deci-
sions are harder to remove by component decoders than
isolated instances of these. For this reason, the out-
put of the component decoders will be “bursty” in bad
decisions, even if the channel is memoryless. Interleav-
ing/deinterleaving will help to spread these, thus simpli-
- fying the task of the next decoder.

The following simple example will illustrate how a
commonly used uniform block interleaver may not be
good at spreading clustered erasures. We will also ex-
plain why this is the case.

Example 1 Consider a 10 x 10 uniform block inter-
leaver. Hypothetical bursty erasures afier decoder 1 are
shown in Figure 3. For simplicity, we assume 8 whole
blocks of data are erased.

After depicted block interleaver, there are § erasures
in every horizontal block. This still makes the erasure
appearance after the interleaver quite bursty, hence the
interleaver does not achieve a very good erasure spread-
* ing. The main reason for this deficiency is that pairs of
bits, coming from the same two horizontal blocks, appear
inside several vertical blocks. For ezample, bit pairs from

horizontal blocks 1 and 8§ are repetitively used in vertical
blocks.

The last observation in this example means, that
neighboring bits at one decoder (or encoder) should be

spread as much as possible after = and 71 respectively,
not only with respect to each other, but also with re-
spect to their neighbors after interleaving. The next

section defines neighboring bits and chooses ‘two crite-
ria for their good spreading.

2.2 Definitions

Let @ = 1,2,... be the indices of the data bits that are
entering the interleaver.

Definition 1 A block interleaver of size N is a permu-
tation of N elements

7:{1,2,..,N} - {1,2, ..., N} (1)

We will use the standard cyclic representation with 7(n)
denoting the position of the n-th bit after the interleaver.

Note, that throughout the rest of the paper, we will use
the terms interleaver and permutation as synonyms.

Definition 2 :

(a) Bits i and j are neighbors at the input of an

(n,k) block encoder iff i and J are encoded in
the same block, i.e.,

i-1| |j-1 '
F-E e
(b) Bits i and j are neighbors at the output of an

(n, k) block encoder iff i and j are the resuits
of encoding within the same block, i.e.,

i-1 -1 '
FE e
We will usually denote either of these by (,7) € PN, us-
ing o binary relation PN C {1,2,..,N}x{1,2,.., N}

(Note, that each of the relations defined above is an
equivalence relation.)

Definition 3 An (n1,k1) code is concatenated in par-
allel with an (n,, k2) code, as depicted in Figure 1. Let
PN, denote the relation of being a neighbor at the in-
put of the first encoder. PN, denotes the relation of
being o neighbor at the input of the second encoder, i.e.,

(i,5) € PN, iff

1) — 1 i) -1
"0 -1)_|a@)-1] "
k2 k;
A good permutation separating these two codes satisfies
the following two conditions:

1. Fori# j if (i,5) € PNy then (3,5) ¢ PN,.

2. There are no 4,5, k,1 € {1,2,..,N} (all different)
such that (i,7) € PNy, (k,1) € PNy, (3, k) € PN,
and (j,1) € PN,.

519




Data In

Encoder = Encgder
1

Channel

Figure 4: A generic serial concatenated code.

We denote such a permutation Tpar (K1, k2).

The first condition guarantees that no two neighbor-
ing bits at one encoder are neighbors at the other, The

second condition prevents repetition of neighboring pairs
observed in Example 1.

Example 2 An ezample of o good permutation for ky =
k2 =2 is (2,3)(4,5). It reorders the data as follows:

[1,2, | 3,4, l 5)6] —"[1’31 I2a5) |416]’

where the vertical lines separate bits encoded by different
blocks of the error-correcting code. One can easily see
that no two bits originally in the same block are in the
same block after the re-ordering. It can be also checked
by hand thai. the second goodness condition holds too.

By an analogous argument for two block codes con-
catenated in series (Figure 4) we can define a good per-
mutation for two codes concatenated in series.

Definition 4 An (ngs, k3) code is concatenated in series
with an (ng, kq) code, as depicted in Figure 4. Let PN,
denote the relation of being a neighbor at the output of
the first encoder, i.c., (i,7) € PN, iff

e B

PN; denotes the relation of being a neighbor at the input
of the second encoder, i.e., (i,j) € PN, iff

r(il)%— 1J _ V(JZ: 1J . (6)

A good permutation 7 separating these two codes satisfies

the following two conditions:
1. For i3 j if (i,5) € PNy then (3,5) ¢ PN,.

2. There are no i,j,k,1 € {1,2,3, vy N} (all different)
such that (3,5) € PNy, (k,l) € PNy, (i, k) € PN,
and (j,1) € PN,.

We denote such a permutation Tser (N, kq).

Theorem 1 Let be n3 = ky = a and ky=ky=b. 4

good permutation T, (k1, k2) is also o good permutation
Tser(n3, kg) and vice versa.

Proof: Follows from Definitions 3 and 4 by setting
n3 = k; =a and kg = ko = b.

Consequently, we will just have to look at good per-
mutations (g, b), corresponding to good Tpar(a,b) or
Tser(a, ).

Theorem 2 (a,b) is good iff its’ inverse is good.

* two questions can be asked:

Proof: This follows from PN. 1 and PN, being symmetric

and from the symmetry of conditions 1 and 2 in Defini-
tions 3 and 4. [ |

After making these definitions and basic observations,

¢ Given the two codes, what is the minimum size of
N, s.t. there is a good permutation of size N7

e Given the tw&cd&es, how can we construct a good
permutations of size as small as possible ?

2.3 Problem Restatement

In order to make the problem mathematically solvable,
we restate it as follows. Using relation PN; at the first
encoder, we represent bits as colored balls. First a bits
are represented as a balls of color 1, the next a bits are
represented as a balls of color 2; etc., and the last @ bits
from the (N/a)-th block are represented as a balls of |
color (N/a). After the permutation, we divide the data .
(balls) into consecutive blocks of size b that are to be |
encoded by encoder 2. We denote these blocks as boxes
of size b.

Then the problem of creating a good permutation re- |
duces into partitioning N colored balls (a balls of each -

of the (N/a) colors) into (N/b) boxes of size b, so that |
the following two conditions hold: j

1. No two balls of the same color are in the same box.

2. No pair of colors is repeated in 2 or more different
boxes.

It is easy to see that a good permutation specifies such }
a partition. One just has to represent bits by colored |
balls as described above. On the other hand, a ball par-
tition of colored balls, satisfying the above conditions, |
represents a whole class of good permutations. (There
are a! different ways to match up balls of color ¢ with .:
bits from the c-th block at encoder 1.) '

2.4 A Lower Bound on the Size of Good
Interleavers

Theorem 3 The size N of every good permutation
7(a, b) has to satisfy §

N>max{a®b-a’+a ; Pa—5>+b}. (7)]

Proof:

We will use the restated problem with colored balls and |
boxes. Consequently, a balls of color 1 have to be put
into different boxes. Moreover, all remaining other balls |
in these boxes have to be of different color. (Otherwise |
we get two pairs (1, ) in two different boxes.) Thus there"
have to be at least a(b— 1) + 1 colors, implying

N >a(a(b-1) + )= a’b-a? +a. (8)




By. Theorem 2, »~1 is also good, hence we can apply
the same argument for it and get

N > b(b(a ~ 1) + 1) = b%a — b2 + b, (9)
Since both inequalities have to hold, we conclude
N > max{a®b—a?+a ; b%a—b®+ b}. (10)

|

Example 3 Ifa = b= 3, then by the previous theorem
N > 21. A construction with colored balls and bozes
that achieves the lower bound is shown bellow (columns
denote the bozes):

ot N
~ W
D W

(11)

W N =

11
46
57

D N
-

One possible reordering of bits this construction implies
is shown bellow:.

the first row above by 0, the second row by 1, the third
row by 2, ..., and the b-th row by (b—1). Thus we obtain

1 2 3 .. (p-1) D

2p (r+1) (p+2) (2p~1)

' (16)
(bp-b+2) bp-b+3) . bp1. (bp—b+1)

Boxes (2p+1), (2p+2), ..., 3p boxes are obtained from
the second set of p boxes using the same cyclic shifts of
rows. Le., the first row is shifted by 0, the second row
by 1, the third row by 2, ..., and the b-th row by (5 - 1).
One proceeds the same way to obtain the fourth set of
p boxes from the third one, etc. Finally, the a-th set of
boxes is obtained from the (a — 1)-th.

By this construction, each color appears in a fixed row
and only once in every consecutive set of p boxes. There
will be @ balls of each color used, each box (column)
contains b colored balls and no box (column) can contain
two balls of the same color.

[1,4,7,2,10,13,3, 16, 19,5, 11, 17,6, 14,20, 8, 12, 21,9, 15, 18] We will show that the second condition for having a

(12)

Remark 1 4 good permutation, achieving equality in
Theorem 3, does not always ezist. Fora = b = k, a
solution of the colored balls and bozes problem is equiva-
lent to ezistence of a square 2-(k®—k+1,k,1 ) design. By
Bruck-Ryser-Chowla theorem [6], o necessary condition
for ezistence of such a design is that the equation

22 = (k= 1)2? + (-1)52 2 (13)
has an integer solution (z,9,2) # (0,0,0). For k=7, the
equation does not have such a solution by infinite descent
for divisibility by 3.

2.5 Constructing Good Interleavers
Theorem 4 For all a,b = 1,2,3,..and p > a,b a
prime, there is a good permutation n(a,b) of size

N = abp. (14)

Proof:
Consider the following construction with the colored
balls and boxes. The first set of boxes, i.e., boxes

L,2,...,p, are filled in as follows (columns again denote
the boxes):

1 2 B ... (-1 p
(p+1) (P+2) (@+3)... . 2

‘ " (15)
(bp—.p+1) (bp—p+2) . ... . b.p

 The second set of boxes, i.e., boxes + 1),(p+
2), ..., 2p, are obtained by cyclically shifting to the right

good permutation holds by contradiction. Assume there
is a pair (¢1, ¢2) of colors that appears in two boxes from
our construction and this happens in a column of the
A —th set of boxes and in a column of the B ~ th set of
boxes, 1 < A< B<a < p. We may also assume that
color ¢, is in row i, color ¢; in row j of the A — th set of

boxes, 1 <% < j < b < p. Then by our construction the
following has to hold:

(i-1)(B-4) = (=1)(B—4) (modp) (17)
(i-i)(B-4) =0 (mod 7). (18)

Since 0 < (j —4) < p, 0 < (B - A) < pand pis
a prime, the last congruence leads to a contradiction.

Consequently, our construction describes a good permu-
tation of size N = abp.

Example 4 This simple ezample shows how a good per-
mutation 7(3, 4) is constructed, e. g., for-a serial concate-
nation of a (3,2) code followed by a (6,4) code. The used
prime is p = 5. In the "colors and bozes” notation we
get

1 2345 12345 1234 5
6 7 8 910 106 7 8 9 91067819)
11 12 13 14 15 14-15 11 12 13 12 13 14 15 11(
16 17 18 19 20 18 19 20 16 17 20 16 17 18 19

Corollary 1 Described construction is asymptotically
optimal with respect to the lower bound Jrom Theorem 3,
i.e,

abp

abbo max{a?b—a?+a ; b2a - b2+ b}

=1 (20)

Proof: By the Prime number theorem and Bertrand’s
postulate [13], there is a prime p, p € (k; k(1 + e(k))],
where ¢(k) < 1 and €(k) — 0 as k — co. Consequently
the corollary follows.
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Figure 5: A schematic representation of implementing con-
structed good interleaver for a = b= p = 3.
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Figure 6: A floor-by-floor and step-by-step depiction of the
constructed good interleaver for a = b = p = 3. It shows

how the data is written in, shifted and read out-from the
3-D array.

N

3 Applying Good Permutations

3.1 Implementing Good Interleavers

This section describes a simple way to implement con-
structed good permutations from the previous section.
The implementation is done in a similar way as the uni-
form block interleavers are usually implemented. For the
latter, the data is written into a two-dimensional (2-D)
array row-wise and read out column-wise.

The constructed permutations will be implemented us-
ing a 3-D array. The floors along the z-direction will be
indexed 0,1,...,{a — 1), the rows along the x-direction
will be indexed 0,1,...,(p — 1) and the columns along
the y-direction will be indexed 0,1, ..., (b— 1).

" First, the data is written into the 3-D array “pillar”-
wise (along the z-coordinate). Then each row r on floor
f is cyclically shifted to the right in by r x f. Finally, the
data is read out column-wise (in y-direction). Figure 5
depicts this procedure schematically for a good permu-
tation with @ = b = p = 3 and Figure 6 shows how this
happens in a step-by-step and “floor-by-floor” manner.
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Figure 7: Performance of two concatenated systems with

different interleavers: (a) standard block interleaver (b) in-
terleaver from construction in Section 3.

3.2 Performance Improvement

First, we consider a serial concatenation of two simple
(11, 5) block codes with a generator matrix

(21)
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The standard system uses a uniform 5 x 11 block in-
terleaver between the two encoders. The second system
uses constructed good interleaver of size 5x 11 x 11. Per-
formance results are obtained for the two systems on a
discrete time additive white Gaussian noise channel with
binary inputs (Channel SNR = 2 = ). Decoding, in
both cases, is done iteratively, using an iterative decoder
considered in [3].

Figure 7 presents the simulation results of the BER
after five decoding iterations. (Most of decoding im-
provement was achieved after this number of iterations.)
We can see that at BER = 10~5 the constructed in-
terleaver gains about 1.5 dB against the standard one.
Another way to view the improvement is to observe that
at channel SN R = 3.7 dB improved interleaving lowers
the BER by a factor of about 100.

The other test system is similar to existing digital
recording applications, such as CD and DVD. It contains
a [28, 24] x [32, 28] product Reed-Solomon code followed
by a simple modulation code and a precoded discrete- :
time duobinary partial-response channel with additive |
white Gaussian noise. The receiver side contains a ML |
decoder for the PR sequence and a modulation decoder |
with AZD (ambiguity zone detection) that declares un- |
certain bytes as erased. The iterative decoder uses the :
idea from (3], when it tries to resolve erasures and correct
errors by iterating over the two RS decoders.

Figure 8 presents the simulation results of the BER af-
ter six decoding iterations. (Most of decoding improve-
ment was achieved after this number of iterations.) We
can see that at BER = 10~ the constructed interleaver
gains about 0.6 dB against the standard one. One can
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Figure 8: Performance of two system with two Reed-
Solomon and different interleavers: (2) standard block in-
terleaver (b) interleaver from construction in Section 3.

also see that the BER is lowered by several orders of mag-
nitude due to better interleaving. Currently, we were not
yet able to simulate error rates close to the ones used by
the recording systems, i.e., 10~12 — 10, though a sim-

ple extrapolation of the curves in Figure 8 would indicate

improvement in the order of dB’s,

4 Conclusion and Further Work

We have defined good interleavers/permutations for par-
allel and serial concatenation of two block codes. For
both cases, we have proved a lower bound on their size
that is essentially cubic in the block size of the compo-
nent codes. We have then constructed a class of good
pPermutations which are asymptotically optimal with re-
spect to the lower bound.

A simple way to implement constructed permutations
using a 3-D array was described. Finally, we observed
significant performance improvement from using con-
structed interleavers in two concatenated systems as
compared to standard uniform block interleavers.

The future work includes extending definitions and re-
sults to concatenation of convolutional codes as well as
block and convolutional codes. Finally, the case of a gen-

eral concatenation (more than two codes) will be consid-
ered.
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