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Abstract

The classical Erlang and Engset loss models have been used extensively in the traf®c engineering of traditional

telephone exchanges. More recently, these models have been generalized to the so-called loss networks, which

provide models for resource-sharing in multi-service telecommunication networks. In this paper, we introduce a

new generalized class of models, queueing-loss networks, which captures both queueing and loss aspects of a

system. The queueing-loss network model is a natural extension of queueing networks and loss networks that

have the product-form solution. We discuss applications of the model and analyze a particular example of a

simple queueing-loss network.
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1. Introduction

Recently, there has been an increasing interest in generalizations of the loss models originally studied

by Erlang and Engset in the context of telephone exchanges (see e.g., Syski, 1986). Loss networks

provide models for studying the blocking behavior of connection-oriented services in circuit-switched

networks, ATM (Asynchronous Transfer Mode) networks, optical networks and wireless networks. As

we discuss in this paper, loss networks have much in common with the traditional queueing network

models. The earliest work on queueing networks with product form goes back to J. R. Jackson's original

paper (1963). Theory for queueing network models has advanced considerably over the past several

decades (Baskett et al., 1975; Kelly, 1979; Reiser and Kobayashi, 1975) and has been widely applied to

the performance analysis of computing systems and packet-switched networks (Kobayashi, 1978).

This paper introduces a new class of models, queueing-loss networks, which are natural general-

izations of queueing networks and loss networks. We give a brief development of loss networks by

systematically generalizing the classical loss models using notions from the theory of queueing
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networks. This development culminates in the introduction of queueing-loss networks and a discussion

of their properties. Next, applications of the model are discussed and a particular example of a simple

queueing-network model is analyzed. Finally, the paper concludes with a discussion of directions for

further research on queueing-loss network models.

2. Generalized loss models

We use the general term `station' to denote an entity which provides service to arriving calls or

customers. A station consists of a number of servers or lines and possibly a waiting room or buffer. A

loss station is one that has a ®nite number of servers and no waiting room. An arriving call either

begins service immediately or is rejected due to the lack of a suf®cient number of available servers. By

contrast, a queueing station, as considered in this paper, has a suf®ciently large waiting room such that

no call is rejected.

The original loss model studied by Erlang is equivalent to an M=M=S(0) queue1 (see Fig. 1); i.e., a

loss station with S servers where arriving calls form a Poisson process with rate ë and each call

occupies a server for an exponentially distributed holding time with mean 1=ì. The stationary dis-

tribution of the number of busy servers is given by

P(n) � 1

G(S)

an

n!
, 0 < n < S, (1)

where a � ë=ì is the offered load and G(S) is a normalization constant given by

G(S) �
XS

n�0

an

n!
: (2)

1 Often the notation M=M=S=S is used in the queueing theory literature, where the second S signi®es the maximum number

of calls that can be accommodated in the system.

1

2

S

Exponential
service time

Poisson
arrivals

Fig. 1. Erlang loss model

98 H. Kobayashi, B. L. Mark / Intl. Trans. in Op. Res. 9 (2002) 97±112



As S !1, G(S)! e a, hence P(n)! aneÿa=n!, which is the stationary distribution of an in®nite-

server (IS) station or M=M=1 queue (see e.g., Kobayashi, 1978). Therefore, the distribution (1) is a

truncated Poisson distribution. The probability that all servers are found busy in the steady state is

given by the celebrated Erlang loss formula:

B(S) �def
P(S) � aS

S!

XS

i�0

ai

i!

" #ÿ1

: (3)

The Erlang loss formula can be expressed in terms of the normalization constant as follows:

B(S) � 1ÿ G(S ÿ 1)

G(S)
: (4)

The above probability B(S) is often referred to as the time congestion, since this represents the

proportion of time that all the servers are busy. The call congestion or call loss probability L(S) is

de®ned as the probability that a newly-arriving call ®nds all servers occupied, and hence is lost or

blocked, i.e., leaves the system without being served. When the arrival process is Poisson, as in the

Erlang loss model, the call congestion and the time congestion can be seen to be equivalent, via the so-

called PASTA (Poisson Arrivals See Time Averages) property (Wolff, 1989).

If we replace the Poisson arrival (i.e., an in®nite source model) in the Erlang loss model by a ®nite

number N of sources (N . S), then we obtain what is often termed the Engset loss model (see Fig. 2),

which we denote as an M(N)=M=S(0) queue.2 Each source generates a call with an exponentially

distributed inter-generation time with mean 1=í and then places the call at the loss station, where it

either acquires a server for an exponentially distributed holding time or is blocked. Both completed and

lost calls alike return to the sources and a new cycle begins. For this model, n(t), the number of calls in

progress at time t, will have, in the steady state, the following truncated binomial distribution:

2 In the literature it is often referred to as M=M=S=N=S, where the last two symbols represent, respectively, the number of

sources and the number of customers that can be accommodated in this service station.

1

2

N

1

2

S

IS station Loss station

Fig. 2. Engset loss model
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P(n, N ) � 1

G(S, N )

N

n

� �
bn, 0 < n < S, (5)

where b � í=ì and the normalization constant G(S, N ) is given by

G(S, N ) �
XS

n�0

N

n

� �
bn: (6)

The time congestion B(S, N ) is given by

B(S, N ) �def
P(S, N) � 1ÿ G(S ÿ 1, N )

G(S, N )
: (7)

Because the arrival process is not Poisson in the ®nite source model, the call congestion L(S, N ) is no

longer the same as B(S, N), but we ®nd the following simple relation:

L(S, N ) � 1ÿ G(S ÿ 1, N ÿ 1)

G(S, N ÿ 1)
� B(S, N ÿ 1): (8)

More generally, the distribution of number of calls in service seen by an arriving call is the time

average distribution that would be observed if the number of sources were reduced by one. This is

analogous to the result that holds in an M(N )=M=1 queue or a machine servicing model (Kobayashi,

1978).

We now de®ne a generalized Erlang loss model as follows:

1. Multi-class sources. We introduce a set, C , of call classes. The arrival pattern of class c calls is a

Poisson process with rate ëc. We denote by nc(t) the number of class c calls in progress at time t.

2. Simultaneous acquisition of multiple servers. A class c call requires to hold Ac servers simulta-

neously. If the total number of servers or lines is S, then the following constraint must be met:X
c2C

Acnc(t) < S: (9)

3. Generally distributed holding time. The call holding time distribution is a general distribution Gc(t)

with mean 1=ìc:�1
0

(1ÿ Gc(t))dt � 1

ìc

: (10)

Let the state process of this generalized loss station be denoted by n(t) � (nc(t) : c 2 C ). Let P(n)

denote the equilibrium state distribution when there are S servers. The set of feasible states is

F (S) � n > 0 :
X
c2C

Acnc < S

( )
: (11)

The departure process from the station includes both calls that have successfully completed service and

those which are rejected. The generalized Erlang station shares many of the properties associated with

stations in queueing networks.

A queueing station is said to be quasi-reversible if its state process n(t) is a stationary Markov

process with the property that the state at an arbitrary time t0 is independent of:
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(i) the arrival times of class c calls, c 2 C , after time t0; and

(ii) the departure times of class c calls, c 2 C , prior to time t0.

The property of quasi-reversibility was introduced by Kelly (1979) to characterize a wide class of

queueing stations which, together with certain rules governing call routing, gives rise to product-form

queueing networks. We extend this de®nition to loss stations by assuming the convention that the

departure process includes both calls that successfully complete service and those which are blocked

and do not receive service. A closely related property is reversibility. A stochastic process n(t) is

reversible if it is statistically identical with its time-reversed process nR(t) � n(ôÿ t) for any ô. For a

stationary Markov process, reversibility holds if and only if its stationary distribution satis®es the

detailed balance equations (Baskett et al., 1975; Kelly, 1979).

The following important theorem is proved in Kobayashi and Mark (1994):

Theorem 2.1. The generalized Erlang station is quasi-reversible and its state-process n(t) is a

reversible Markov process with stationary distribution given by

P(njS) � 1

G(S)

Y
c2C

anc
c

nc!
, n 2 F (S) (12)

where ac � ëc=ìc and G(S) is the normalization constant de®ned by

G(S) �
X

n2F (S)

Y
c2C

anc
c

nc!
: (13)

This result can be easily extended to the loss station model in which the calls are generated from a

®nite number of sources of multiple classes. We de®ne a generalized Engset loss station as follows:

1. Multi-class sources. Let Nc be the number of sources for class c calls, c 2 C , and let N be the

vector fNc, c 2 C g. We denote by nc(t) the number of class c calls in progress at time t. Then,

clearly

nc(t) < Nc, c 2 C : (14)

The inter-generation time at a class c source is characterized by a general distribution Fc(t) with

mean 1=íc:�1
0

(1ÿ Fc(t))dt � 1

íc

: (15)

2. Simultaneous acquisition of multiple servers. As in the generalized Erlang loss model.

3. Generally distributed holding time. As in the generalized Erlang loss model.

The set of feasible states is now given by

F (S, N) � n > 0 :
X
c2C

Acnc < S; nc < Nc, c 2 C

( )
(16)

The following theorem (Kobayashi and Mark, 1994) is a generalization of a result ®rst reported by

Cohen (1957).
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Theorem 2.2. For the generalized Engset loss system, n(t) is a reversible Markov process with sta-

tionary distribution:

P(njS, N) � 1

G(S, N)

Y
c2C

Nc

nc

� �
bnc

c , n 2 F (S, N) (17)

where bc � íc=ìc, and the normalization constant G(S, N) is given by

G(S, N) �
X

n2F (S,N)

Y
c2C

Nc

nc

� �
bnc

c : (18)

3. Loss networks

One can further extend the above generalized loss station (GLS) models by introducing multiple server

types. In the generalized Erlang and Engset models, we extend the second property as follows:

29. Simultaneous acquisition of multiple servers of different types. Let L denote a set of server types.

There are Sl servers of type l 2 L . A class c call requires to hold Alc servers of type l

simultaneously. For each server type l 2 L , the following constraint must be met:X
c2C

Alcnc(t) < Sl: (19)

The results of Theorems 3.1 and 3.2 (below) can be generalized straightforwardly to accommodate the

concept of server types. Fig. 3 shows a generalized loss station in which each call can simultaneously

acquire multiple servers from among several server types.

We de®ne the properties of a loss network as follows:

1. Let L denote the set of links in the loss network. A link ` 2 L contains S` channels.

2. A call class c 2 C is de®ned as a pair (r, ô), where r is the route or path of the call in the loss

network and ô is the type of the call. The sets of routes and call types in the loss network are denoted

by R and T , respectively. Thus, C �R 3 T .3

3. A class c call seeks to simultaneously acquire A`c channels of link ` for each link ` 2 L .

4. The holding time of a class c call has a general distribution Gc(t) with mean 1=ìc.

The loss network can be seen to be equivalent to a generalized loss station (GLS) with multiple server

types, where each link in the loss network corresponds to a server type in the GLS. The loss network

provides a general model for a circuit-switched network that carries multi-rate traf®c (i.e., different

values of A`c for different c) among different types ô of calls (Kelly, 1991; Kobayashi and Mark, 1997).

The model is equally applicable to bidirectional ¯ows. All that is required is to assign different class

parameters to traf®c in the reverse directions. The reverse traf®c for a given pair of nodes may have

3 In the loss station models discussed in the preceding section, the class C and the type T are equivalent. In the loss

network, for a given source-destination pair, different types of call may take different routes.
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different bandwidth requirements (i.e., values of A`c different from those for the forward direction).

Similarly, the route used for the traf®c in the reverse direction need not be the reverse of the forward

route.

By specifying the arrival pattern of a loss network as a multi-class Poisson process as in property 1

of the generalized Erlang model in Section 2, we obtain an open loss network (OLN) (see Fig. 4). The

OLN is equivalent to a generalized Erlang loss station with simultaneous acquisition among multiple

server types. If we replace the multi-class Poisson process of the OLN by a multi-class ®nite source

model as in property 1 of the generalized Engset model, we obtain a closed loss network (CLN). The

CLN is equivalent to a generalized Engset loss station with multiple server types.

In the open loss network, the Poisson stream of class c arrivals is analogous to an open sub-chain in

a queueing network (Baskett et al., 1975; Reiser and Kobayashi, 1975). Hence, in the OLN, each class

c is said to be open. Similarly, dual to the concept of a closed sub-chain in a queueing network, we can

de®ne a closed class c in a loss network by replacing the Poisson stream of class c call arrivals by a

®nite source model of population Nc. The closed loss network is then a loss network wherein all the

classes are closed. In a mixed loss network (MLN), as shown in Fig. 5, the set of call classes may be

subdivided into the subset, C O, of open classes and the subset, C C, of closed classes, i.e.,

C � C O [ C C. The MLN further generalizes the generalized Erlang and Engset stations of the

Fig. 3. Generalized loss station
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previous section. Open, closed, and mixed loss networks are analogous to open, closed and mixed

queueing networks (Baskett et al., 1975), respectively.

Denote the state process of a mixed loss network by n(t) � [nO(t), nC(t)], with nO(t) �
(np(t) : p 2 C O) and nC(t) � (ns(t) : s 2 C C). We have the following result for the MLN:

Fig. 4. Open loss network

Fig. 5. Mixed loss network
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Theorem 3.1. The state process of the mixed loss network is a reversible Markov process with

equilibrium distribution given by

P(njS, N) � 1

G(S, N)
PO(nO)PC(nCjN), n 2 F (S, N) (20)

where

PO(nO) �
Y
p2C O

a
n p
p

np!
, PC(nCjN) �

Y
s2C C

Ns

ns

� �
bns

s (21)

with ap � ë p=ì p ( p 2 C O), bs � ís=ìs, (s 2 C C), and

F (S, N) � n > 0;
X
c2C

A`c nc < S`, ` 2 L ; ns < Ns, s 2 C C

( )
(22)

and

G(S, N) �
X

n2F (S,N)

PO(nO)PC(nC): (23)

From the stationary distribution of the mixed loss network obtained above, we can express the time

congestion and call congestion in terms of the normalization constant G(S, N) as follows:

1. For calls belonging to an open class p 2 C O:

Bp(S, N) � 1ÿ G(Sÿ A p, N)

G(S, N)
(24)

L p(S, N) � Bp(S, N), (25)

where A p is the p-th column of the matrix A � [A`c]. The last equation is due to the PASTA

property referred to earlier.

2. For calls belonging to a closed class s 2 C C:

Bs(S, N) � 1ÿ G(Sÿ As, N)

G(S, N)
(26)

Ls(S, N) � Bs(S, Nÿ 1s), (27)

where 1s denotes the unit jC Cj-vector whose s-th component is unity.

The above formulas for the time and call congestion are generalizations of the formulas obtained for

the Erlang and Engset models. For numerical methods (exact, approximate, and asymptotic) to

compute the normalization constants G(S, N) for different values of S and N, the reader is referred to

Kobayashi and Mark (1997) and references cited therein.
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4. Queueing-loss networks

Thus far, we have arrived at the mixed loss network by generalizing the classical Erlang and Engset

loss models. We now carry the generalization further by introducing the concept of a queueing-loss

network (QLN). A queueing-loss network (see Fig. 6) consists of a set of queueing sub-networks

fQ j; j 2 J g and a set of loss sub-networks fLk; k 2K g. Calls are routed within each queueing sub-

network and loss sub-network component as well as between queueing and loss network components.

The call routing behavior can be governed by a Markov chain of arbitrary order (Kobayashi, 1978).

Each queueing sub-network, Q j, consists of a network of quasi-reversible queueing stations. Hence,

if nQ j
denotes the population vector in the queueing sub-network Q j, its stationary state distribution

PQ j
(nQ j

) has the product form. Furthermore, the queueing network itself is quasi-reversible (Kelly,

1979). In general, each loss sub-network, Lk , can be a mixed loss network (MLN). The loss network

component of the MLN can be replaced by an equivalent generalized loss station (GLS) with

simultaneous server acquisition. Each closed class in the MLN, representing a ®nite source population,

can be decomposed as an in®nite server (IS) station placed in tandem with the GLS (see Fig. 5). Let

nLk
denote the population vector for the MLN. From Theorem 3.1, the state distribution PLk

(nLk
) has

the product form. In the decomposed representation of the MLN, each IS component is quasi-

reversible, and by Theorem 2.1, the GLS component is also quasi-reversible.

Hence, the queueing-loss network can be decomposed into a set of quasi-reversible components. The

Fig. 6. Queueing-loss network
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routing of calls between these components can be characterized by a Markov chain of arbitrary order.

By combining these observations we now see that the QLN is a generalized queueing network. The

only difference between this queueing network and those studied previously (Baskett et al., 1975; Kelly,

1979; Reiser and Kobayashi, 1975) is that it contains GLSs as its components. We have already

established the fact that a GLS is a generalized version of an IS station and is a quasi-reversible station.

Therefore, we can conclude that the QLN has a product-form solution. We state this general result for

queueing-loss networks in the following theorem:

Theorem 4.1. Consider a queueing-loss network (QLN ) that contains a set of queueing sub-networks

fQ j; j 2 J g and a set of loss sub-networks fLk; k 2K g. Let nQ j
and nLk

represent the population

vectors in these sub-networks. The joint stationary distribution of the state process n(t) of the QLN

takes the form:

P(n) � 1

G(S, N)

Y
j2J

PQ j
(nQ j

)
Y
k2K

PLk
(nLk

), (28)

where PQ j
(�) and PLk

(�) themselves have product forms and are proportional to the marginal

distributions of the sub-networks Q j and Lk, j 2 J , k 2K . The normalization constant G(S, N) and

the feasible state set F (S, N) are de®ned over the capacity vector S of loss stations and the ®nite

source vector N in the network. These vectors correspond to Cartesian products of the corresponding

vectors of the queueing and loss sub-networks.

5. Example of a queueing-loss network

A useful application of the queueing-loss network model may be found, for example, in a circuit-

switched network in which call connection requests are served by either a centralized facility or

distributed centers. Arriving calls may have to queue for the call-connection service if many such

requests are already placed on the call-connection server. The call-connection server performs the

function of admission control; i.e., it decides whether a new call can be accepted or not, based on the

bandwidth resources requested by the call and the available resources of the network. In this

application, the call-connection server is modeled by a queueing station, whereas the circuit-switched

network itself is modeled by a loss network. The overall system is thus modeled by a queueing-loss

network.

Consider the simple example of a QLN shown in Fig. 7. We label the three stations as stations 0, 1,

and 2, respectively. Station 0 is an IS station, representing a ®nite source of population N . The inter-

generation time of calls from each source is given by a general distribution. Station 1 is a single server

queue representing, for example, a call-connection server. Station 2 is a loss station with S servers, and

the call holding time can have a general distribution. We assume that N . S; otherwise, a call loss

would not occur at this station. For the application discussed above, station 2 could be replaced by a

more general loss network, representing, for example, a circuit-switched network.

As the results in the previous sections suggest, we can allow multiple classes of sources at station 0

and multiple types of servers at station 2. If station 1's queue discipline is FCFS (®rst-come, ®rst-

served) or any type of work-conserving queue discipline, then the service times at this station must be
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drawn from the exponential service time that is common to all classes of customers (see e.g, Kobayashi,

1978). If the queue discipline of station 1 is either LCFS-PR (last-come, ®rst-served with preemptive

resume) or processor sharing (PS), then we can allow multiple classes for the service time and the

distribution functions can be general, as long as their means are ®nite. We should also note that the

processing rate of each station can be queue-dependent, i.e., the completion rate ìi(ni) of each server

at station i can be an arbitrary function of its local queue size ni, i � 0, 1, 2. For the IS station and the

loss station, we allow the dependency ìc(nic) for different classes c 2 C , i � 0, 2. The same generality

applies to a queueing station as well, if it adopts either LCFS-PR or PS.

For the sake of illustrative simplicity, we assume only one class of sources and a single type of server

at the loss station, i.e., station 2. Further, we assume that the service rates are queue independent. Thus,

the inter-generation time of each source at station 0 has mean 1=ì0, the service time at station 1 is

exponentially distributed with mean 1=ì1, and the service time at station 2 has mean 1=ì2. Using

Theorem 4.1, we can write the stationary distribution of the queueing-loss network as:

P(n0, n1, n2) / 1

n0!

ë

ì0

� �n0 ë

ì1

� �n1 1

n2!

ë

ì2

� �n2

(29)

/ 1

n0!

1

ì0

� �n0 1

ì1

� �n1 1

n2!

1

ì2

� �n2

,

for (n0, n1, n2) in the feasible set

F (S, N ) � f(n0, n1, n2) : n0 � n1 � n2 � N ; n0, n1 > 0; 0 < n2 < Sg:

Here, ë is the rate of traf®c through the closed route in the QLN, but this unknown parameter can be

absorbed into the normalization constant. Hence, we can write

P(n0, n1, n2) � 1

G(S, N )

1

n0!

1

ì0

� �n0 1

ì1

� �n1 1

n2!

ì0

ì2

� �n2

, (30)

where

1

2

3

N

1

2

S

n0 n2

n1

µ1

µ2
µ0

Fig. 7. Example of a queueing-loss network
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G(S, N ) �
X

(n0,n1,n2)2F (S,N )

1

n0!

1

ì0

� �n0 1

ì1

� �n1 1

n2!

1

ì2

� �n2

(31)

� 1

ìN
1

XS

n2�0

XNÿn2

n0�0

1

n0!

ì1

ì0

� �n0�n2 1

n2!

ì0

ì2

� �n2

: (32)

The time congestion and call congestion at station 2 are then given by

B(S, N) � 1ÿ G(S ÿ 1, N )

G(S, N )
, (33)

L(S, N) � B(S, N ÿ 1) � 1ÿ G(S ÿ 1, N ÿ 1)

G(S, N ÿ 1)
: (34)

Suppose that we wish to ®nd r1, the utilization of station 1. By extending results known for closed

queueing networks (see e.g., Kobayashi, 1978), we can write

r1 � 1ÿ G(ÿ1)(S, N )

G(S, N )
, (35)

where G(ÿ1)(S, N ) represents the value of the normalization constant when station 1 is deleted from

the system. This corresponds to the situation which would arise if we let ì1 !1 in the above

queueing-loss system. In the limit as ì1 !1, only the terms corresponding to n1 � 0 remain in (31)

and we obtain the following expression for G(ÿ1)(S, N ):

G(ÿ1)(S, N ) � 1

N !

1

ì0

� �N

GL(S, N ), (36)

where

GL(S, N) �
XS

n�0

N

n

� �
ì0

ì2

� �n

(37)

is the normalization constant of the Engset loss station resulting from deleting station 1 from the QLN.

If station 1 has a constant rate, as in the present case, we can use the following alternative formula (see

e.g., Kobayashi, 1978, p. 172):

r1 � 1

ì1

G(S, N ÿ 1)

G(S, N )
: (38)

It is not dif®cult to con®rm that the above two formulas for the server utilization r1 are indeed

equivalent.

To study the effect of the queueing station 1 on the system capacity of loss station 2, one can express

the marginal distribution of station 2 as a function of ì1 as follows:
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P(n2, ì1) �

N

n2

� �
ì0

ì2

� �n2

�N !
ì0

ì1

� �N XNÿn2ÿ1

n�0

1

n!

ì1

ì0

� �n�n2

XS

m�0

N

m

� �
ì0

ì2

� �m

�N !
ì0

ì1

� �NXS

m�0

XNÿmÿ1

n�0

1

n!

ì1

ì0

� �n�m
: (39)

Clearly, as ì1 !1, P(n2, ì1) approaches the marginal distribution of an Engset loss station. One can

further show that the time congestion at station 2, given by P(S, ì1), is a monotonically increasing

function of ì1. The behavior of P(S, ì1) as a function of ì1 quanti®es the trade-off between time

congestion (or similarly, call congestion) in station 2 and queueing delay in station 1. As ì1 !1, the

queueing delay decreases to zero while the time congestion at station 2 increases to that of an Engset

loss station. Thus, the effect of the queueing station is to alleviate call blocking in the loss station at the

expense of introducing queueing delay. Alternatively, for a given call-loss probability, the QLN is able

to handle a larger population N than the Engset station, provided that the queueing delay introduced in

the QLN can be tolerated.

We now point out an equivalence between the QLN of Fig. 7 and the open loss network (OLN)

de®ned in Section 3. Using the fact that the variables in (29) must satisfy n0 � n1 � n2 � N, we can

write the stationary distribution of (n0, n2) as:

P(n0, n2) / 1

n0!

ì1

ì0

� �n0 1

n2!

ì1

ì2

� �n2

: (40)

Hence,

P(n0, n2) � 1

~G(S, N)

an0

0

n0!

an2

2

n2!
, (41)

where a0 � ì1=ì0, a2 � ì1=ì2 and

~G(S, N ) �
X

0<n0�n2<N ,n2<S

an0

0

n0!

an2

2

n2!
: (42)

We observe that (41) is the stationary state distribution of an open loss network with two links, l1 and

l2, having link capacities N and S, respectively. There are two traf®c classes, c0 and c2. Calls of class

c0 arrive according to a Poisson process of rate a0 and use a route containing just link l1. Calls of class

c2 arrive according to a Poisson process of rate a2 and use a route containing links l1 and l2. The

matrix A � [Alc : l 2 fl1, l2g, c 2 fc0, c2g], which indicates the resource requirements of the OLN, is

given by

A � 1 1

0 1

� �
: (43)

Thus, with respect to the stationary probability state distribution of the two loss stations in Fig. 7, the

simple QLN is equivalent to an OLN. Furthermore, certain methods for computing the normalization

constant ~G(S, N ) for the OLN may be used to solve for the probability state distribution of the QLN.
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6. Conclusion

In this paper we introduced the queueing-loss network model as a generalization of classical loss and

queueing models. By further generalizing results on loss networks (Kobayashi and Mark, 1994, 1997),

we showed that the product-form solution applies to this extended class of stochastic models.

Queueing-loss networks allow multiple classes of calls, multiple types of servers, general call service

times, and general call inter-generation time distributions. A key observation in making this general-

ization was that an entire open loss network (OLN) or sub-network could be replaced by a single

generalized loss station (GLS).

The queueing-loss network can be used to model systems which involve both queueing and loss

behaviors. For example, arriving calls to a circuit-switched network may ®rst have to wait at a queueing

station prior to being subjected to admission control. For a small three-stage closed queueing-loss

network, we have shown how various performance measures can be calculated. For general queueing-

loss networks, performance measures such as time congestion, call congestion at loss stations, and

utilization at queueing stations can be expressed in terms of the normalization constant G(S, N). For a

large network with large values in S (the vector of number of servers at various loss stations) and/or

large values in N (the vector of the number of sources in closed classes), a direct evaluation of the

normalization constants G(S, N) becomes computationally intensive. A large body of literature exists

that addresses the computational aspect of approximating the normalization constant for loss networks

(see e.g., Kobayashi and Mark, 1997 and references cited therein).

Future work could investigate the behaviors of more complicated queueing-loss network models and,

in particular, the interaction between the queueing and loss aspects. A limitation of the queueing-loss

network models discussed in this paper is that the subsequent behavior of calls, after being blocked at a

loss station, is identical with that of calls which have successfully received service; i.e., they proceed to

follow the same path. In practice, blocked calls are often tagged as such and subsequently receive

different treatment from their successfully served counterparts. Although the product-form solution

will no longer hold in this case, the practical implications of such a model make its thorough

investigation an interesting open problem.
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