Generalized Loss Models, Loss Networks and Their Applications

Hisashi Kobayashi and Brian L. Mark *
Department of Electrical Engineering
Princeton University
Princeton, New Jersey 08544, USA
Tel: +1 609 258-1984; email: hisashi@princeton.edu

ABSTRACT

There is a renewed interest in the classical Erlang's
loss formula and its related topics [4, 12], because the
two rapidly growing network segments— i.e., ATM
networks and wireless networks—both provide basi-
cally connection-oriented services, thus key measures
of their QoS (quality of services) are time congestion
{or blocking probability) and call congestion (or call
loss probability).

In this expository paper, we present our recent
results |5, 7, 8] on generalized versions of the Erlang
and Engset loss models. We will then show that a
generalized loss station (GLS) with multiple Poisson
streams is equivalent to an open loss network (OLN).
Finally, we report that GLS can he incorporated into
product-form queueing networks. Some application
examples will be hriefly discussed.

L. INTRODUCTION

In the classical Erlang loss model, arriving calls form
a Poisson process with rate X and each call holds one
of the m output lines for exponentially distributed
time with mean 1/ The probebility that all lines
are busy is known as the Erlang loss formula, (or
Erlang’s B formula):

Bm)= 2 [i ‘;_':] )

where @ = A/p. The Erlang’s B formula (1) can be
expressed as
G(m—1)

B(m) =1~ N (2)

where G(m) = T, 27 is the normalization con-
stant. B(m) is also called time congestion, since it
represents the proportion of time that all lines are
busy. Call congestion L{m) is the probability that
an arriving call finds all m lines busy. In the Erlang
Loss model, the two congestion measures are equiv-
alent, i.e., L(m) = B(m), because of the so-called
PASTA (Poisson Arrivals See Time Averages) prop-
erty.
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If we replace the Poisson source by a finite source
model, we obtain the Engset loss model. The
source consigts of K independent mini-sources, each
of which generates a new call according to a renewal
process with rate . Then the time congestion is
given by the Engset loas formula:

G(m~1,K)
G(m,K) ’
3

where b = v/p, and G(m, K) = S (¥)5". Call
congestion L(m, K) and the time congestion satisfy
the simple relation L(m, K) = E(m, K — 1).

II. GENERALIZED LOSS STATION (GLS)

The classical loss models can be generalized by in-
troducing multi-class calls and by removing the the
exponential holding time assumption. We also allow
a call to hold simultaneously multiple servers.

Definition 1: Generalized Loss Station (GLS)
A Generalized Loss Station (GLS) is a station with
m parallel servers, no storage, and the following od-
ditional properties:

1. Multi-class calls: It serves a set, C, of call
classes. Calls of class ¢ € C arrive aceording o
either (i} a Poisson process with rates A; (i.e.,
a generalized Erlang loss model) or (ii) o finite
source model with K, mini-sources generaling
renewal arrivels at raie v,.

2. Simultaneous holding of multiple servers:
A claas ¢ call holds A, servers simullanecusly,
when the call is in service. Then, N.(t), the
number of class c calls in service at time t, musi
salisfy

STAN() < m. (4)
el
In the finite sowrce model, additional con-
strainis
N:(t)< K., ceC (5)

must be mel.

3. General holding time: The holding time
disiribution for a class ¢ call is generally dia-
tributed with mean 1/p..



Let the state process be denoted by N() =
(Ne(t) : € € C), and P(n) be the equilibrium state
distribution of N(2). The GLS haa many of the prop-
etties associated with product-form queueing net-
works. Specifically, we extend the notion of quasi-
reversibility [3].

Theorem 1: Quasi-Reversibility of GLS

The GLS is quasi-reversible. Furthermore, N(t) is o
reversible Markov process with the following station-
ary disiribulions,

Generalized Erlang Loss Station:
Pin) = =[] %=, n e Fm) (6)
T G(m) e ™l

where a, = Acfp., F(m) is the set of stales for which
(4) holds, and G(m) is the normalization constant
defined by

G(m) =

Y I (1)

NEF(m) ceC ne!

Generalized Engset Loss Station:

P(n) = G(m’K)H( )b"‘, n € F(m,K) (8)

where be = ve/pc, F{m,K) is the set of states for
which ({) end (5) hold, and G(m, K) is given by

S oa)e o

G(m,K) = n
neF(mKyce¢ ¥ °

proof. See [7, 8].

ITI. OPEN LOSS NETWORKS (OLN)

Let us now consider a loss network [4] shown in Figure
1. We call this type of loss network an open loss
network (OLN) [5]. We define the following notation

)
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Figure 1: Open Loss Network (OLN)

and properties of the OLN.

1. Let there be L links in the OLN, and £ denotes
the set of links. A link £ contains my, lines or
servers, £ & L

2. A call class ¢ € C is defined as a pair (P, ),
where p € P is the path of a call, and r € T
is the call iype. Thus, C = P x 7. In a loss
network, the notion of a class is also referred to
as a route. !

3. The arrival of class ¢ calls to the OLN is a Pois-
son process with rate X, ¢ € C,

4, A class ¢ = (p, 7) call holds Ay, lines of link £
simultaneously for all £ in its path p.

5. The holding time of a class ¢ call is a general
distribution with mean 1/p..

This OLN model provides a general model for a
circuit-switched network that carries multi-rale traf-
fic (i.e., different values of Ay, for different c) among
different classes of call.

We now consider a loss station, which consists of
multiple server types £ € £. We term this general-
ized loss station a GLS with mulliple types of servers.
Hence the number of servers is now represented by a
vector m = {my,£ € L}. A class ¢ call needs to hold
Aye type-£ servers, £ € L.

We now atate the following important theorem
that relates the OLN to the GLS:

Theorem 2: Equivalence of OLN and GLS,
and Reversibility

The OLN i equivalent to the GLS with multiple
server types ?, in which there are my lype-£ servers,
£ ¢ L. Let N(t) be the number of class ¢ calls
in progress at time . Then, the process N(t) =
{N.(t);c € C} is reversible, and possesses the sta-
tionary distribution

1 aze \
_G(—m)-gn—e!-, n € ¥(m) (19)

where a, = A /., end

Gm) = 3 H—-— (11)
nex(m)cecC
F(m) = {n>0: Y Awn.<md, (12)

ceC

proof: The proof is a straightforward extension of
that for Theorem 1. Equate the pair (£,c) to the
class ¢ in Theorem 1. 0O,

1v. MIXED LOSS NETWORKS (MLN)

We define a closed loss network (CLN) by teplacing
the set of Poisson streams by a set of finite sources.
In analogy to open and closed subchains for customer

!The GLS5 model of the previons section is a degenerate
case, where the call clags ¢ and the call type 7 are equivalent.
In an OLN, calls of the same type may take different routes
within the network.

2Note that the link identifier € £ in the OLN corresponds
to the server type in its equivalent GLS.
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Figure 2: Mixed Loss Network

routing in queueing networks, we equate the chain of
a call to its class and partition the classes of a loss
network into the set of open classes, Cp, and the set
of closed classes, Cc.

An OLN consists entirely of open classes, while a
CLN consists entirely of closed classes. A mized loss
network (MLN) is a loss network that has both kinds
of classes. The MLN may include both generalized
Erlang and Engget stations. Denote ita atate process
by N(t) = [No(t), No(t)], with No(2) = (N.(t): c €
Co) and Ng(t) = (N.(t) : c € Cg), where Co and Co
represent the sets of closed subchains and open sub-
chains, respectively. We have the following result for
the MLN:

Theorem 3: MLN and Reversibility

The state process of the MLN is a reversible Markov
process with equilibrium distribution

P(n)= E¥-(~r7ﬂ‘1‘.?)PO(“O)Pc(ﬂc)w n € F{m, K)

(13)
where
ape K\, n,
Po(no) = [] =5 Po(ne) = [ b (14)
cECo  © c€Co ¢

with a. = A /p. (c € Co),
aend

b, = V:/.U':. (‘-‘ € CC):

FmK)={n>0: Y Aun.<my, £ L} (15)

ceC

where conslraints n. < K., c € C should be added for
class ¢ € Co. The normalization constant is

GmK)= Y

neF(m,K)

Po(no)Po(nc). (16)

We can also show that an OLN component is
quasi-reversible. We omit the proofs, since they are
straightforward generalizations of Theorems 1 and 2.

Time congestion and call congestion for class-c
can be expressed in terms of the normalization con-
stant G(m, K):

Figure 3: A Simple Queueing-Loss Network

1. For an open class ¢, ¢ € Cp,

Blm 1) = 1- HE LB
L.(m,K) = B,(m,K), (18)

where A, is the c-th column of the matrix A =
[Ago].

2. For an closed class ¢ call, ¢ € Cg,

Bo(m,K) = 1_9%17;_1:3}%‘_{_) (19)
L(mK) = E.(mK-1.), (20)

where 1. denotes the unit vector, whose c-th
component is unity,

As for numerical methods (exact, approximate
and asymptotic) to compute the normalization con-
stants G(m, K) for different values of m and K, the
reader is referred to our recent book chapter [8] and
references therein.

V. QUEUEING-LOSS NETWORKS

First, let us consider a simple three station network
connected in a cyclic order as shown in Figure 3. We
label the the stations as station 0, 1, and 2, respec-
tively: (a) station O represens a finite source model
with N mini-sources, with each generating renewal
arrivals at rate uo; (b) station 1 is a single server with
exponential service time of mean 1/p4; (c) station 2
is a loss station with § servers, and the call holding
time has a general distribution with mean u;. We
assume that N > § (otherwise blocking would not
occur at all). This model may approximately repre-
sent a sitnation where a random amount of time (with
mean 1/u,) is spent for processing a call connection
request whether or not the request is honored. Even
this simplest model cannot be solved by the conven-
tional traffic theory.

By generalizing the above simple model, lct us
introduce the concept of a gqueueing-loss network
(QLN), which is a network (sec Figure 4) that con-
tains both queueing subnetwork(s) and loss aubnet-
work(s). Let a QLN contain a set of queueing sub-



Figure 4: General Queueing-Loss Network (QLN)

networks {@;; j € J} and a set of loss subnet-
works {Ls; k € K}. These subnetworks may be con-
nected in an arbitrary manner. Arrival traffic from
the outside sources are independent Poisson streams.
Let ng, and ng, represent the population vectors in
these subnetworks. If these vectors have all product
form solutions for their equilibrium state distribu-
tions, then the joint distribution of the state process
N(t} of the QLN takes the following form in the equi-
librium.

1

P = gm)

II Pe,(me)) I] Pealnes) (21)

j€Jg keX

where P (-} and Pg,(-) themselves have product
forms and are proportional to the marginal distribu-
tions of the subnetworks Q; and £, j € J,k€ K.
The normalization constant G(m, K) and the feasi-
ble state set F(m,K) are defined over the vectors
m x K.

The above result can be proved by noting the fact
that each OLN can be replaced by its equivalent GLS,
and that a GLS can be viewed as a generalized 1S
(infinite server) station, since no queue will be formed
at the station. We have also shown that each GLSisa
quasi-reversible queue, hence the overall state process
N(t) of the QLN is a reversible process. When a loss
subnetwork is an MLN and contains a finite number
of mini-sources within the subnetwork itself, we can
further decompose the subnetwork into an OLN part
and IS stations (K. mini-sources are represented by
an IS station of class ¢.) Each of these component
stations are quasi-reversible, as we observed before.

By combining these observations we find that the
QLN is a generalized queueing network. The only
difference from the conventional queueing networks
is that it now contains GLSs as its components. We
have already noted that a GLS can be treated a gen-
eralized IS station, and is a quasi-reversible station.
Thus, we can concinde that the QLN has a product
form solution.

By referring to the simple model of Figure 3, the
steady state distribution is given by
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Figure 5: (a) N x N WGR; (b) Its demultiplexer-
multiplexer representation
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Time congestion and call congestion at station 2 are
then obtained by

12N
o

o
Az

| _G(s-1N)

E(S5,N) = o) (24)
L(5,N) = E(5N~1) (25)
3 G(S-1L,LN-1)
= 1- G(S,N - 1) (26)

VI. APPLICATIONS OF GENERALIZED
LOSS MODELS

The generalized loss station (GLS) model and the
open loss network (OLN) model we discussed in the
previous sections significantly enlarges the class of
network services for which we can construct analyt-
ical models. Any connection-oriented service with
multiple service rates is a good candidate for the GLS
or loss network model. We briefly discuss below a few
obvious examples.

A. All-optical networks (AON}

An all-optical network (AON)([1, 6], which connects a
large number of users via wavelength grating router
(WGR), can be modeled as & loss network with fixed
route. In Figure 5 we show an input-output relation
of a WGR and its demultiplexer-multiplexer repre-
sentation. The ¥ x N WGR (or static wavelength
router) connects input port oy, to output port o,
{myn=0,1,..., N — 1) using wavelength A,

n=m+ f (modulo N}. (27)
From the above relation we readily find that if N =
¥, there exisis a unique wevelength that routes a call
originating from a source node to some destination
node. If P < N, there may not exist a wavelength
that can carry the call, i.e., a connection between

"?some pair of nodes may not be possible. If F > N,
there may be more than one wavelength that can
carry the call.

X

(23)



Consider a simple network in which the N input
and output ports of a WGR are connected to N LANs
(local area networks). Such interconnection of many
LANs by a WGR may, therefore, constitute a MAN
{metropolitan area network). The AON protatype
discussed by Alexander et al. [1] is such an exam-
ple. Then if we can represent the call generations
from each source (i.e., LAN) as a Poisson process,
the product-form formula based on the generalized
Erlang model holds.

If the static router is converted into a dynamic
router by use of wavelength converters (frequency
changers), then the simple product-form no longer
holds, and eome approximation technigue is called
{or, as in the three-stage switching network. See (9]
for a further discussion and numerical examples.

B. ATM network model and admission control

The product-form solution applies to any network
with fixed route. Hence, the connection-oriented ser-
vice in an ATM network can be modeled as a loss net-
work. Different service rates for different users (e.g.
virtual paths) can be explicitly handled by proper
choice of the integers A., or 4;.. The call admission
control (CAC) may make use of the projected QoS
(quality of service) that can be estimated by the time
and call congestion formulae we have. Foxr VBR (vari-
able bit rate) traffic, the service rates parameters A,
will not be constant; however, the so-called effective
bandwidih of the call can be used as an approximate
value for A..

C. Cellular radio nelworks

The channel assignment problem in a cejlular radio
network can be easily modeled as a GLS system. If
the number of mobile users is not so large, the fi-
nite source model (i.e., Engset model and its general-
ized version) should be used. The model formulation
cqually applies whether the cellular network adopts
FDM (e.g., AMPS), TDMA (e.g., GSM) or CDMA
(c.g., 15-95). The model applies to both the forward
link (down link) and reverse link {up link). The GLS
model formulation is most appropriate when the ser-
vices provide diflerent rates, i.e, data services as well
as voice services. The bandwidth or channel assign-
ment problem in a satellite communication services
can be formulated in a similar manner.
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