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Abstract
Recently, there has been an increasing interest in loss

networks [5], since a loss network can provide a math- Exponential
ematical framework for the study of connection-oriented 1/
services [8]. In this paper, we present relations between a

class of loss networks and queueing networks whose sta- 1
tionary distributions have a product form.

. 2
1 Introduction Poisson
. A — ——a-

The earliest work on queueing networks with product .

form goes back to J.R. Jackson’s 1963 paper {4]. Driven L4

by the practical applications to job-shops and computer ' .
systems, much research has been devoted to studying

approximations, computational algorithms, and asymp-

totic behavior for Jackson networks and generalizations. B

More recently, there has been a renewed interest in gen-
eralizations of the loss models originally studied by Er-
lang (cf. [12]) in the context of telephone exchanges. Loss
networks provide models for studying the blocking behav-
jor of connection-oriented services in communication net-
works. New applications of loss networks include broad-
band optical networks and wireless networks.

The purpose of this paper is to show how some aspects
of the theory developed for queueing networks can be car-
ried over to the study of loss networks. - IS Station Loss Station

Figure 1: Erlang Model

2 Generalized Loss Stations 1 1

We use the general term station, to denote an entity which
provides service to arriving customers. A station consists
of a number of servers and possibly a waiting room. A
loss station is characterized by having a finite number of
servers and no waiting room. An arriving customer either
begins service immediately or is rejected due to lack of
a sufficient number of available servers. By contrast, a
queueing station has infinite waiting room; no customer
is rejected.

The original loss model studied by Erlang is equivalent
to an M/M/B(0) queue (see Figure 1); i.e., a loss station
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with B servers where arriving customers form a Poisson
process with rate A and each customer occupies a server
for an exponentially distributed holding time with mean
1/u. The stationary distribution of the number of busy
servers is given by a truncated Poisson distribution:

n B i_l '
PB(n)zf—[zf‘.—} , 0<n<B (1)

where a = A/ is the offered load. As B — o0, Pg(n) —
a™/n!, which is the stationary distribution of an infinite-
server (IS) station or M/M/co queue. The stationary
probability that all servers are busy is given by the cele-
brated Erlang loss formula

. . BB -1
E(B,a)=Pp(B) = % [Z j} ()
=0 :
In the original Engset loss model, which is equivalent to
an M(K)/M/B(0) queue, the arrival process is generated
by a finite source model with K sources (see Figure 2).
Each source consists of a customer who waits for an expo-
nentially distributed inter-generation time, arrives at the
station where it either acquires a server for an exponen-
tially distributed holding time or is blocked, and a new
cycle begins. ’

We generalize the classical models by introducing a set,
C, of customer classes with multiple server acquisition
and general holding times. Customers of class ¢ € C seek
to acquire 4. servers for a generally distributed holding
time with mean 1/u.. The generalized IS station, denoted
./G¢ % Ac/oo, has an infinite number of servers. The
generalized loss station, denoted -/Gc * Ac/B(0), has B
servers with no waiting room; an arriving customer of
class c is blocked if there are less than A. available servers.

We consider two multiclass source models. The mul-"

ticlass Poisson source, denoted Me, consists of indepen-
dent Poisson processes with rates A.,c € C. The mul-
ticlass finite source, denoted Ge(Kc), consists of inde-
pendent finite sources with populations K. and generally
distributed inter-generation times with means 1/v., for
each ¢ € C. With these source models, we obtain gener-
alizations of the Erlang and Engset loss station, denoted
by Mc /Ge * Ac/B(0) and Ge(Kc)/Ge* Ac/B(0), respec-
tively.

The IS station may be viewed as a limiting case of
the Erlang station as the number of servers B — oo.
Both types of stations may be characterized by a state
process n(t) = (mc(t) : ¢ € C), where n(t) denotes
the number of class ¢ customers in the station at time
t. Let 7p(n) denote the equilibrium state distribution
when there are B servers. The set of feasible states is
8(B) = {n > 0:)  cAcnc < B}. The departure pro-
cess from the Erlang station includes both customers who
have successfully completed service and those who are
blocked. In Appendix A, we prove the following result:

Theorem 2.1 The generalized Erlang station is quasire-
versible and its state-process n(t) is a reversible Markov
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process with stationary distribution given by

r5(n) = 5%5’7 1;?[: 91—:7 n € S(B) (3)

where a. = A/t and G(B) is the normalization constant
defined by

aB)= ¥ T1% (9

nes(B) c€C

The following theorem is a generalization of a result
first reported by Cohen (2.

Theorem 2.2 For the generalized Engset loss system,
n(t) is a reversible Markov process with stationary dis-
tribution:

(0, K) = @é; I1 (f) (—) nes(B) (5)

cec He

Proof. This loss system can be viewed as a two-station
closed queueing network consisting of a (generalized) IS
station in tandem with a loss station. With Poisson
source models both stations are quasireversible and pos-
sess the insensitivity property with respect to service time
distributions. Hence, the stationary distribution of the
tandem connection has the form

1ro(n1,'n2) x wl(nl)wz(nz) (6)

where n! and n? represent the number of customers of
each class at the IS station and the loss station, respec-
tively, and m;, @ = 1,2 denote the marginal distributions
of the two stations. Hence,

ro(n!,n?) « [ Qo) Qhc/ve) (7)

1 ]
oy nl! n2!

By making the identification K—n = n! and n = n? and
applying the state truncation property with the closed
network constraint n! + n® = K, we obtain that the sta-
tionary distribution of the original system has the form

el

ceC

which, upon normalization, yields the resuit (5). Re-
versibility can be established by showing that the dis-
tribution given by (5) satisfies detailed balance. O

3 Loss Networks

Let us now classify the servers of a loss station into a set,
J, of server types. There are B; servers of type j € J and
YjegBi =B. An arriving class ¢ customer seeks to si-
multaneously acquire A;. servers of type j (see Figure 3).
We denote such a loss station by /G¢*x Az c/Bg(0). Let-
ting B; — oo for each j € J, we obtain a generalized IS
station with multiple server types.
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Figure 3: Genera.hzed Loss Station with Multiple Server
Types
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TFigure 4: Open Loss Network

This station operation provides a model for the opéra-
tion of a circuit-switched network with the following inter-
pretation: each server represents a circuit and 7 is a set
of links, with the jth consisting of B; circuits. In keeping
with standard notation for loss networks, we identify the
set of call classes, C, with the set of routes, R. A route
r call requires 4;,. circuits on each link j € J. We then
define a loss network (LN) as a -/Gg * A7 »/B7(0) loss
station. Letting the link capacities B; — oo, we obtam
an IS network (ISN), -/Gr * A7, R/oo

We introduce a source model for the LN station as fol-
lows.  In analogy to open and closed subchains for cus-
- tomer routing in queueing networks (cf. {1, 11]), we clas-
sify the routes of a loss network into the set of open routes
and the set of closed routes, denoted by Ro and Rg, re-
spectively, with R = Ro U R¢c. The customer arrival
Process to an open route p is Poisson with rate A,, while
that for a closed route s is a finite source of population
K, with mean inter-generation time 1/v,. All customer
arrival processes are assumed to be independent. An open

Ap. peRp

Figure 5: Mixed Loss Network

loss network (OLN), as depicted in-Figure 4, consists en-
tirely of open routes while a closed loss network consists
entirely of closed routes. A mized loss network (MLN),
as shown in Figure 5, may have both kinds of routes and
we denote it by Mz,,Gr.(Kr.)/Gr * Az, =/B7(0).
The MLN generalizes both the Erlang and Engset sta-
tions of the previous section. Denote its state process by
n(t) = [no(t), nc(t)], with no(t) = (n,(t) : p € Ro) and
nc(t) = (n,(t) : s € Re). We have the following result
for the MLN:

Theorem 3.1 The state process of the mized loss net-
work is a reversible Markov process with equilibrium dis-
tribution given by
1
mg(n) = Gm)Pomolre(ng), neN(B)  (9)

where

po(ﬂo): H %’lj, Pc(nc)z H (f’)b,"x (10).

p€Ro P’ © _3€Rc

with by = v /p,, 5 €ER.,

N(B)={n>0:An < B} (11)
and '
G(B) = Z po(no)pc(nc) (12)
neN(B)

We can also show that an OLN is quasireversible. We
omit the proofs of these results since they are straightfor-
ward generalizations of those in the previous section.

4 Properties of Loss Networks

4.1 Blocking Probabilities

With reference to the stationary distribution of the mixed
loss network, the probability that the network state is
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such that no additional route r call can be accepted (i.e.,
the #ime congestion on route r) can be expressed in terms
of the normalization constant G(B) as :

L(B) = 1- 3 g(n)
nev(B-A.)
L GB-4A)
G(B)
= G—(IB—) Y po(molpo(ng) (13)
nen.(B)

where A, is the rth column of A and N, (B) =
N(B)\N(B - A.). The proportion of arriving calls on
route r € R which are rejected is the call congestion or
loss probability for route p, denoted by Z,,. By the PASTA
property {cf. [14]), the distribution seen by the call ar-
rivals on an open route p € Ro is identical with the
stationary distribution 7(n). Hence we have '

LP(B) = 'ZP(B)a

The proportion of arriving calls over a closed route s €
R that find the system in state n is

VpeRo (14)

(K, - n,)v,rg(n)

as(n,K) = Zn'eN(B)( —n}v,mg(n’)

(15)

Using (9) and performing some algebraic maﬁipulations
yields the simple result

as(n, K) = rg(n, K7 (16)

where we have made the closed route populations explicit
in the notation and K denotes the population vector K
with one less source for route s. This is a generalization
of the well-known property for the quasi-random input

model (cf. [7]). The loss probability for route s. calls is
then given by
" G(B - A,,K7)
L{B)=1—- ——n—""——2~ 17
() ) ()
1 .
L — Ko 18
GB.K) >, po(no)pe(ne,K;)  (18)

nen,(B,K;)

The expressions (13) and (18) may be viewed as general-
ized Erlang and Engset loss formulae, respectively.

4.2 Generating Functions
the pef, W‘B(z) =

()@ 9

where z = [] . 2. Letting B — oo, we obtain the pgf

of an IS network:
. 1+ byzs \ X
.ww(z):exp{z ap(zp — 1)} H ( 1+23>

PERO 3€Re

For the mixed loss network,
Zne)\/(B) ™8 (n)z", is given by

1 (apzp)™r
am > 1

nenN(B)r€Ro

- 11

s€Rc

npl

From independence in the IS network, the pgf is the prod-
uct of the marginal pgfs of the Poisson random vari-
ables n,, p € Ro and the binomial random variables
ns, 8 € Re. From (19), we can obtain the marginal
pgf, 7, (2), for an open route p, by setting z, = 1 for all’
r € R\{p} and z, = 2. Similarly, we can obtain the pgf,
7, (z), corresponding to a closed route s.

The loss network can also be characterized by the link-
state process m(t) = (m;(t) : j € J), where m;(t) is the
number of occupied circuits on link j at time ¢. Clearly,
m(t) = An(t), so the stationary dlstnbutxon of m(t) can
be expressed as:

Pg(m)= Y  wg(n), me M(B) (20)
n:An=m

where M(B) = {m : Hn € N( ) An = m}. Define the
pef of Pg(m) by P, ], where 8 = 6, ---6;.

For-the IS network, %e pef sat1sﬁes
P (6) cexp( Y a,6%%) ] (1 +5,6%)% (21)

PERo s€Re '
where 942 [Lies 6;4"'

Define the generating function (gf) of the normalization
constant G(B) with respect to the J-dimensional vector

B by G*(8) = ZB>0 G(B)GB. It can be shown that
G*(8) is given by

i)

Using (21), we can write

LA .
x (};Il ']'_'_—0]) Poo(g)

4.3 Compﬁtation :

expq{ Z a.'peA’} II (l+b,€A')K'

PERo sERc

(22)

The pgfs given in the previous section lead to several nu- -
merical solutions. The marginal distributions for an open’
and closed routes, respectively, can be obtained as:

G(B - nA, R\{p}) &,"

np(n) = (B, %) 1 0SSNy, (23)
G(B - nA,,R\{s}) (K;\ ...
where N, = minjes[Bj/Ajp], p € Ro and N, =

minje 7{[B;j/Aj-], Ks}, s € Rc. The link-state proba-
bilities satisfy, for each j € 7, the following recurrence
relation:

m; Pg(m) = Z 4jpa, Pg(m - Ap)
PERo
K,
+ Y AjK.b, Y (=b)*lPg(m —kA,)  (25)
s€ERe k=1
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A recursive formula similar to (25) has also been ob-
tained in the context of the more general BPP arrival
processes [3, 10].

As in queueing networks, many of the parameters of
interest for loss networks are expressed in terms of the
normalization constant G(B, K). Likewise, a straightfor-
ward term-by-term summation is impractical, since the
number of terms grows exponentially with the problem
size. For an ISN, the normalization constant is given by

G(co,K) = exp{ Y ap} ] (1+b)% (26)
PERoO SER.
= ¢ ] (1+8,)% (27)
s€Rc

where a = 3. cn, - In a light traffic regime, where
the capacities B; are sufficiently large relative to the of-
fered loads, G(oo K) can be used as an approximation to
G(B,K) in the loss formulae given above.

For the generalized Engset station, Kogan {9] has inves-
tigated the approach of inverting the pgf G*(6) and study-
"ing the asymptotic properties of the normalization con-
stant via the saddle-point method. Several authors [5, 13]
have proposed a reduced load approzimation, whereby
blocking events on different links are assumed indepen-
dent. The computation of blocking probabilities then re-
duces to iterative evaluations of the Erlang formula with
modified offered loads.

5 Conclusion

We formalized several generalizations of the classical loss '

models studied by Erlang and Engset. Under multiclass
service, with multiple server acquisition, the generalized
loss stations retain the properties of insensitivity to hold-
ing time distributions and inter-generation time distribu-
tions for the finite source model. By letting the number

of servers approach infinity, corresponding generalized IS

queueing stations were obtained.

~ We. showed that the notion of loss network arises from
introducing server types as links in a circuit-switched
network and interpreting the customer classes as routes.
By considering Poisson and finite source models, we in-
troduced the notions of open, closed, and mixed loss
networks, in analogy to the corresponding concepts for
queueing networks. We obtained expressions for time and
call congestion for open and closed routes. Taking an ap-
proach similar to [11], we obtained generating functions
which led to computational expressions for several quan-
tities of interest. '

Future work should lead to the development of better
. computational and asymptotic solution methods, as we
have seen in the area of queueing networks in the past
three decades.

A Proof of Theorem 2.1

We shall assumne that the holding time distribution of
class ¢ customers is represented exactly, or approxi-
mately by one having a rational Laplace-Stieltjes trans-
form (LST), ®,(s). The theorem is, in fact, true for abri-
trary distributions, but the proof would require us to con-
sider continuous state-space Markov proceéses.

Using Cox’s method of stages (cf. [7]}, any rational LST
can be expressed in the form

s) —bo+zao a¢_1b¢H

i=1

3+ s (28)

where d is the number of siages, a; +b; = 1, ¢ =
0,1,--.,d—1, and bg = 1 (see Figure Al). The ith stage
is a generalized exponential server of mean rate u;, where
1; may be complex. Define Ay = aoay---ay-1, 1<
¢ < d. The mean service time u is then given by
Vp= Ez— Ay

Now assume a d.-stage Cox representation for the LST,
&.(s), of class ¢ customers. Consider the state pro-
cess z(t) = (zc1(t) : ¢ € C, 1 £ | £ d.), where
2.,1(t) denotes the rumber of. class ¢ customers in the
lth stage of serv1ce Define the set of feasible states as
F=A2:Y cec S A.z.; < B} and the blocking states
force€Cas Fe(B) ={z: ) ¢ S Aczer > B - A}
Let Pz(z) denote the equilibrium distribution of z(t).
z(t) is a Markov process which does not change when
an arriving customer is blocked. Therefore, we intro-
duce a flip-flop process f(t) € {0, 1}, which changes value
each time a blocking event occurs. The joint process
v(t) = (z(t), f(t)) is Markov, with equilibrium distribu-
tion Pz ¢(z, f)

The proof proceeds by conjecturing the form of the
distribution Pz ;(z, f) and the reverse process vg(t) =
v(—t). In particular, we conjecture that

1
Py s(z f) = 5 Pa(z),  f€{0,1} (29)
where
de pzcl
Pz(z) = Pz(0) anH =t (30)
c€Cl=1 el
with p.; = AcAc1/pe . The conjectured reverse process

vg(t) consists of independent Poisson arrivals of rates
Ae, ¢ €C, with the station operating as in forward time,

"but with the holding times realized by the Cox repre-

sentation reversed in time (see Figure A2). In order to
establish the truth of these conjectures, it suffices to show
that the following reversed balance equation (cf. [6]) holds:

Py(v)g(v,Vv') = Py(v')qr(¥v', v), (31)

for all v,v' € F(B) x {0, 1}, where q(-,-) and gr(, ) de-
note the transition rates of the forward and reverse pro-
cesses v(t) and vg(t), respectively.

There are several transitions of the forward process in-
volving a class ¢ customer, which can occur:
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(i) When z € F(B), a class ¢ customer in stage ¢
departs the station, resulting in state z’. Then
a(v, V') = 2z plepbe,p and gr(V',v) = AcgbegAe,
where v = (z, f) and v/ = (2, f).

When z € F(B), a class ¢ customer in stage ¢ — 1
moves to stage ¢, resulting in state 2/, for 1 < ¢ < d..
Then g(v, V') = z¢,¢-1lc,¢-18c,¢—-1 and gr(V', v) =
Pe,p(2e,6 + 1). In case ¢ = 1, an external arrival
occurs and we have g(v,v') = A.a.0 and gr(v’,v) =
(2e,1 + Dphe,1-

When z € F.(B), a class ¢ customer arrives and
is blocked. Then ¢{(z, f),(z,1 — f))} = ¢r((z,1 -
)12 £) = A

It is straightforward to verify that these transition rates
satisfy (31). This establishes that the Erlang station is
quasireversible with equilibrium distribution (29).

By summing Pz(z) over all states with Zf;l Ze1 =
c € C, we obtain

(3ii)

Tey

r5(n) = G(B) IH-—, n € §(B)

ceC

(32)

where n. = .2?;1 @ci = Ac/pe. To establish the re-
versibility of n(t), it suffices to check that mg(n) satisfies
the detailed balance equations:

A1:7('B(ltlg;—) = ncﬂ'c"rB(n)y n,n; € S(B), (33)
where n; denotes the state vector with one less class ¢
customer than n. O
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