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bstract 1 Introduction 

A shufflenet is a high speed multiconnected optical network. 
By making use of the vast bandwidth of fiber and allow- Throughput of a shufflenet with deflection routing under 

high load and low load is obtained as a function of the ing different users to  simultaneously transmit information 

put despite the current constraints in optical technology [1]- tions which achieve high performance in a shufflenet. Us- 
ing a routing algorithm similar to  the algorithm we consider f31’  
here, throughput of a shufflenet with only one buffer can be 

network and buffer sizes. We give general routing through the network, a shufflenet can achieve high through- 

The performance Of a shufflenet has been both 
increased by more than 45% compared with the shufflenet and and 

without any buffer, the so-called hot-potato case. The in- analysis, a certain network size and a specific routing algo- 
crease is general for the shufflenet of siee ranging from as rithm (e.g., FIFO Or “Care Packets First, Don’t care Packets 

in recent years [41-[81* In the 

few as 24 nodes to  more than 10,000 nodes. The increase Last” - the so-called CFDL routing algorithm [9]) are USU- 

is more significant when the network becomes larger, We ally assumed. In the case of finite buffering, a certain type 
note that a large number of routing algorithms currently pro- Of Optical switches x 2  Or switches) and buffer 
posed to  be used in the shufflenet satisfy the general routing architectures are Usually assumed [5, 8, 91. Therefore, every 
conditions mentioned here. using the routing algorithm we time a shufflenet undergoes changes in size due to  splitting 
mention here, a shufflenet with only two buffers can achieve or expansion, or buffer structure changes due to  the advance 
performance comparable to  the store-and-forward case. In in technology, or a new routing algorithm is proposed, the 
previous studies of the shufflenet, the derivation of the im- same simulations and analysis have to  be done all over again 
portant parameter - the probability of deflection of a packet to  obtain the network performance. This is inconvenient and 
in the network - is usually complicated. we have obtained a time consuming. Furthermore, it is hard to  draw a general 
simple approximation of this parameter, which greatly sim- conclusion on the trend of performance and network scala- 
plifies the analysis of a shufflenet of any size and with any bility for different r~~~~~~~ and buffer 

number of buffers. This enables us to conclude that the per- In this paper, *e consider a routing algorithm satisfying 
formance of a shufflenet scales well with different network Some very general routing conditions. The performance of a 
and buffer sizes if the routing algorithm is chosen properly. shufflenet as a function of network size and buffer capacity is 
we finally verify our with the simulations that have obtained without any particular specification on the buffer 
been done. structure. In previous studies [5 ] - [7 ] ,  it has been observed 

that a (2,4) shufflenet with only two buffers can achieve per- 
formance comparable to the store-and-forward case. How- 
ever, it was not clear whether this observation is still valid 
for any size of shufflenet. We present in this paper that ,  us- 
ing a routing algorithm similar to the algorithm we consider 
here, any (2, k )  shufflenet can achieve such high performance 
for a wide range Of parameter 
(i.e., 24 nodes) to  k = 10 (i.e., more than 10,000 nodes in the 
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network). Moreover, a shufflenet with only one buffer can 
achieve more than 45% increase in performance compared 
with the hot-potato case. The improvement in performance 
becomes even more significant as the net.work size increases. 

We first briefly discuss the shufflenet and review the pre- 
vious analysis, focusing mainly on the (2, k) shufflenet. We 
will then consider a routing algorithm that achieves high 
throughput in shufflenet. We note that a number of rout- 
ing algorithms proposed to  be used in the shufflenet are very 
similar t o  the algorithm we consider here. In the analysis 
of a shufflenet with deflection routing, the probability of de- 
flection for a packet in the network, P & f ,  is an important 
parameter to  characterize the network performance [7]. We 
obtain a simple approximate expression for the parameter, 
which greatly simplifies the analysis and allows us to  con- 
clude that the performance of a shufflenet scales well with 
different network and buffer sizes using the algorithm we 
consider here. Once Pdef is obtained, other network perfor- 
mance measures such as the hop distribution and the average 
delay can then be obtained without difficulties [7]. 

2 Shufflenet and its Analysis 
A shufflenet is a multi-hop network [l]. Each user in the 
shufflenet accesses the network through the Network Inter- 
face Unit (NIU). Each NIU has a number of lightwave re- 
ceivers and transmitters. A shufflenet is characterized by 
two numbers, p and k. A ( p ,  I C )  shufflenet consists of ICpk 
nodes arranged in IC columns, with each column consisting 
of p k  NIUs. Figure 1 shows a (p,IC) shufflenet with p = 2 
and le = 3. In a shufflenet, all the NIUs are interconnected 
like a perfect shuffle, with the last column being “wrapped- 
around” to the first column to  form a completed cylinder. In 
this way, packets can be continuously circulated around the 
network until they reach their destinations. 

Packets are transmitted within the shufflenet in a store- 
and-forward fashion, as long as there is buffer available in 
the NIUs. A packet hops through the nodes until it reaches 
its destination, where the packet will be absorbed. Different 
packets destined to  different destinations may suffer colli- 
sions with each other during the process of routing. In a 
shufflenet with deflection routing, one of the colliding pack- 
ets will be routed correctly while the rest of them will be 
either stored if storage is available, or “deflected” temporar- 
ily to  wrong channels. Therefore, with deflection routing, 
packets are never lost due to  buffer overflow. 

In a ( p ,  I C )  shufflenet, a packet at a node is said to  be “don’t 
care” with respect t o  its destination if the destination is not 
reachable within k hops by the packet. A node is said to  be 
“don’t care” for a packet if the packet at this node can reach 
its destination with the minimum number of hops by taking 
any link emanating from this node. Therefore, if a packet is 
a t  its “don’t care” node, it will never suffer deflection. 

Shufflenet with deflection routing under uniform traffic 
condition and non-prioritized contention resolution rules has 
been analyzed in [7].  Let E[D]  be the average number of 

Figure 1: A (2,3) shufflenet 

hops for a packet in the ( p ,  k) shufflenet to  reach its destina- 
tion and a be the probability that  a packet is absorbed in a 
node. Then, obviously, 

Let E[Ndc]  be the expected number of “don’t care” nodes 
that a packet visits before it reaches its destination, and Pdc 
be the probability that a packet visits one of its “don’t care” 
nodes in each hop on the way to  its destination. Then we 
have [7], 

and 

(3) 

(4) 

= 1 - P,,, (5) 

where P,, is the probability that a packet visits one of its 
“care” nodes in each hop on its way to  its destination. 
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In this paper, we will focus on (2, k )  shufflenet. Let U be 
the probability that a given time-slot in a link of the network 
is occupied by a packet. Denote g as the offered load, which 
is defined as the probability of generation of a new packet in 
a node in each clock cycle. U can then be expressed as [5]: 

The probability of deflection for a packet in a (2, k) shuf- 
flenet can then be obtained by solving the following equation 
for P d e f :  

1 

where P, is the probability that  a packet encounters a “care” 
packet in the routing process in a node, and is given by [5], 

Pc [ ~ ( 1  - a) 3- Uag + (1 - u)g] (1 - p d c ) ,  (8) 
and ribs is the average “free” time before a “tagged” “care” 
packet in the network is deflected again since the last de- 
flection of the packet, given that it is routed with another 
“care” packet in the routing process. In other words, l/nb, 
in Equation (7) is the probability of deflection of a “care” 
packet given that it encounters another “care” packet in the 
routing process. Therefore, the larger the value of n,bs  is, the 
less likely a packet will be deflected in the network. In the 
analysis of shufflenet, nbS is a parameter which depends on 
the buffer size, bs, and the access algorithm of a packet in 
the memory. Its value depends on the occupancy probability 
of the memory and contention resolution rules [5, 81. In a 
shufflenet, we have the cases no = 4 for hot-potato routing 
and n, = 00 for store-and-forward routing. As hot-potato 
routing attains the minimum throughput performance in a 
shufflenet, any other routing algorithms have nbS no less than 
4. 

It should be noted that from Equation (8) and under high 
load (i.e., g N l), the probability that a “care” packet en- 
counters another “care” packet in the routing process, P,, 
and the probability that  a packet visits one of its “care” 
nodes in its way to  the destination, P,,, are related by 

F, N FcT. (9) 

This approximation will be used in the asymptotic analysis 
of shufflenet. 

We see from Equation (8) that  P, depends on both U and 
Pdc, which in turns depend on E [ N d c ]  and E[D].  As both 
E[D] and E [ N d c ]  are functions of P d e f  through Equations 
(2) and (3), Equation (7 )  is a nonlinear equation in P d e f ,  

the probability of deflection of a packet in a (2, k) shufflenet. 
The solution of Equation (7) gives P & f .  With the knowl- 

edge of Pdef, the normalized throughput, A, defined as the 
number of packet generated (or absorbed) in a node in each 
clock cycle in the steady state, can be obtained as [5] 

x = 2au (10) 

We note from Equation (11) that under high load (i.e., g + 

1) and CY << 1, 
x x 2CY. (12) 

3 Buffered Shufflenet under Low 
Load 

For a (2, k) shufflenet under low load, i.e., g --+ 0, the proba- 
bility of finding a packet in a time-slot is very small, yielding 
U 2 0. Equation (8) therefore gives 

P, 2i 0. (13) 

As a result, from Equation (7),  P d e f  N 0. Therefore, using 
E[D]  in Equation (2) and p = 2 ,  we have 

k ( 2  - 3 * 2k + 3 . 2 k  k )  
lim E[D]  = 2 (-1 + 2k k), (14) Pd.f -0 w, for k 2 3. 

With g2( (1  - a)/a)’/2 << 1 (which gives g << l / ( k  - l)), 
expansion of X in Equation (11) around g N 0 gives 

x M g.  (16) 

The result simply says that under low load (i.e., g << 1/(k - 
l ) ) ,  the throughput of a shufflenet is directly proportional t o  
the offered load, i.e., the packet generation rate. The initial 
increase in throughput with traffic load, g,  is independent 
of the buffer size and routing algorithm. This verifies the 
linearity previously observed in the simulations of a (2,4) 
shufflenet with different buffer sizes and routing algorithms 
reported previously [5, 61. 

4 Store-and-Forward Shufflenet 
under High Load 

For the (2, k) shufflenet using store-and-forward routing al- 
gorithm, we have Pdef f 0. Figure 2 shows the normalized 
throughput using Equation (11) under the high load con- 
dition (g y 1) and a = l/E[D], where E[D] is given in 
Equation (14). 

For alarge shufflenet, Equation (15) gives (Y x 2/(3(k-l)) .  
With ct << I, the normalized throughput, A, of Equation (11) 
can be expressed as 

x M 2a (17) 
4 

3 ( k  - 1) 
M- 

4 
3 log, N I 

N -  

where N is the network size. The inverse relationship in 
the store-and-forward throughput of a shufflenet against the 
network size is clearly observed in Figure 2. 
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Figure 2: Normalized store-and-forward throughput of a 
shufflenet verses the network size, N .  Throughput decreases 
as - I/ log, NI for large N .  

Figure 3: Memory transition diagram in each node for a 
(2, k )  shufflenet with buffer size bs. 

enet with Finite Buffer Size 
under High Load 

5.1 Routing Conditions 

Throughput of a shufflenet whose size ranges from as few 
as 24 nodes (corresponding to  IC = 3) to  as many as 10,000 
nodes (corresponding to  k = 10) will be analyzed under very 
general routing algorithm and buffer structures. In the anal- 
ysis of the buffeied shufflenet, the occupation probability of 
the memory is usually found [5, 81 from the Markov chain 
model. Let bs be the buffer size in a (2, IC) shufflenet and the 
state be the number of “care” packets in the memory, then 
the memory transition for each node in a ( 2 , l c )  shufflenet 
can be drawn as in Figure 3. 

The transition diagram is obtained as follows: 

0 In any cycle, a t  most two packets can be routed in each 
node. Hence, the buffer state can decrement by at most 
two. This occurs when two “care” packets are routed 
out of the memory into the network and no new “care” 
packet is put into the memory in the cycle; 

0 In any cycle, a t  most two “care” packets can be put into 
the memory because there are only two incoming links 
at a node in the ( 2 , k )  shufflenet. Therefore, the state 
number increases by two, when the two incoming “care” 

packets are put into the memory, and no “care” packet 
is injected into the network. 

Let ri, 0 5 i 5 bs, be the steady state probability that 
the memory is a t  state i in Figure 3. Clearly, 

bs 

c7ri = 1. (20) 
i = O  

I t  should be noted that Pi,j,  the transition probability from 
state i to  state j ,  depends on the routing algorithm and the 
buffer structures [5, 6, 81. 

We consider a high performance routing algorithm satis- 
fying the following routing conditions: 

“Care packets First, Don’t care packet Last,” or simply 
CFDL, has been shown to be an effective routing method 
to  achieve high throughput performance [9, 61. In CFDL, 
“care” packets in the memory always have higher priority in 
routing than “don’t care” packets in the node, provided that  
no deflection is incurred. Using this routing method, at least 
one “care” packet is sent out of the buffer in each cycle. This 
gives Pi,i+, = 0, for i 2 0. 

As the number of “care” packets in the memory increases, 
there are more choices of the “care” packets to  be routed 
in each clock cycle. Therefore, it becomes more likely for 
the “care” packets to  be routed in each clock cycle. In other 
words, it would be less likely for the number of “care” packets 
in the memory to  grow in the higher state. We consider 
in our algorithm that the steady state memory occupancy 
probability satisfies 

Ti 2 Ti+l. (21) 

The probability that the memory is full of “care” packets, 
7ft,JI can then be expressed as, 

Consider the access of packets in the memory. To max- 
imize the number of packets routed in each cycle without 
deflection, all the “care” packet in the memory should be 
screened before the output channel assignment is done. In 
our high-performance routing algorithm, we consider the 
case that every packet will be compared for output chan- 
nel assignment. Note that strictly FIFO algorithm, which 
routes the packets without any distinction between “care” 
and “don’t care” packet classes, does not satisfy the above 
condition [6]. 

Equation (7) is a self-consistent equation in Pdef which 
can be written as follows. Consider a typical packet in the 
network as in Figure 4, and let it be our “tagged” packet. 
Clearly, the “tagged” packet will be deflected only if it  is 
a “care” packet in the node. Therefore, deflection of the 
“tagged” packet in a node occurs when the following condi- 
tions are satisfied: 

0 There is another “care’> packet on the other link (which 
occurs with probability P, given in Equation (8)); 
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Figure 4: Figure t o  obtain the equation in Pdef in the anal- 
ysis of shufflenet. 

1 l(one-buffer) 1 2 1 3 1 4 
16 1 48 1 128 1 320 

Table 1: Values of nb3 as a function of buffer sizes, bs, for 
the routing algorithm being considered in the paper. 

0 The memory is full of “care” packets (which occurs with 
probability r b s ) ;  

0 All the (bs + 2 )  “care” packets in the node contend for 
the same output channel and the “tagged” packet loses 
with a coin flip. This occurs with probability 1/2bS+2.  

Therefore, a self-consistent equation for the deflection 
probability of the “tagged” packet in its “care” node, Pd,f, 
can be expressed as  

Comparing Equations ( 7 ) ,  ( 2 2 )  and ( 2 3 )  , we have 

We will use the relationship n b ,  = (bs + 1)26s+2 for the anal- 
ysis of the routing algorithm. Table 1 shows the values of n b S  

for different buffer sizes. I t  should be noted that  although 
particular values of n b ,  are considered, our result is general 
enough t o  apply t o  any real value of nb,. 

In reality, depending on the buffer structures and rout- 
ing algorithms, CFDL and examination of every packet may 
not be fully implemented before a routing decision has to 
be made [6]. This is the case if 2 x 2 optical switches, non- 
circulating buffer architecture or strictly FIFO queuing dis- 
cipline are used. However, so long as a routing algorithm 
is implemented similar t o  the routing algorithm we consider 
here, i.e., making a n  effort t o  implement CFDL and exam- 
ine all the packets in the memory before a routing decision is 
made. The values of n b ,  in Table 1 approximate the perfor- 
mance of a shufflenet under different buffer structures and 
routing schemes [6]. This shows that a large number of rout- 
ing algorithms resemble the algorithm and would have simi- 
lar performance we consider here. 

5.2 Probability of Deflection 
We obtain the first-order approximation of Pdef by solving 
Equation (7) and verify its accuracy later. 

Under high traffic load (i.e., g N l), Equations ( 5 )  and ( 8 )  
give 

lim P, = 1 - Pdc (Equation ( 8 ) )  ( 2 5 )  

= P,, (Equation (5)). ( 2 6 )  
g-1 

Let be the first-order approximation of the actual 
value of Pdef with buffer size equal to  bs. The approxi- 
mate value of Pdef can be obtained by assuming that  Pdef 
is small. We will justify the accuracy of the approximation 
later. From Equation (7), using Equation ( 2 6 ) ,  we therefore 
have 

( 2 7 )  
( 1 )  

pm = pc = nbsPdEf,bs. 

Furthermore, from Equation (5) and given that Pdef is small, 
we can write 

pCT A + B p i i j , b S l  ( 2 8 )  
where 

2 ( 2  - 2k+l+ k + 2 k  k2)  

k ( 2  - 3 . 2 k  + 3 . 2 k k )  
A =  ( 2 9 )  

M -216yt~k3,  for IC 2 3 ( 3 2 )  

- - k / 9 ,  ( 3 3 )  

and 

bl  = -8 * 2 k  + 8 .  22k  - 6 k  + 25 * 2k k - 24 * 22k k - 
2k2  - 2 .  2kk2 + 13 * 2 2 k k 2  - 3 .  2kk3 - 22kk4; (34)  

bz = k ( 2 - 3 . 2 k + 3 . 2 k k ) 2 .  ( 3 5 )  

Equations ( 2 7 )  and (28) give the following approximate 
expression for the deflection probability: 

( 3 6 )  

( 3 7 )  

From Equations (2),  ( 3 )  and ( 5 ) ,  a necessary condition for 
the expansion of Equation ( 2 8 )  to  be accurate is kP::),,. << 
1. Using Equation ( 3 7 ) ,  we therefore need ribs >> 5klf9. As 
we are considering a ( 2 , k )  shufflenet with k .< 10, we need 
nbS >> 4. With the use of Table 1, given in Equa- 
tion (36) is sufficiently accurate for bs 2 2. The accuracy of 

for bs = 0 (i.e., the hot-potato case which has no = 4) 
and bs = 1 (i.e., the one-buffer case with n1 = 16 in the al- 
gorithm) needs further justification. However, as shown in 
the Appendix, given by Equation ( 3 6 )  is also a suffi- 

ciently good approximation for these cases. Piij,bs given by 
Equations ( 2 9 ) ,  (31) and (36 )  is therefore a good approxi- 
mate solution of Equation (7) for any buffer size bs in any 
( 2 ,  k )  shufflenet under high load. 
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3 

Table 2: Normalized throughput of hot-potato routing (no = 
4) in a (2, k )  shufflenet with different network sizes, N ,  for 
the routing algorithm we consider here. A, is the store-and- 
forward throughput of the shufflenet. 

N Pii)t,o(Eq.(36)) AO Ao/A, 
24 0.1901 0.3476 0.6034 

5.3 Hot-Potato and One-Buffer Cases 
Let &,,[D] be the expected number of hops (expected delay) 
for a packet in a shufflenet with buffer size bs using the rout- 
ing algorithm under high load. It is shown in the Appendix 
that,  for hot-potato routing, 

and for the one-buffer case, 

where T k  is given by 

(39) 

Let A b s  be the normalized throughput of a (2, k )  shufflenet 

given in Equation (36). The normalized throughput is given 
by Equations (1) and (11) with g N 1. Tables 2 and 3 show 
the calculated throughput for the routing algorithm (i.e., us- 
ing ribs = (bs + 1)2bS+2). A, is the normalized throughput 
for store-and-forward routing, the highest throughput per- 
formance achievable in a shufflenet (i.e., Pdef = 0). The 
fractions Ao/A, and A1/A, therefore indicate how well a 
shufflenet performs with respect to the highest achievable 
throughput with buffer sizes 0 and 1 respectively. A simu- 
lation study for the (2,4) shufflenet shows that A0 = 0.2245, 
and A 1  ranges from 0.34 to 0.36, depending on the particular 
routing algorithms [6].  The close agreement between simula- 
tion and our approximation confirms that most of the rout- 
ing algorithms proposed for use in the shufflenet resemble 
the high-performance routing algorithm we consider here. 

From Tables 2 and 3, we see that hot-potato routing 
achieves good performance only for small to median size shuf- 
flenet. As network size increases, provision of only one buffer 

with buffer size bs using the approximate value of Pdef,bs (1) 

0.0479 0.3639 0.8679 
0.0464 0.2685 0.8278 
0.0453 0.2100 0.7992 ' 
0.0443 0.1708 0.7753 
0.0435 0.1427 0.7537 

0.1218 0.7335 0.0428 
0.1055 0.7143 0.0422 

4608 

Table 3: Normalized throughput of a shufflenet with one 
buffer (nl N 16) for the type of routing algorithm we con- 
sider. The throughput of a shufflenet with only one buffer is 
more than 70% of the store-and-forward case. 

in a shufflenet can increase the throughput greatly. In fact, 
the improvement in throughput with only one buffer over the 
hot-potato case can be very impressive. This is generally true 
for the wide range of network sizes considered. Actually, us- 
ing Equations (12), (38) and (39), we can express the ratio 
between the throughput of the hot-potato and one-buffered 
cases as 

Hence, with a routing algorithm under similar routing con- 
ditions we consider here, a shufflenet with only one-buffer 
can enjoy an increase in throughput of more than 45% com- 
pared with that of the hot-potato case. The improvement is 
even more substantial with the increase in network size. The 
throughput of a shufflenet with only one buffer is more than 
70% of the store-and-forward case. 

5.4 

The condition kPj:i,,, << 1 is satisfied when more than one 
buffer is used. Therefore, we can calculate the normalized 
throughput by first-order expansion of Equation (11) in Pde f 
to give, 

More Than One Buffer Cases 

(43) 
(1) 

Abs R3 - P P d e f , b s ,  

where /3 is a constant which can be estimated as follows. A 
first-order expansion of Eb,[D] in terms of  deflection proba- 
bility gives 

Eb,[D] a + b p j i j , b s ,  (44) 

a =  2 (-1 + 2 b  IC) (45) 

w, for k 2 3; (46) 

where 

k ( 2 - 3 * 2 k + 3 3 2 k I c )  

k (2 - 2 * 2' + k + 2k k') 
-1 + 2k k b =  (47) 
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M k 2 ,  for k 2 3. (48) 

Therefore, under high load (i.e., g = l), 

A b s  M 2 a  (from Equation (12) )  (49) 

Comparing Equations (43) and (51) and using Equations 
(46) and (48), we have, 

As ribs >> k / 9  with the network size of interest (i.e., 
k 5 lo ) ,  Equation (37) gives M ( 2 / 3 ) / n b s .  The 
throughput can thLerefore be expressed as (with bs 2 2): 

(53) 

From Equation (18), we have A, P 4/(3(rE - 1)). Therefore, 
for bs 2 2, 

(54) 

2 0.897. (55) 

The last inequality is obtained by observing that k 2 / ( ( l c  - 
1)nb,) is an increasing function in k and a decreasing function 
in nbS (and hence the lowest bound is achieved by substitut- 
ing k = 10 and n2 = 48 using the algorithm being considered 
here). Previous simulations for the (2,  4) shufflenet [6] also 
yielded the values X b s / A ,  of 0.9-0.94 for bs 2 2, which veri- 
fies the result here. Therefore, using a routing algorithm sim- 
ilar to the one we consider in this section, a shufflenet with 
only two buffers can achieve throughput comparable with 
the store-and-forward case. This impressive performance in 
throughput holds for any shufflenet with sizes ranging from 
&nodes to  more than 10 ,000  nodes. 

6 Conclusion 
The performance of a (2, k )  shufflenet under high load and 
low load has been obtained. We have obtained the through- 
put of a shufflenet as a function of network size and buffer 
capacity. Network sizes ranging from as few as 24 nodes 
to  as many as 10,240 nodes have been investigated. We 
have considered general routing conditions under which high 
throughput performance in a shufflenet can be achieved. Us- 
ing a routing algorithm similar to  the algorithm we consider 
here, throughput of a shufflenet with only one buffer can 
be increased by more than 45% over the hot-potato case. 
The improvement in throughput is generally observed foI 
the wide range of network sizes we examined. Furthermore, 

the improvement is more significant with the increase in net- 
work size. We also quantified that a shufflenet with only two 
buffers can achieve more than 90% of the throughput com- 
pared with the store-and-forward routing algorithm. I t  can 
therefore be concluded that in a shufflenet with deflection 
routing, the cost of providing more than two buffers may 
not be justified. The analysis is further verified with our 
previous simulation results. 

We have also presented an approximation method which 
greatly simplifies the analysis of a shufflenet. A simple closed 
form expression for the important parameter, P d e f  (the prob- 
ability of deflection of a “care” packet in one of its “care” 
nodes in the network), is obtained. With this parameter, 
various network performance measures such as throughput, 
average delay and hop distribution can then be derived [7]. 
With the simple approximation of P&f, performance of the 
shufflenet can therefore be obtained as a function of the net- 
work size and buffer capacity. Throughput of a shufflenet 
scales well with both network and buffer sizes if the routing 
algorithm is chosen according to  the general routing condi- 
tions we presented in Section 5.1. 

7 APPENDIX 

A Accuracy of PJt$,bs for the Hot- 
Potato and One-Buffer Cases 

Our expression of Pi:j,bs given in Equation (36) is not only 
accurate for bs 2 2, but also reasonably good for the hot- 
potato (i.e., no = 4) and 1-buffer (i.e., n1 = 16) cases. This 
can be shown as follows. 

Let Pdej be the exact deflection probability obtained by 
solving Equation (7). Let E be the error of Piij,bs such that  

(56) (1) 
P d e f  J‘def,bs + € 7  

where Piij ,bs is given in Equation (36). Then, using 

where [ is a value between and P d e f ,  and Equation 

(58) (1) 
(71, 

pc I= n b s ( p d e f , b s  

we have, 

where Equation (26) has been used. 
We therefore have, 
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