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Abstract-In this paper, we provide an in-depth study of the 
generalization of the well-known shuffle network for ultrafast 
multihop lightwave communication. In the classical definition 
of a shuffle network, Le., N = kpk  where N is the number 
of nodes and k is the number of stages with nodes of degree 
p ,  the realizable values of N are very sparse and many of 
the intermediate values of N are not realizable. We use a new 
definition of the shuffle network, N = n k ,  where n is the number 
of nodes per stage, which was originally proposed as the shuffle- 
ring network in [7]. Based on this definition, we divide the shuffle 
networks into two classes: extra-stage and reduced-stage. We 
derive an exact model and an approximate model of the expected 
number of hops for various network topologies. The results can 
be used to determine an optimal network topology when given 
a value of N .  

Index Terms- Multihop networks, shuffle networks, general- 
ized shuffle networks, expected number of hops, expected number 
of nodes 

I. INTRODUCTION 
ULTIHOP networks with wavelength-division multi- M plexing (WDM) are one possible way to conduct high 

data-rate communication (over 100 Gbk) [l]. The nodes in 
multihop networks are connected by optical fiber which has a 
tremendous bandwidth of tens of terabits per second. Regular 
two-connected network topologies, such as the Manhattan 
street network (MSN) [2] and the shuffle network [3], have 
been considered for possible multihop networks. Specifically, 
the shuffle network, which has a multistage topology, has been 
investigated by many researchers. An N ( =  k p k )  node shuffle 
network is characterized by two parameters p and k ,  and is 
represented as a ( p ,  k )  shuffle network, where p is the node 
degree of the network and k is the number of columns. In 
a ( p ,  k )  shuffle network, p k  nodes are linearly arranged in a 
column, and two adjacent columns are connected in a perfect 
shuffle by unidirectional links. The last column is wrapped 
around to the first column in a cylindrical manner. Packets 
can recirculate through the network until they arrive at their 
destinations. Having all of the nodes arranged in a single 
column is known as a single-stage shuffle exchange network. 
The shuffle network is a regular network, in that each node 
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has the same number of input and output links. The shuffle 
network is also an isotropic network, which means that every 
node sees the network in an identical way, and the spanning 
tree rooted at each node is the same for all nodes. 

One of the most important factors determining the overall 
throughput of a multihop network is the packet routing control 
(algorithm). Deflection routing (also called hot-potato [4] 
routing with no buffer) is a technique that maintains required 
buffer size to be bounded, while providing a compatible 
network performance to the store-and-forward scheme [5] ,  [61. 
If deflection routing is used as a control principle, network 
throughput may be contingent upon network topology. Many 
research results have been reported on the effect of network 
topology variations on the performance of deflection routing 
[7], [8]. In this paper, we examine another way to improve 
network performance through topology variations. A new 
definition of a shuffle network is used, which differs from 
the conventional one. This new definition was originally 
proposed by Krishna and Hajek in analyzing the performance 
of shuffle-ring type networks [7]. In their new definition, 
the tight relationship (i.e., N = kpk for given N )  between 
the number of stages ( k )  and the number of nodes per 
stage (n)  is removed. The network topology becomes more 
flexible by allowing two independent variables whose product 
is N ,  i.e., N = kn. The new definition enables various 
distinct values of N to be realized into a shuffle network. 
We provide an in-depth study of the performance of new 
shuffle networks by showing that different network topologies 
provide us with different network performance; by selecting 
a network topology properly, performance may be improved 
considerably. We concentrate mainly on the analysis and 
derivation of the expected number of hops. Throughout this 
paper, we consider shuffle networks with p = 2 for the 
comparison of various networks, while we derive general 
formulas for arbitrary p .  

The remainder of the paper is organized as follows. In Sec- 
tion 11, we define a generalized shuffle network by comparing 
it with a classical shuffle network. The performance analysis 
of various network topologies is followed in Section 111. In 
that section, we derive an accurate model and an approximate 
model of the expected number of hops for different cases. 
Results are summarized and remarks are presented in Section 
IV. 

11. GENERALIZED SHUFFLE NETWORKS 

One important property of a classical shuffle network is 
its regular structure. However, this requirement always fixes 
a shuffle network as having k stages with p k  nodes at each 
stage. In this classical definition of a shuffle network, feasible 
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numbers of nodes are so sparse that many values of N cannot 
be realized. For example, assuming p = 2, if k = 1 then 
N = 2, if k = 2 then N = 8, if k = 3 then N = 24 
and so on. As can be seen, these numbers are very discrete; 
thus, other given numbers, e.g., N = 16,32, e s , may not be 
realized into a shuffle network. 

To solve this problem, we use a generalization of the shuffle 
network's structure [7]. In the new definition, they eliminate 
the tight relationship between k and n, instead allowing them 
to behave as two independent variables whose product equals 
N .  A generalized shuffle network is defined as follows. 

Definition 2.1: A generalized shuffle network (GSN) is 
constructed with N = kn nodes where k is the number of 
stages and n is the number of nodes per stage. Here, n is the 
power of p .  At each stage, n nodes are linearly arranged, and 
two adjacent columns are connected in a perfect shuffle by 
unidirectional links. 

The stages in the GSN are numbered as 1, 2, . . . , k from 
the leftmost stage to the rightmost stage. Each node at stage 
i ,  1 5 i 5 k -  1, has p links directed to p nodes at the next stage 
i+l. If the nodes are numbered from zero to n- 1 at each stage, 
a node J at stage i is connected to nodes, j ' ,  j'+l, . . . , j'+p- 1 
at stage z +  I, where j' = ( J  mod p"')p, in a perfect shuffle 
[3]. As in the classical shuffle network, the last stage of a GSN 
is connected to the first stage in a wrapped-around manner. 
While a GSN is characterized by four parameters ( N ,  k ,  n , p ) ,  
since we are only investigating the relationship between k and 
n for a given p ,  from now on we denote a GSN simply as 
P"). 

111. PERFORMANCE ANALYSIS OF THE GSN 
In this section, we analyze the performance of the GSN. 

Particularly, we focus on deriving the expected number of hops 
in various network topologies. Since a GSN is characterized 
basically by two parameters k and n, we will determine the 
relationship between these two parameters. Eventually, we 
will ascertain the optimal values of k and n to achieve the 
smallest value of expected hops in the network. Note that in 
the remainder of the paper we do not assume a specific control 
algorithm, but the results can be used with any algorithm 
including store-and-forward and deflection routing. 

Let the variable k' denote the number of stages in a 
conventional shuffle network with n(= p k ' )  nodes per stage, 
i.e., k' = logp n. However, note that in a GSN, k' is a virtual 
number of stages, while k is an actual number of stages. In 
the following analysis, we consider two cases separately, i.e., 
k 2 k' and k < k'. If k 2 k ' ,  we call the networks extra-stage 
shuffle networks, and if k < k', we call them reduced-stage 
shuffle networks. If k = k' ,  it is the conventional shuffle 
network, and is a special case of the extra-stage shuffle 
networks. If a node is met more than once along a path from 
source to destination, it is overlapping. In both GSN cases, 
a source node begins to access every node in a stage after 
k' hops, if overlapping is not considered. We call this point 
a saturation point. After the saturation point in extra-stage 
shuffle networks, the source node encounters the same number 
of intermediate nodes (n) at each stage at each hop, until it 

Fig. 1. (16, 4, 4) extra-stage shuffle network for p = 2 .  

Fig. 2. (16, 2, 8) reduced-stage shuffle network for p = 2. 

meets previously traversed nodes. However, in reduced-stage 
shuffle networks, the overlapping begins to appear before the 
saturation point, which makes the exact analysis of reduced- 
stage shuffle networks very difficult. The extra-stage shuffle 
network (16, 4, 4) is shown in Fig. 1 for p = 2. Fig. 2 shows 
an example of the reduced-stage shuffle networks, (16, 2, 8) 
for p = 2 .  

A. Case k 2 k': Extra-stage Shufle Networks 
In extra-stage shuffle networks, network performance pa- 

rameters are easily calculated due to structural regularity. The 
number of nodes reachable after h hops from a source is given 
in Table I. It is easy to see that k' is the saturation point; after 
IC' hops, the number of accessible nodes is fixed to n, and 
decreases after 5 hops. As a result, the expected number of 
hops is given by 

1 j=O 
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TABLE I 
NUMBER OF NODES REACHABLE AT EACH HOP FOR k 2 k‘ 

h a’# of nodes 
1 P 
2 Pa 

k’ - 1 #’-l 

k’ pk = n  
k’ + 1 n 

k - 1  n 
k n - 1  

k + l  n - p  

k + k’ - 1 n - 

The summations are simply calculated in a closed form by 
substituting k’ with log, n 

1 + nk log, n 

(1) 

By substituting kn with N and by eliminating k ,  the expected 
number of hops can be represented as 

(2)  

Taking the derivative of E{hops}, the optimal value of n to 
make the function minimal can be obtained 

+ -log, e . “ 1  N 
dn ( p -  l)n2 n 

(3) 

Letting (d/dn)E{hops} = 0, the minimal value of n for 
k 2 k‘ can be given as 

= ((& + $) lnp) (4) 

where (x) means the nearest integer of power of two to 2. 
Note that n should always be selected to satisfy k 2 k’; in 
other words, nlog, n 5 N. 

Furthermore, especially if n = p k ,  the above equation can 
be simplified as follows: 

which is the same result as in [3]. In Table 111, some calcula- 
tions of the expected number of hops for different n’s in case 
IC _> IC’ are shown ( p  = 2). The results in Table 111 indicate 
that as the number of stages increases, the expected number 
of hops also increases. This phenomenon matches a simple 
observation of networks, because more hops are needed as the 
number of stages increases, due to the saturation effect of the 
network. As a guideline in selecting a network topology for 
k 2 k’, it is always preferable to keep k as small as possible. 

I 
K+k-1 

Fig. 3. The five parts traversed by a packet--each part is separated by a 
solid line from the adjacent part based on the hops to make. The dotted line 
represents a saturation point: (1) 1 5 h 5 IC - 1, (2) k 5 h 5 2k - 1, 
(3) 2k 5 h 5 Lk‘/klk - 1, (4) [k’/IC]IC 5 h 5 k‘, and (5) 
k ’ f l 5  h 5 k ‘ f k - 1 .  

B. In Case k < k’: Reduced-Stage Shufle Networks 

In a reduced-stage network case, each of the source nodes 
meets a different number of intermediate nodes at each hop 
as it progresses to its destination. This means reduced-stage 
networks are not isotropic, and the spanning trees at each node 
are not identical. Since k < k’, some nodes (stages) may be 
visited more than once until a packet arrives at the saturation 
point (k’) .  This phenomenon is illustrated in Fig. 3. Generally, 
a packet may go through five different parts, i.e., 1 5 h 5 

h 5 IC’ and k’ + 1 5 h 5 I;’ + k - 1.  In k 5 h 5 2h - 1, 
overlapping between stages begins to appear and continues 
until the destination stage. Since every source node encounters 
a different number of intermediate nodes along the way to 
its destination, one possible method is to obtain the expected 
number of nodes at each hop. However, even this becomes 
very complex if the network size increases. 

The relationship between overlapped stages can be better 
seen in an example for k = 2 and p = 2 ,  as shown in Fig. 4. 
In Fig. 4, possible paths from a source node to a destination 
node are represented by a tree. This tree is binary, and the 
source node is a root node. The destination node resides at one 
of the leaf nodes. Since k = 2, the source node (the leftmost 
black node in Fig. 4) may be visited again at the second hop 
in the worst case. If this happens, the gray-colored nodes are 
automatically revisited at the third hop. At the fourth hop, 
the overlapping effect becomes more complicated because the 
nodes visited at the first and third hops appear at the same 
time in an interfered manner. Hence, to make the analysis 
tractable, we derive an approximate model for the expected 
number of hops for h 2 2 k ,  while we derive an exact model 

expected 
number of nodes reachable at each hop is listed in Table 
11. The first part, 1 5 h 5 k - 1, in Table I1 is trivial because 
there is no overlapping until h = k ;  at the hth hop, the 
packet meets ph nodes. The second part, k 5 h 5 2k - 1, 
reflects the overlapping phenomenon between the stages, 
1 5 h 5 k - 1 and k 5 h 5 2k - 1. At the kth stage, 

k - 1 , k  5 h 5 2k - 1 , 2 k  5 h 5 [ k ’ / k ] k  - 1, Lk’/kJk 5 

UP to h = 2k - 1.  
I )  Expected Number of Hops for k < k’ : The 
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TABLE I1 
EXPECTED NUMBER OF NODES REACHABLE AT EACH HOP FOR k < k' 

h # of nodes 
1 P 
2 Pa 

k - I  ,,6-1 

k ( p k  - l ) & p k  + p k q k  
k + l  (pk+l - p ) Q p k  + pk+l f !Y$&k 

(p2k-1 - p k - l )  k Z p k  + p2k-l (n-kPk)k 2 k -  1 
2k 

2k + 1 
{ ( p Z k  - p k )  + (pZk  - p k )  + (pnB PO) + pak}$  = (4pZk - 2Pk - 2 P o ) a  

(4p2k+l - zPk++'  - 2p1)1. 

4k - 1 ( ~ ~ 4 k - l  - 4p3k-1 - 4p2k-1 - 4pk-l).I. 
8 

k ' + k - l  

one is a previously visited node at the first stage as a source 
node, while p' - 1 nodes are newly visited. Hence, we can 
derive an expected number of nodes to visit at the kth hop as 
(P' - l ) ( P  / N ) k  + p ' (n  - p ' / N ) k  for all N nodes. More 
specifically, among n source nodes at the first stage, p' nodes 
meet (p' - p O )  nodes at the ( k  + 1)th stage after k hops, and 
(n  - p k )  nodes at the first stage meet p k  nodes at the ( k  + 1)th 
stage in a regular manner. 

In 2k 5 h 5 3k - 1, overlapping becomes more complex 
and the previous two parts, 1 5 h 5 k - 1 and k 5 h 5 2k - 1, 
have a simultaneous effect on 2k 5 h 5 3k-  1. When h = 2k ,  
the source node at the first stage may meet itself again, as it 
may when h = k .  A packet meets a different number of nodes 
at h = 2k depending on the source node. In other words, a 
packet from a certain source node may meet I I  = p2' nodes, 
and other packets from different source nodes may encounter 
I ,  = p 2 k  - PO, 1, = p2' - p',  14  = p Z k  - p' - p0 nodes, 

respectively (see Fig. 4). Let p?. be a probability that a packet 
will meet I, nodes at h = 2k hops. Then, the expected number 
of nodes at h = 2k hops can be computed as 

4 

E{nodes}h,zk = I,p, 
2'1 

where the probability p, is given as seen in the equation at the 
bottom of the page. In general, at the jkth hop, 2k 5 j k  5 
[ k ' / k J  k - 1, a packet may meet I? = (i)  different sets 
of intermediate nodes depending on the source node position. 
Similarly, p, can be defined as a probability that a packet meets 
I, nodes at h = j k  hops where 1 5 2. 5 I?. 

The preciseness of modeling implies all of the probabilities 
should be calculated accurately in order to obtain the expected 
number of hops. However, as [ k ' / k ]  increases, obtaining the 
exact value of p?. becomes more and more complex because as 
a packet propagates further to the following parts, the previous 

number of source nodes from which a packet meets I, nodes at h = 2k hops 
N P z  = 
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Source 
node 

Nodes visited 
twice 

0 
0 
0 
0 

" 8  

0 
0 
0 
0 

Fig. 4. Tree representation of possible paths for IC = 2 and p = 2. 

parts affect the present part simultaneously. (Furthermore, for 
example, the third part, 2k 5 h 5 Lk'/kJ - 1, may be 
composed of multiple stages of k . )  One possible way to an 
approximate modeling is to assume that all of the probabilities 
are equal, i.e., p z  = p .  Table I1 shows an approximate model, 
assuming equal probabilities in p z .  For example, at 2k 5 h 5 
3k - 1, pz's are set to be i. Similarly, at 3k 5 h 5 4k - 1, pz's 
are set to be i, and so on. 

At [ k ' / k ] k  5 h 5 k', a similar approximation is applied 
up to h = k', because the network begins to saturate at 
h = IC'+ 1. If a network reaches a saturation point (the last part 
of Table II), the number nodes accessible at each hop cannot 
exceed n. Based on Table 11, the equation for the expected 
number of hops for reduced-stage shuffle networks, multiplied 
by ( k n  - I), is derived as follows: 

( k n  - 1)E{hops} 

1 ~IC'/kj- l  IC-1 

i=2 j=o h=O 

Letting cr = l k ' / k]  where k' = crk + p, this equation can be 

written into a closed form as follows: 

n ( k  - l ) ( k  - 2 )  
2 + (k' + l ) ( k  - l ) n  + 

- - p a k F ( k  1 - l ) { ( k ' +  1)A(k  - 1) 2 
(7) + B(k - 1) - ( k  - 1)p'"-l} 

where A($),  B ( z ) ,  C(z), O(z), E ( z ) ,  and F ( z )  are defined as 

k" - 1 

p k  - 1 

x-1 

D ( z )  = C p j k  = p- 

E ( z )  = C j k p j k  
j = O  p k  - 1 ( p k  - 1 ) 2  

j = O  

x-1 
- kxpk" - kpk(pk" - 1) 

x - 1  
F ( z )  = X p - k j  - p-IC" - 

p - k  - 1 
j = O  

Especially if k < k' < 2k ,  the saturation occurs in 
k < h < 2k ,  and destination nodes lie in 2k 5 h 5 3k - 1. 
In this case, a much simpler expression can be derived 
from Table 11. The expected number of hops, multiplied by 
(kn - 1), is represented as 

(kn - 1)E{hops} 
k-1 k ' - k  r 

= j p j  + ( k  + j )  1 (p"j - p j )  
j=1 j = O  L 
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TABLE I11 
EXPECTED NUMBER OF HOPS FOR DIFFERENT 1 Z ’ S  

11 n=2 I 4 1  8 1  16 I 32 I 64 I 128 I 256 I 512 

128 I( 32.252 I 16.882 I 9.701 I 6.614 I 5.635* I 5.380* I 5.512* I X I X 

160 I/ 40.252 I 20.881 1 11.698 I 7.610 I 6.069 I x 1 X I  X I  X 

256 11 64.251 I 32.878 I 17.694 I 10.604 I 7.561 I 6.923* I 6.708* I 6.834* I x 
384 11 96.251 I 48.877 I 25.691 I 14.601 I 9.556 1 7.536 I 7.892” I X I X 

I, I I I I I I I I 

512 11 128.250 I 64.877 I 33.691 I 18.599 I 11.554 I 8.532 I 8.031* I 7.648* I 7.965* 
?Numbers marked with * correspond to reduced stage shuffle networks. 
$Numbers in boldface correspond to classical shuffle networks. 
++Each square marked with x is not feasible. 

h 

8 

2 

D - - - -0 Analysis f - Simulation .................................................................................... t 
N=256 

..................................................... ............................ - D - -  

p-‘ p--- N=128 .............................................. 

-. ................. ........................................................ 
N=32 

N=16 
.................................................................................... 

I I I I I I C -  
3 4 5 6 7 8 log 2“ 

Number of nodes per stage (in log scale) 

Fig. 5. Comparison between analysis and simulation results in reduced-stage shuffle networks. 

1 n - (k’ - k + 1 ) p k  
N + / k p k + j  

k’-k-1 

+ (2k  + j ) ( n  - Pk+J - P J ) .  (8) 
J = O  

2) Discussions: Table I11 shows some of the results of 
the expected number of hops for different n’s. The network 
topology for k = 1 corresponds to a single-stage shuffle 
network. Note that the expected number of hops in a single- 
stage network is not minimal compared to multiple stage cases, 
even though a single-stage network has a minimum diameter 
in a class of shuffle networks. This phenomenon originates 
from the fact that there are many node overlappings in a 
single-stage network, which results in a low efficiency. The 
efficiency of a single-stage shuffle network can be improved 

by considering different connections between some nodes to 
avoid self-loops which causes a lot of node overlapping. For 
example, Maxemchuk considered an alternative architecture of 
single-stage networks in [5] where node 0 connects to nodes 
1 and ( N  - l), and node ( N  - 1) connects to nodes 0 and 

To substantiate the validity of the equal probability as- 
sumption in reduced-stage shuffle networks, simulation was 
conducted by measuring the actual number of hops taken by 
a test packet for various destinations. Fig. 5 shows that the 
approximate model, based on the equal probability assumption, 
predicts the expected number of hops fairly well, and matches 
simulation results. 

( N  - 2). 

IV. CONCLUSION 
In this paper, we analyzed different topologies of shuffle 

networks. Unlike the classical definition of a shuffle network, 
i.e., N = k p k ,  we consider a generalization of the definition, 
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