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Abstract 
A generalization of the  well-known shu f l e  network 

i s  proposed f o r  multihop lightwave communication. In 
the classical definition of 4 shu f l e  network,  i.e., N = 
kpk where N i s  the number of nodes and k i s  the n u m -  
ber of stages w i th  base p ,  the  realizable values of N 
are veay discrete and m a n y  of the  intermediate values 
of N are no t  ,realizable. In this paper, we propose 4 
new definition of a shu f l e  network as N = n k  where 
n i s  the numbeir of nodes per stage wi th  base p .  Based 
on  this new definition, we  divide the shu f l e  networks 
in to  two classes: extra-stage and reduced-stage. S tudy  
results can be used t o  determine a n  optimal network 
topology when given 4 value of N .  

1 Introduction 
Multihop networks with wavelength division mul- 

tiplexing have been considered as a possible way for 
high data-rate communication (over 100 Gbztslsec) 
[l]. A bunch of nodes in multihop networks are con- 
nected by optical fiber, which has a tremendous band- 
width of tens (of terabits per second. In telecommuni- 
cation, each of the nodes may be a user or a station; in 
computer communication, each of the nodes can be a 
workstation or a supercomputer that  is physically dis- 
tributed but sharing some sources such as memories or 
118. 

Regular two-connected network topologies, such as 
the Manhattan Street Network (MSN)[2] and the shuf- 
fle network[l], have been considered for possible mul- 
tihop networks. A MSN has N = n2 nodes, where n is 
even, that are arranged in n rows and n columns con- 
nected by unildirectional links in a grid with adjacent 
rows and coluinns having opposite directions. Efficient 
routing algorithms for the MSN are also developed (for 
example, in [S.]). However, the proposed routing tech- 
niques are somewhat complicated and are not suitable 
for optical ndworks, which require information to  be 
processed as simply as possible. 

On the other hand, the classical shuffle network has 
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a multistage topology, which has been exteiisively in- 
vestigated in computer and communication communi- 
ties. An N ( =  k p k )  node shuffle network is character- 
ized by two parameters p and k ,  and is represented 
as a ( p ,  k )  shuffle network, where p is the base of the 
network and k is the number of columns. In a (p,H)  
shuffle network, pk  nodes are linearly arranged in a 
column, and two adjacent columns are connected in a 
perfect shuffle by unidirectional links. The last column 
is wrapped around to  the first column in a cylindrical 
manner, and packets can recirculate through the net- 
work until they arrive at their destinations. Having 
all of the nodes arranged in a single column is known 
as a single-stage shuffle exchange network. However, 
previous research shows that  the classical shuffle net- 
work outperfoicms the single-stage shuffle network (for 
example, in [Ii]). Both of the MSN and ,the shuffle 
network are regular networks, which means that from 
every node, thLere exists a complete spanning tree. In 
a regular network, every node sees the network in an 
identical way, and the spanning tree rooted a t  each 
node is the saime for all nodes. 

In this paper, we investigate the effect, of differ- 
ent network topologies on network performance. More 
specifically, we propose a new definition of a shuffle 
network, which differs from the conventional one. In 
our new definition of a shuffle network, we iremove the 
tight relationship (i.e., N = kpk for a given N >  between 
the number of' stages ( k )  and the number of nodes per 
stage (n). The network topology becomes more flexible 
by allowing two independent variables whose product 
is N ,  i.e., N = k n .  The new definition enables var- 
ious distinct values of N to  be realized into a shuffle 
network. We show that different network topologies 
provide us with a different network throughput; by se- 
lecting a network topology properly, performance may 
be improved considerably. Throughout this paper, we 
concentrate on shuffle networks with p =: 2 for the 
comparison and simulation of various networks, while 
we derive general formulas for arbitrary p .  

The remainder of the paper is organized as follows. 
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In  Section 2, we define a generalized shuffle network 
by comparing with a classical shuffle network. The 
performance analysis of various network topologies is 
followed in Section 3. In that section, we derive an 
accurate model and a n  approximate model of the ex- 
pected number of hops for different cases. Analytical 
models are verified through computer simulations in 
Section 4. Results are summarized and remarks are 
offered in Section 5. 

2 Generalized Shuffle Networks 
One important property of a classical shuffle net- 

work is its regular structure. However, this require- 
ment always fixes a shuffle network as having IC stages 
with p k  nodes at each stage. In this classical definition 
of a shuffle network, feasible numbers of nodes are so 
discrete many values of N cannot be realized. For ex- 
ample, assuming p = 2, if k = 1 then N = 2, if k = 2 
then N = 8, if k = 3 then N = 24 and so on. As can 
be seen, these numbers are very discrete; thus, other 
given numbers, e.g., N=16, 32, e-., may not be real- 
ized into a shuffle network. 

To solve this problem, we propose a generalization 
of the shuffle network’s structure. In our new defini- 
tion, we eliminate the tight relationship between IC and 
n, instead allowing them to behave as two independent 
variables whose product equals N .  A generalized shuf- 
fle network is defined as follows. 

Definition 2.1: A generalized shuffle network 
(GSN), is constructed with N = kn nodes where IC is 
the number of stages and n is the number of nodes per 
stage. Here, n is the power of p .  At each stage, n nodes 
are linearly arranged, and two adjacent columns are 
connected in a perfect shuffle by unidirectional links. 

The stages in the GSN are numbered as I,  2, s .  .r k 
from the leftmost stage to  the rightmost stage. Each 
node at stage i, P 5 i 5 k - 1, has p links directed 
to p nodes at the next stage i + 1. If the nodes are 
numbered from 0 to  n - 1 a t  each stage, a node j a t  
stage i is connected to  nodes, j’, j’ + 1, + . ., j ’  + p - 1 
a t  stage i + 1, where j’ = ( j  modpk’- l )p ,  in a per- 
fect shuffle[3]. As in the classical shuffle network, the 
last stage of CSN is connected to  the first stage in a 

wrapped-around manner. 

3 Performance Analysis of the GSN 
In this section, we analyze the performance of the 

GSN. Since a GSN is characterized basically by two 
parameters k and n, we will focus on determining the 
relationship between the two parameters. Eventually, 
we will find out the optimal values of k and n to  achieve 
the highest throughput of the network. I t  is noted 
that in the remainder of the paper we do not assume a 

Figure 1: (16, 4, 4, 2) extra-stage shuffle network 

Figure >!: (16, 2, 8, 2) reduced-stage shuffle network 

specific flow control algorithm, but  the results can be 
used with any algorithm including store-and-forward 
and deflection routing. 

Let the variable k’ denote the number of stages 
in a conventional shuffle network with n (= p““) nodes 
per stage. However, note that  in a GSN, k’ is a vir- 
tual number of stages, while k is the actual number 
of stages. In the following analysis, we consider two 
cases separately, i.e., k’ 5 k and k’ > I C .  If k: 2 k’, we 
call the networks as extra-stage shuffle networks, 
and if k < k’, we call them as reduced-stage shuf- 
fle networks. If k = I C ’ ,  it is the  conventional shuffle 
network, and is a special case of the extra-stage shuf- 
fle networks. If a node is met more than once along 
a path from source to  destination, it is overlapping. 
In both GSN cases, a source node begins to  access 
every node in a stage after k’ hops, if overlapping is 
not considered. We call this point a saturation point. 
After the saturation point in extra-stage shuffle net- 
works, the source node encounters the same number 
of intermediate nodes (n) a t  each stage at each hop, 
until i t  meets previously traversed nodes. However, in 
reduced-stage shuffle networks, the overlapping begins 
to  appear before the saturation point, which makes the 
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exact analysis of reduced-stage shuffle networks very 
difficult. The extra-stage shuffle network (16, 4, 4, 2) 
is shown in Fig. 1. Fig. 2 shows an example of the 
reduced-stage shuffle networks (16, 2, 8 , 2 )  shuffle net- 
work for N = 36. We now analyze the performance of 
a GSN in detail. In each case, we derive the expected 
number of hop:; in various network topologies. 

3.1 In Case IC' 5 IC: Extra-stage Shuffle 
Networks 

In extra-stage shuffle networks, network perfor- 
mance parameters are easily calculated due to the 
structural regularity. The number of nodes reachable 
after h hops fro" a source is given in Table 1 .  It is easy 
to see that k' is the saturation point; after k' hops, the 
number of accessible nodes is fixed to  n, and decreases 
after k hops. A s  a result, the expected number of hops 
i s  given by: 

The summations are simply calculated in a closed form 
by substituting k' with logpn: 

+ n k l o g p n  . 
n - 1  n k  E { h o p s )  = -- - k 2  - k -  - - 1 k n - 1  in 2 p - 1  2 

(1) 
By substituting k n  with N and by eliminating k ,  the 
optimal value of n to  make the function minimal can 
be obtained: 

d N2 N 
--E{hops) = - -- - 
dn N ! I  [ %n2 ( p - l ) n 2  n 

(21 
Letting &E(,Rops) = 0, the minimal value of n for 
k' 5 k can be given as: 

1 N  
n = (lnp(- + 5)) 

P -  1 ( 3 )  

where (z) means the nearest integer of power of 2 to  x. 
It is noted that  n should always be selected to satisfy 
k' 5 k; in other words, nlogpn 5 N .  

Furthermore, especially if n = p k ,  the above equa- 
tion can be simplified as follows: 

(4) 
N ( 3 k  - l ) ( p  - 1 )  - 2k(pk  - 1) E {  hops)  := 

2(P - 1)(N - 11 

Table 1: Number of nodes reachable at each hop for 
Be' 5 k 

h $# of nodes 
- 1  17 

2 p" 

k' - 1 &-I 

k' pk' = n 
k' + f n 

k - 1  n 
k n - 1  

k + l  n - p  

k + k ' - 1  n - p k r - '  

which is the same result as in [3]. In Table 2, some 
calculations of the expected number of hops for differ- 
ent n's in case k' < k (without *) are shown for p = 2. 
The  results in Table 2 indicate that as the number 
of stages increases, the expected number of hops also 
increases. This phenomenon matches a simple obser- 
vation of networks, because more hops are needed as 
the number of stages increases. This is due to  the satu- 
ration effect of the network. As a guideline in selecting 
a network topology for k' 5 k ,  it is always preferable 
to keep k as small as possible. 

3.2 In Case k' > k :  Reduced-stage Shuffle 
Networks 

In a reduced-stage network case, each of the source 
nodes meets a different number of intermediate nodes 
at each hop a.s it progresses to its destination. This 
means reduced-stage networks are not regular, and the 
spanning trees at each node are not identical. Since 
k' > k ,  some nodes (stages) may be visited more than 
once until a packet arrives at the saturation point (k ' ) -  
Generally, a packet goes through five differen! parts, 
i.e., 1 5 h 5 k - l >  k 5 h 5 2 k - l , 2 k  5 h 5; L$lk- l ,  
L:] k 5 h 5 A:' and k' + P 5 h 5 k! + k - I.. The first 
part, 1 5 h 5 k - 1 ,  is trivial because there is no over- 
lapping until h = k; at the h-th hop, the packet meets 
p h  nodes. 

The second1 part, k 5 h 5 2k - 1, reflects the over- 
lapping phenomenon between the stages, 1 '5 h 5 k - 1 
and k 5 R 5 2k - 1. In this part, overlapping between 
stages begins to  appear and continues until the des- 
tination stage. At the k-th stage, one is a previously 
visited node at the first stage as a source node, while 
p k  - 1 nodes are newly visited. Since every source node 
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encounters a different number of intermediate nodes 
along the way to the destination, one possible way is 
to  obtain an expected number of nodes at each hop. 
However, even this becomes very complex if the net- 
work size increases. Hence, in order to  make the anal- 
ysis tractable, we derive an approximate model for the 
expected number of hops for R 2 2%, while we de- 
rive an exact model up  to  h = 2k - l. The expected 
number of nodes to  visit a t  the k-the hop can be de- 
rived as ( p k  - l)Xpk + p k q k  for all N nodes. More 
specifically, among n source nodes a t  the first stage, 
pk  nodes meet (pk - p o )  nodes at the (k + 1)-th stage 
after k hops, and ( n - p k )  nodes a t  the first stage meet 
pk nodes at the (k + 1)-th stage in a regular manner. 

The preciseness of modeling implies that all of the 
probabilities for an  expected number of nodes a t  each 
hop should be calculated accurately in order to  obtain 
the expected number of hops. However, as I$] in- 
creases, obtaining the exact values of the probabilities 
becomes more and more complex, because as a packet 
propagates further to  the following parts, the previous 
parts affect the present part simultaneously. (Further- 
more, for example, the third part, 2k < h < [$] - 1, 
may be composed of multiple stages of k.) One pos- 
sible way to  an approximate modeling is to  assume 
that all of the probabilities are equal. For example, 
at 2k 5 h 5 3k - 1, the probabilities are set to  be $. 
Similarly, at 3k 5 h 5 4k - 1, the probabilities are set 
to  be f ,  and so on. 

At [%1& 5 R 5 k', the same approximation is ap- 
plied up to  h = k', because the network begins to 
saturate at h = + 1. If a network reaches a satu- 
ration point, the number nodes accessible a t  each hop 
cannot exceed n. It will be shown that the approx- 
imate model, based on equal probability assumption, 
predicts the expected number of nodes a t  each hop 
fairly well, and matches simulation results. Based on 
the assumption, the equation for the expected number 
of hops for reduced-stage shuffle networks, multiplied 
by (kn - l), is derived as follows: 

(kn - l)E{hops} 

3.2.1 Discussions 

Table 2 shows some of the calculation results of the 
expected number ofhops for different n's. The network 
topology for = f corresponds to  a single-stage shuf- 
fle network. Note that the expected number of hops 
in a single-stage network is not minimal compared to  
multiple stage cases, even though a single-stage net- 
work has a minimum diameter in a class of shuffle net- 
works. This phenomenon originates from the fact that 
all nodes in the single-stage network are care nodes, 
which results in a low efficiency. In general, the frac- 
tion of don't care nodes in reduced-stage networks de- 
creases as k decreases. (Note that  extra-stage shuffle 
networks have a high fraction of don't care nodes.) 

4 Simulation 
Our results were verified through a computer simu- 

lation conducted for the N = 16 case. As expected, in 
the 16-node case, the (16, 2, 8, 2) GSN shows the best 
network throughput. We also compared the results 
with the 16-node MSN. The comparison shows that the 
MSN has an intermediate network performance when 
compared to  various network topologies. All of these 
comparisons are shown in Fig. 3, where the horizon- 
tal axis indicates the interval between two generated 
packets at each node and the vertical axis represents 
the total number of packets that  arrive safely a t  their 
destinations at each time slot. The results indicate 
that during low traffic, all types of networks show sim- 
ilar throughput rates, while during high traffic, various 
networks show significantly different throughput rates 
(more than 50%). 

5 Conclusions 
In tbis paper, we analyzed different topologies of 

shuffle networks. With the new definition, it is possi- 
ble to  realize a shuffle network in a variety of different 
ways with a given N .  We show that  different network 
topologies provide us with different network through- 
put; by selecting a network properly, significant per- 
formance improvement can be achieved. The reduced- 
stage shuffle networks have a shorter network diameter 
and offer a less number of expected hops, but experi- 
ence a lot of overlapping as k becomes smaller. On 
the other hand, the performance of extra-stage shuffle 
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Table 2: Expected number of hops for different n9s 

t Numbers marked with * correspond to reduced-stage s h d e  networks. 
$ Numbers in bold face correspond to classical s h d e  networks. 
$t Each square marked with x is not feasible. 

networks becomes worse as k becomes larger due to  
the long diameter. Study results in this paper can be 
used to  determine an optimal network topology when 
given a value of N ,  by trading off the complexity and 
performance of a network. 

Comparlson of Varlous Networks 
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Figure 3: Comparison of various network topologies 
for N = 16 
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