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Abstract

In this paper we conduct a performance analysis
for the adaptive fixed assignment protocol (AFAP)
presented in [8]. AFAP is a simple mixture of inter-
leaved TDMA (I-TDMA*) and interleaved slotted
ALOHA (I-SA) protocols [1]. However, the analy-
sis of AFAP is complicated due to the periodicity
of - TDMA* and the queue interaction in I-SA. We
model an arbitrary user-to-channel queue with a pe-
riodic Markov chain. The influence of other queues
is modelled through the transition probabilities of
this chain.

Key Words: Delay Analysis, Slotted ALOHA,
Optical Star Network, Periodic Markov Chain.

1 Introduction

In our recent work [7, 8] we proposed a new pro-
tocol for a single-hop multichannel optical network,
AFAP. Each receiver is tuned to a fixed channel,
and channels are assigned to transmitters accord-
ing to a scheduling scheme. A user declares the use
of its time slot through the control channel. Each
control packet is C bits long, where C is the num-
ber of channels. A channel which is not used by the
assigned user will be made available to other users
based on an ALOHA type random access scheme.
If two or more users contend for the same chan-
nel, they are forbidden to access it again until their
scheduled time slots arrive. AFAP can achieve both
the low latency of ALOHA, and the near 100% ef-
ficiency of TDMA.

Several authors [1, 2, 6, 9] analyze slotted
'ALOHA with a finite number (M) of buffered users.
' They all resort to an iterative procedure to obtain

the system steady state probabilities. In the case of

infinite buffers, the system is accurately modelled
by the M-dimensional Markov chain whose coordi-
nates take on an infinite number of values. In order
to simplify the analysis, Saadawi and Ephermides
introduce the system and the user Markov chains.
The system Markov chain models the number of ac-
tive and backlogged users, whereas the user Markov
chain models the number of packets in an arbi-
trary buffer. Transition probabilities of the system
Markov chain depend on the steady state probabil-
ities of the user Markov chain and vice versa. Yao
and Yang treat each buffer as an M/G/1 queueing
system whose service time distribution depends on
the steady state probabilities of the system Markov
chain. In the case of finite buffers (with size of B
cells), the system should be modelled by a Markov
chain with BM states. Bogineni et al. model the
I-SA protocol by using only the user Markov chain
with B states. The transition probabilities of this
chain depend on its own steady state probabilities.
We will adopt a similar approach in our analysis.

We model an arbitrary user-to-channel queue
with a periodic Markov chain of period M. This
queue interacts with queues associated with the
same channels due to the collisions. Also, the
marked queue interacts with queues associated with
the same user whose transmitter may serve just one
queue at a time. All queues exhibit the identical
statistical behavior which might be shifted in time.
Therefore, the transition probabilities of the asso-
ciated periodic Markov chain depend on its con-
ditional state probabilities as will be explained in
more detail later on. Our protocol is exactly mod-
elled by a periodic Markov chain with M -BM states.
However, our approximate model of AFAP uses the
periodic Markov chain with M - B states only.

The paper is organized as follows. In section 2 we
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define AFAP in a manner similar to [8]. In section
3 we develop the periodic Markov chain model and
the iterative procedure for calculating the steady
state probabilities. Comparison of analytical and
simulation results is given in section 4. Section 5
summarizes the paper.

1.1 AFAP Description

We change slightly AFAP in order to simplify the
analysis while keeping its performance the same.
The AFAP can be defined with the following steps:

o (k—1)th time slot: User (k—j~%) mod M sets
the jth bit of the control packet to 1 if it has a
packet for the receiver tuned to channel 7, not
including scheduled packets that are being sent
in the (k — 1)th time slot.

(k —1)th time slot: Users learn which channels
will be reserved in the kth time slot. The rest
of the channels will be free for access.

kth time slot: Scheduled users transmit their
packets.
back-off state, it enters the transmit state.

kth time slot: Other users select randomly free
channels to which they will send their packets.
If a packet collides, the corresponding queue
enters the back-off state. Packets scheduled for
the (k 4+ 1)th time slot are not transmitted in
the ALOHA fashion.

Note that there is a change of the fixed scheduling
scheme according to which the transmittiers tune
to the channels. In [8] we adopted the - TDMA*
assignment scheme. Figure 1 gives an example of
a new assignment scheme for the case of M = 8
users and C = 4 channels. Also, each user chooses
which free channel to access in a random rather than
round-robin fashion. Neither of these changes influ-
ences the AFAP performance, but both are simpler
to incorporate into our model.

2 Analysis

2.1 Periodic Markov Chain Model

We associate with each queue a Markov chain
{Sk, B > 1}, where Sy is a triplet (X, Y%, Zk).
Here X is the number of packets in the queue at
the kth time slot; Yr = 1 if the queue cannot be

If the scheduled queue was in the
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Figure 1: Assignment of channels (entries in the
table) during the time slots of a frame in AFAP.
The case M = 8 and C = 4 is shown.

served because of a recent collision, and Y = 0
otherwise; and Z is the elapsed time from the last
scheduled time slot. In order to evaluate perfor-
mance measures such as channel throughput and
average packet delay we first need to compute the
conditional state probabilities defined by:

7(il) = im P(Xx =i, Y% =ilza=1), (1
where 0< i< B, 0<j<1l,and 0<I< M -1.

Let 3 denote the probability of a packet arrival; o,
the probability that a scheduled user has a packet
to send; ¢(I), 1 < I < M — 1, the probability of
selecting a given queue for Z; = [; and y(I), 1 <
[ < M -1, the probability of successful transmission
for Zy = l. Then the transition probabilities of the
Markov chain {Sk, k > 1} are given by the following
expressions:

P(0,0,0),(1,0,1) = 1 — P(0,0,0),(0,0,1) = B>
P(i,0,0),(,0,1) = 1 = P(3,0,0),(i~1,0,1) = B
P(B,0,0),(B,01) = 1= P(B,0,0),(B-1,01) = B

where 1< ¢ < B - 1;

P(0,0,0),(1,04+1) = 1 = P(0,0,0),(0,0,041) = B>
PO G-1,00+1) = (1= B)(1 - oyy(1),
PEoN G041 = (L= B) o+ (1= o)(1-c(l)))
+ B(L = o)r(D),
P00, (i+1,00+1) = Blo + (1= o)(1 - ¢(1))),




P00 (ia41) = (1= B)(1 = a)(c(l) - (1)),
PO (+1,10+1) = B(L— o)(e(l) - y(1)),
P(BoJ),(B-104+1) = (1= B)(1 —o)y(1),
P(Bo1)(Bo+1) = ¢+ (1= 0o)(1-¢(l))
+ B(1 - o)y(1),
P(Bo),(B1i+1) = (1= o)e(l)— (1)),

where 1 <I< M -1land1<i< B-1;
PG, (+1,1,041) = 1 — P(i1,0),(s,1,0+1) = B,
PB10),(BL+1) = 1,
Where2§l'§M—2a.ndl_<_i§B—1;
P(3,1,M~1),(:+1,00) = 1 — P(:,1,M-1),(1,0,0) = B,
P(B,1,M-1),(B,10) = L, (2)

where 1 <7< B - 1.
Therefore, the transition matrix of this Markov
chain has the following structure [5]:

0 Py O 0
0 0 P, 0
P o= ,(3)
0 0 0 - Parg)m-
P(M—-l),O 0 0 M 0
and:
P, 0 0
R A DO
0 0 Par_1
where:
P;=Prit1modts -+ - Pro1mod My, (5)

with 0 < 1 < M — 1. The conditional probability
vector m; = {7(3,5|)) 0 <1< B, 0<j <1} can
be calculated as follows [4]:

m=1E-I+P)7, (6)

where 0 < I < M — 1,1 is a column vector of all
ones, I is the identity matrix, and E is a matrix of
all ones.

Unknown parametersin (2), o, ¢(l), v(I), 1 < I <
M —1, can be expressed in terms of the conditional
probabilities defined in (1). The following approxi-
mate expressions are derived in the appendix.

The probability that a scheduled queue is not
empty is given by

o =1-m(0,00). | (7)

The probability that the marked user will decide to
transmit a packet over a given channel is approxi-
mately given by.

1-014—0modr
c(l)= {{=0m dB} - ,» (8)
1+(1-0) Els_nlSMd—l >i=1 7(3,0]n)
_n!;? r

wherel <I< M-1,7= M/C is an integer, and 14
is the indicator function of event A. Equation (8)

incorporates the coupling of the queues associated
with the marked user.

The probability of successful transmission is ap-
proximated by:

M-1 B
() =e(l)- I_I (1 —¢(m)- _Z?r(i,Olm)> » (9)

m#l
where 1 <1 < M - 1. Equation (9) incorporates
the effect of collisions in AFAP.
2.2 -Iterative Procedure

We find the conditional probabilities in (1) using
the iterative procedure:

e Step 1: Initialize o, c(), v(I), 1 <1< M - 1.

o Step 2: Calculate transition probabilities ac-
cording to (2).

o Step 3: Calculate conditional state probabili-
ties according to (5) and (6).

e Step 4: Calculate new values for o, c(), y({),
1 <1< M~ 1, according to (7), (8), and (9).
If they do not differ from the previous values
by more than a specified €% then stop. Else,
go to Step 2.

3 Results

The probability that a packet is sent from a partic-
ular queue is given by

1 M-~1 B

Se= ¢ (a -0 7(k)Z7r(z’,0|k)> .
k=1 i=1

(10)

668




The average number of packets in the queue is:

M~1 B

Z Zz (¢,1]k) + = (i,0[k)).  (11)

k—O =1

The network throughput is simply given by M-C-
Sgq, and the average packet delay is given by N/S,.
In Figure 2, we plot the average packet delay ver-
sus network throughput, and confirm a very good
agreement of analytical and simulation results.

4 Summary

In this paper we analyze AFAP performance,
which was previously assessed only through simu-
lation. Direct Markov chain analysis would involve
too large a number of states, and would not be
amenable to obtaining a solution even for a small
number of users and buffer size. Therefore, we in-
troduce a Markov chain that models an arbitrary
queue in the system. Its interection with other
queues is modeled only through the Markov chain
transition probabilities. Since other queues are rep-
resented by the same Markov chain model, their in-
fluence on the given queue is a function of its steady
state solution. In order to obtain this solution, we
resort to an iterative procedure. We compare the

analytical and simulation results, demonstrating a .

good agreement.
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Appendix

Theorem: If Zy =1, 1 <1< M — 1, in the Markov
chain for a marked queue, then Zy = [ mod r for the
other queues associated with the same user, where
r=M/C.

Proof: We assume that the ratio r = M/C is
an integer, and channel j is assigned to user ¢ =
(k —%-7)mod M in the kth time slot. Therefore,
the slot (¢ + 7 - 7) mod M of a frame is assigned to
the user i-to-channel j queue. And, for the user
i-to-channel j queue, Zy = (k—%—j-r)mod M,
whereas for the user i-to-channel j' queue, Z; =
(k—1i—3"-r)mod M.
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We then have that

(Zy, — Z) mod r = ((5' —j) - r mod M) mod r
= ((3' = ) - r mod r) mod M
:O,

since M = O0Omod r. O
Corollary: If Z; = 0 mod ! then the marked user
is scheduled to transmit over some channel.

From the above theorem we find the average

number of non-empty queues associated with the
marked user (excluding the marked queue) to be

> Z'zr(z 0{n).

1<n<M—1 =1
n=lmodr
n#l

The average number of free channels for which the
marked user has packets to send (given that the
queue is non-empty) is

B

14+ (1-o0) Z Zr(i,0|n).

1<n<M~1 §=1
n=lmodr
n#El

The p robability that the marked user sends a
scheduled packet is

-0 ',1{l=0mod‘r}'

Finally, the probability that the marked user will
decide to transmit a packet over the given channel
is given by

l-0- 1{l=0mod.1'}
c(l)= , (1
O=17as ?) Srgnasis S8 75 01m) (12)

where 1 <I< M - 1.

The probability that the marked user successfully
transmits over a given channel is equal to the prob-
ability that it chooses to transmit a packet over this
channel and no other users do so. The probability
that a user with Z; = m does not access the channel
in question is given by

B
(1 ~¢(m)- Z'lr(i,0|m)> .

2=

Note that the Markov chains that model queues as-
sociated with the same channel take on all values
of Zj except the value [. Hence, the probability

of successful transmission is given by the following
expression:

M-1 B
(1) =c(t)- I (1 —¢(m)- Zﬂ*(i,Olm)) , (13)

m=1 =1

mgEl

where 1 <[ < M - 1.
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