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Abstract 
This  paper describes the performance analysis of 

a class of two-connected multihop shuf lenets ,  known 
as generalized s h u f l e  networks. The topology of such 
networks is  described mathematically b y  the equation 
N = kn, where N is  the total number of nodes in the 
network, k the number of stages i n  the network and n 
the number of nodes in each stage. Compared t o  clas- 
sical shuf lenets ,  the definition of generalized shuf le  
networks allows a larger number of feasible network 
structures that are realizable for a given network size 
N .  In attempting to  find an  opt imum network struc- 
ture, network characteristics are discussed and system 
performance is evaluated. Important relationships and 
interdependencies among the various network param- 
eters are developed to facilitate cross-structural com- 
parison. 

1 Introduction 
In multihop packet-switching networks, packets tra- 

verse a number of intermediate nodes until they arrive 
at their destinations. At each node, switching deci- 
sions should be made so that packets can take appro- 
priate output links. The switching algorithm at each 
node decides on the best possible channel allocation to 
the packets in its incoming links without regard for the 
packet dispatch decisions at the rest of the nodes in the 
network. As much as this improves the network reli- 
ability and throughput by allowing autonomy at each 
node, packets may contend for the limited resources 
in the node. One possible way to allev iate this con- 
tention problem is to  use deflection routing. In this 
environment, packets that neither get routed through 
their shortest path nor stored in the local buffer will 
be sent out through the unoccupied output [l, 2, 31. 

The shufflenets have been extensively studied for a 
possible multihop network topology [4]. These net- 
works have one and only one network topology to 
speak of. For any possible N, the total number of 
nodes, the network topology is uniquely determined 
by finding p and k that satisfy N = kpk, where p rep- 

resents the number of links into or out of each node 
and k represents the number of physical node stages 
in the network. Consequently, the number of nodes at 
each stage is pk nodes. 

Performance analysis of the classical shufflenets has 
been thoroughly treated in previous studies [5, 6, 7, 
8, 91. The tight relationship between the number 
of stages in the network and the number of nodes 
per stage effectuates a regular node-hopping behavior 
that yields a relatively straight-forward mathemati- 
cal model. However, this regular connectivity severely 
limits the number of realizable structures. 

This paper explores a class of shufflenets known as 
shuffle-ring networks [5], generalized shuffle networks 
(GSNs) [lo], and generalized shuffle-exchange-based 
multihop networks (GEMNETs) [Ill, where the tight 
constraint relating the number of nodes per stage and 
the number of stages is relaxed. For any possible 
N ,  the total number of nodes in the network, these 
networks are mathematically given by N = kn. The 
parameter k represents the number of physical node 
stages, while n represents the number of nodes per 
stage. The only binding condition in these shuffle net- 
works is that which restricts n to be a base-p inte- 
ger (we assume p=2 for the rest of this paper). This 
maintains a certain level of regularity in network con- 
nectivity and keeps the mathematical analysis of these 
network structures tractable. 

This less restrictive constraint on node arrangement 
presents us with a few choices of network topology for 
any given N that satisfies the condition as prescribed 
above. This paper attempts to find a simple rule that 
will get us the best network layout for all instances of 
realizable N .  Network performance will be analyzed 
and compared. To relate this paper to  existing works 
pertaining to the study of shufflenets, the analysis will 
be based on the same performance measures, i.e., the 
effect of network traffic on the expected number of 
hops taken by a packet to reach its destination and 
the normalized throughput of the networks. 
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Figure 1: For N = 16, (a) XSN with k = 
(b) RSN with k = 2 ,  k' = 3 

k' = 2 an1 

The rest of this paper is organized as follows. In 
Section 2 ,  two sub-classes of the GSNs are described, 
i.e., the extra-stage and reduced-stage shuffle net- 
works. The performance modeling and analysis of 
extra-stage networks are given in Sections 3. Inter- 
pretation of the probability of deflection is discussed 
in detail in Section 4. Section 5 show the perfor- 
mance of reduced-shuffle networks. Results of this 
paper are summarized in Section 6 with some remarks. 

2 A Benchmark in Analyzing General- 
ized Shuffle Networks 

In analyzing the GSNs, it is helpful to further define 
two sub-classes of networks that fall into the category 
of GSNs [lo]. These two sub-classes are defined based 
on their relationship with a parameter k', termed the 
uirtual number of stages, where k' = logzn. The pa- 
rameter k' represents the minimum number of hops 
to reach a node-stage where all nodes at that par- 
ticular node-stage will be reachable by the packet at 
its present stage-location. A GSN characterized by 
k 2 k' is called an extra-stage shuffle network (XSN), 
while one characterized by k < k', is called a reduced- 
stage shuffle network (RSN). Figure 1 illustrates the 
distinction between the two sub-classes of GSNs with 
a 16-node network. 

In XSNs, there are generally one or more node- 
stages where a packet can reach all nodes in its first 
visit to that stage. Under perfect routing conditions, 
a packet whose destination node is located h stages 
away from its present stage-location, with h 2 k', will 
reach its destination in exactly h hops. This exactly 
equals its physical stage distance. Stages that are less 
than k' hops away have nodes that are unreachable by 

the packet during its first traverse through the stage 
and thus will have to allow the packet to recirculate 
through the whole network before these nodes may 
be reached. RSNs, however, have comparatively less 
node-stages and packets will have to revisit all stages 
at least once more so as to be able to reach all nodes 
at  all stages. 

As a node structure in the networks, we assume 
in this paper that each node has two input/output 
links, one transmitter (TX) and one receiver (RX), 
and a buffer of one-packet size. This simple node 
structure is crucial in high-speed optical networks, 
where each node structure should have minimal 
processing requirement. With the two sub-classes of 
GSN structures clearly defined, we proceed to discuss 
the performance of simpler XSNs. 

3 Extra-Stage Shuffle Networks 
When observing the connectivity of any node with 

the rest of the nodes in any XSN, a regular spanning 
tree structure is evident. A packet from any source 
node has 2h possible destinations at its hth hop. How- 
ever, when and after it reaches the point where h = k ,  
some nodes are revisited. Furthermore, the number 
of new nodes reachable is also limited by the physical 
number of nodes per stage. As such, for h 2 k ,  the 
number of new nodes met decreases as h increases. 
The algorithm that may be used to calculate the num- 
ber of reachable nodes at  each hop from its source node 
is presented in [lo]. 

The furthest hopping distance any packet would 
need to take to reach any destination without de- 
flection is found to be k + k' - l ,  where k is derived 
from the number of physical stages in the network and 
t' - 1 accounts for the number of previously traversed 
stages during which certain nodes were unreachable, 
due to the inherent structural constraints. Then av- 
erage number of hops a packet will take to reach its 
destination without deflection, denoted E[Do], is given 
as follows: 

where i is the number of hops required to reach the 
destination node and ni is the number of nodes at  
distance i hops away. This average value corresponds 
to the shortest path routing without any deflection in 
the routing process. 

Given the structural setup in multihop networks, 
only one packet may be received or sent out through 
each of the two outputs at  each time-slot. However, 
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Is1 hop 2nd hop 3rd hop 4th hop 5th hop 

Source Nilde = Nwie I ;  Destination Nodo = Node 1 
Solid line represents path taken if no deflection cx%un. 
Dashed lines represent apssible path taken if packet is deflected from its shortest 
path at Node I 

Figure 2: An illustration of deflection routing for net- 
work with N = 16, k = 4, k’ = 2 

if multiple packets desire to use the same output, it 
is inevitable that output contention within a node 
will ensue. Thus we need to consider network per- 
formance under packet contention. In this paper, we 
adopt deflection routing as a means of alleviating con- 
tention problems. Some possible contention resolu- 
tion schemes under deflection routing are discussed 
in [3,  91. Regardless of the chosen scheme, the packet 
that is sent out through the less preferred output chan- 
nel and has to take more than the minimum required 
number of node hops to  reach its destination is said 
to be deflected from its shortest path. It consequently 
takes a detour as it tries to  reach its desired destina- 
tion. Figure 2 compares a possible route of a packet 
that experiences deflection against that of an unde- 
flected one. For this purpose, we define a parameter 
P d e f  as the probability that a packet will be deflected 
from its shortest path. This number represents the 
probability that both input packets at a node will con- 
tend for the same output channel for shortest path 
routing and the monitored packet has to give way to 
the other packet. 

The performance of XSNs can be analyzed using a 
Markov chain model. We construct a Markov chain 
where the states represent the distance between the 
packet and its destination node. As previously men- 
tioned, the furthest possible distance in such networks 
is k + k ‘ -  1. We include in this Markov chain the 
zero-distance state to represent the absorbing state, 
when the packet arrives at its desired destination. 
Then the state space of such a Markov chain will be 
completely defined with k + k’ states. A diagram- 
matic illustration is depicted in Figure 3 for N=64 
case. 

In modeling the behavior of packet movement in the 
presence of possible deflection, note that deflection is 
only possible if the packet resides in a care node [2]. 
Due to  the regular connectivity of the network, a de- 
flected packet has to  recirculate through all the other 
stages, return to its current stage, which imply a total 
of k - 1 extra hops, before it can proceed to cover its 

Figure 3: Node-distance-state Markov chain for N = 
64, k = 8, k‘ = 3 

original remaining distance. In other words, for any 
probability of deflection given by P d e f ,  a packet at 
distance i from its destination will be i + k - 1 hops 
away from its destination upon a deflection. And with 
probability (1 - P d e  f), the packet is not deflected and 
proceeds to  the state where it will be at distance i - 1 
away from its destination. Let 

Di = E[number of hops when the tagged packet is 

probability of deflection = P d e f ] ,  i < k + k’. 

From the Markov chain of Figure 3, we can derive the 
following one-hop state transition equations: 

at distance i from its destination1 (2) 

D~ = P d e f D i - l + k  + (1 -Pdef)Di-l  + 1, 15 i 5 k‘, 
D p  4- (i - k’), k‘ + 1 5 i 5 k + k’ - 1. 

(3) 
{ 

Using the above state-transition equations, we can ob- 
tain 

+ ( l - - q d c j ) k  ,[1 - (1 - P&f) i ] ,  1 5 i 5 k!, 
Dkj + (2 - k’), k’ 4- 1 5 i 5 k + k’ - 1, 

(4) 

Di = 

where 

Thus, E[D] in terms of Pdef is given as 

. k+k ’ - I  

Note that the above expression reduces to E[Do] of 
Equation (1) when P d e f  = 0. 

In a similar manner, we can find .@[NI, the expected 
number of Don’t Care nodes traversed by a packet 
during its lifetime on the network. Let 

Ni = E[number of Don’t Care nodes that a tagged 
packet at distance i visits in its lifetime], 

i < k+k’.  (7) 

Then, we find 

(8) 
P d e f N i - l + k  + (1 - P d e f ) N i - l ,  1 I i I k’ 
N k , + ( i - L ‘ ) , k ‘ + l I i 5 k + I c ’ - l ,  Ni = 
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Figure 4: Plot of expected number of hops vs. Pdef 
for N = 64 

Consequently, we get E[N] as 

. k+k'-I 

Nini, 
I 

E[N] = - 
N - 1  i=l 

and Pdc, the probability of visiting Don't Care nodes, 
may be derived using the following relation: 

If we substitute k' = I C  into Equations (4) and (9), 
i.e., the case where the physical number of node-stages 
equals the virtual number of node-stages, we get the 
results in [9] for classical shufflenets. This not only 
verifies the validity of the newly formulated equations, 
but also suggests that the classical shufflenet is a spe- 
cial case of XSNs. 

Using Equation (6 )  derived in the previous section, 
we obtain a plot of E[D] against Pdef, shown in Fig- 
ure 4. This graphical result suggests that network 
topology commands a significant influence on the per- 
formance of the network. The somewhat constant off- 
set in E[D] between any two network topologies is 
a consequence of the regular connectivity of the net- 
works. Thus, the comparative performance of the dif- 
ferent topologies will not vary with statistical signifi- 
cance for any value of Pdef. This suggests that com- 
parison of network performance can be fully accounted 
for by using the E[D] values at  Pdej = 0. 

Also from Figure 4, we learn that for any given 
N, the optimal XSN network topology will be the one 
which has the largest number of nodes per stage, hence 
the smallest number of physical stages. Thus, if a 
classical shufflenet structure for that given value of N 
exists, then that structure is the optimal one. It is 

also noted that the larger the number of stages, the 
greater the probability of meeting a Don't Care node. 
This is true since the wider the network diameter, the 
greater the number of shortest paths a packet has. 
This indefinitely increases the packet's probability of 
visiting Don't Care nodes. 

Network performance improves as the probability 
of encountering Don't Care nodes decreases. Don't 
Care nodes allow for some flexibility in packet 
switching that alleviates packet contention problems. 
However, the graphs suggest that the tighter the 
routing constraints, the better the performance in 
terms of expected number of hops, regardless of 
network load. 

4 Validity of Pdef 
In the analysis so far, the relationship between net- 

work performance measures and Pdef has been care- 
fully studied. However, this does not get us to the 
bottom of the network model - in the physical sys- 
tem, Pdef is internal to the network. Thus, relating 
the performance measures to Pdef does not describe as 
yet the response of the network to any exogenous fac- 
tor, of which the most fundamental is the response of 
the network to the offered load, 9. Figure 5 pictorially 
illustrates this point. 

Thus, we need to find the relationship between Pdef 
and 9. To do this, we use the definition of offered load 
g as described in [l, 3, 81. This defines g as the load 
seen by the network. Note that this does not nec- 
essarily equate the load offered by the user. Under 
high network traffic conditions, packets that the user 
would have liked to transmit may not be successfully 
transmitted. This occurs in situations when the out- 
put channels are taken up by the packets in the input 
channels or the memory buffer - thus, none of the 
output channels are available for the transmission of 
new packets. This being the case, we will have to con- 
sider issues like re-transmission or temporary storage 
of packets, double-counting of re-transmitted packets 
in the queue, rules for discarding packets upon packet 
contention, and so forth. To fully model this behavior 
will be phenomenally difficult. 

However, if we are looking at network performance 
in terms of the throughput of the system, we can claim 
that using g as our reference parameter suffices our 
analysis. This is because whatever the actual load of- 
fered by the user, call it p ,  the network will only be 
able to optimize on 9, regardless of p. The buffer tem- 
porarily mediates between the network capacity and 
the node-user's transmission demand, and the node- 
user may continue to request for data transmission. 

'1 
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The model up till this point: 

The model to develop: 

Figure 5: The relationship between Pdpf and g 

1-a 

Figure 6:  Node-state state-transition diagram 

Thus, we can assume p = g, the dynamic equilibrium 
of which adheres to Little's Law and will allow the 
network to  operate properly. As such, we can confi- 
dently pursue our model development with g as the 
exogenous offered load parameter. 

The crucial factor that determines the relationship 
between Pdef and g is the structure of each node in 
the network. If we assume that the packet in memory 
is serviced with the highest priority as in the case of 
optical networks (otherwise optical signals may be de- 
graded to  undetectable level), the only situation where 
deflection could possibly occur is when the memory 
buffer is occupied. In all other circumstances, at least 
one packet will always be properly routed; if there are 
two incoming packets and they contend for the same 
output channel for shortest path routing, the packet 
that does not get assigned to  the appropriate output 
channel will unquestionably be sent to the memory 
buffer. Although this constitutes a delay in the time 
sense, it is by definition not a deflection. Recirculating 
via the memory buffer does not de-track the packet 
from its shortest path. Thus it suffices our require- 
ments to  model the system using a two-state Markov 
chain, where the states are determined by the state of 
the memory. Define State 0 (SO) as the state when the 
memory buffer is empty and State 1 (Sl) as that when 
the memory buffer holds a packet. Figure 6 illustrates 
such a Markov chain. 

It is also appropriate to  mention at this point that 

the two-state Markov chain does not over-simplify the 
state space that models the relationship between P& f 
and g. Elaborate consideration of all possible combi- 
nations of inputs into the node is not necessary due 
to the fact that within every time-slot, all other states 
are transient. This is because whether a deflection oc- 
curs depends crucially on the vacancy or non-vacancy 
of the memory buffer. This is, in effect, a consequence 
of the adopted priority routing rule that confers the 
packet residing in the memory buffer with the highest 
routing priority. To formulate the one-state transition 
matrix of the above Markov chain, let a represent the 
probability of changing from SO to S1, and b the prob- 
ability of changing from S1 to  SO at any time-slot. 

For a state-change from SO to S1 at any time-slot, 
there must have been two Care packets entering the 
node via the input channels. If both incoming packets 
contend for the same output channel for shortest path 
routing, then one of the packets will be routed to  the 
memory buffer, thus causing a state-change to  S1. The 
probability of this occurrence a is given by $P:, where 
P, is the probability that an input channel brings in a 
Care packet into the node [3] and is given by U (  1 - Pdc). 

The parameter P d c  is given in Equation (11) and 
U ,  the probability of slot occupancy in a single-buffer 
node, is given by 

dCXcg'{(1-CY)2 + + ( l - P d c ) ' } - a  

g((1 - a)2 -k i(1 - Pdcl2}  
U =  7 (12) 

where CY = l/E[D]. 
Likewise, in deriving the probability of a state- 

change from S1 to  SO, we find that this can only occur 
in the following situations: 

1. when there are no packets coming in from the 
input channels; 

2. when there is only one input packet and the input 
packet is either a Don't Care packet or does not 
require the same output channel as that taken up 
by the packet in the memory buffer. 

The probability of this occurrence, represented by b in 
Figure 6, can therefore be given by 

1 
b = (1 - U)' -4- U ( 1  - u)[Pdc -k ~ ( 1  - pdc)] 

As mentioned before, the only time when packet 
deflection is possible is when the memory buffer is oc- 
cupied at the beginning of that particular time-slot, 
i.e., when the starting state of that clock-cycle is S1. 
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Hence, to derive the steady-state Pdef, we first need to 
know the steady-state probability of S1. Define 7ri as 
the steady-state probability that the node is in State 
i ( i=O, l ) .  We can find ~1 by solving the following 
limiting probability matrix: 

which readily yields 

1 - a  
2 - a - b '  

A1 = 

We find that Pdef is given by 

(16) 
1 
8 

Pdef = - x l U ( 1  - Pdc)2. 

Described in words, Pdef is the probability that all of 
the following occur: 

1. the node initially has a packet in the memory 

2. the packet in question is at a Care node + prob- 

3. the other input channel also brings in a Care 

4. the packet is deflected under contention + prob- 

5. all three packets contend for the same output 

buffer + probability XI; 

ability 1 - Pdc; 

packet + probability u(1 - pdc); 

ability 3; and 

channel 2$ probability (3)3 + (3)3. 
Although these relations allow us to numerically solve 
for Pde f for any given offered load g, complexities per- 
vade as the equation we need to solve is not only a 
polynomial in the variable Pdef, the degree of which 
depends on the size and structure of the network we 
wish to analyze, but also embedded with summation 
terms, whose expanded form is absolutely unillumi- 
nating. 

A simpler method of working this out is to specify 
a value for Pdef and algorithmically work the equa- 
tions backward to solve for g. For any given Pdef, we 
can easily obtain pdc and Q using Equations (6), (10) 
and (11). Therefore, expansion of Equation (16) will 
yield a fixed-degree polynomial in terms of the vari- 
able U regardless of network size and network struc- 
ture. Finding the roots to this equation yields only 
one root within the logical range of [0,1]. This sug- 
gests that this reverse method is probably a viable 
solution. Following this, we may use Equation (12) to 
find the corresponding g.  

Figure 7: Plot of Pdef VS g for N = 64 
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Figure 8: Plot of E[hops] vs g for N = 64 

With g in hand, we will be able to find A, the nor- 
malized throughput of the network: 

dQ2 +g2{(l-~)2+~(l-Pdc)2}-a 
A = 2a . (17) g{(1 - -k - pdc)2} 

Figure 7 shows the plots of Pdef against g for N = 64 
with different network topologies. We observe that 
Pdef increases with the offered load and the slope of 
increase appears to reach a constant after g reaches 
approximately 0.5. For k = 32, the probability of de- 
flection, Pdef, is almost negligible. For the optimum 
case where k = 4, Pde f terminates at  a maximum value 
of Pdef = 0.04, and increases monotonically with g. 

Similarly, we derive plots of the relationship be- 
tween E[D] and A, the normalized throughput against 
g in Figure 8 and Figure 9, respectively. Both plots 
reiterate the point made in the previous section that 
the optimum structure among XSNs is that with the 
smallest number of node-stages and that the network 
topology has a dominating impact on network perfor- 
mance. 

The analysis of RSNs has to be treated with a dif- 
ferent approach due to the irregularity of the network 
structure. By irregularity, we mean that the network 
connectivity of every single node is not same, but dif- 
ferent nodes meet a different number of new nodes for 
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Figure 9: Plot of normalized throughput vs g for N = 
64 

any given number of hops taken. This is due to the 
fact that node-stages have to be repeatedly revisited 
as the packet tries to reach some nodes that had been 
inaccessible for the number of hops already taken. We 
find that the hop-distance distribution of each node in 
the network varies, depending on the size of the net- 
work and the position of the reference (source) node in 
relation to the rest of the nodes in the network. This 
evokes a very complex model. 

Furthermore, the number of stages in a network 
also determines the node-hopping behavior of a packet 
upon deflection from its shortest path route. It is 
observed that the smaller the number of stages, the 
greater the node-hoping variation. For example, if 
there is only one stage in the network, a deflection that 
takes place when the packet is one hop away from its 
desired destination will bring the packet to any dis- 
tance away from its destination in the hop-distance 
state space, including its current state, but none closer 
than its current distance, depending on the reference 
position of the node it currently resides. 

Given the fact that the E[&] in Equation (1) gives 
a good indication of comparative system performance 
under ideal conditions, i.e., the environment where no 
packet deflection occurs, we may calculate the lower 
bound on E[D] for all RSN network topologies simply 
by finding the proportion of new nodes met at  every 
hop. 

Table 1 shows the tabulated results of the E[D] val- 
ues for the various RSN topologies for Pdef = 0. The 
results show that two-stage networks give the lowest 
E[D] values across the investigated network sizes. 

To see the effects of offered load on E[D] and A, the 
normalized throughput, an approximate Markov chain 
model is obtained by taking the weighted-average 
probability of the different resultant distance from des- 
tination that a deflection will cause. Figure 10 depicts 
the Markov chain model for the two-stage 64-node net- 

Table 1: E[D] values for various values of N and n. 

Figure 10: Node-distance-state Markov chain for 
N=64, k=2 

work. 
Following the analytical steps as before, we obtain 

plots of E[D] and X with respect to g for various 64- 
node RSNs as shown in Figure 11 and Figure 12 re- 
spectively. The solid line in the graphs represents the 
performance of the optimal XSN topology, included as 
a point of reference. As we can see from the graphs, 
the two-stage network yields the best network perfor- 
mance in terms of both expected number of hops and 
normalized throughput. Our result agrees with the 
observation made by Iness, et al. in [ll], where they 
found a two-stage network gives the minimum average 
hop distance when the number of nodes is even. 

5 Conclusion 
This paper compares the performance of all gener- 

alized shuffle networks for a given N .  We find that the 

Figure 11: Plot of E[hops] vs g for N = 64 (RSN) 
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Figure 12: Plot of normalized throughput vs g for 
N = 64 (RSN) 

larger the network diameter, the more the node-stages 
and thus the higher the probability of a node visiting 
a Don’t Care node. This yields a certain extent of 
flexibility in the choice of routing a packet through a 
shortest path. Consequently, the probability of packet 
deflection also decreases. On the other hand, we find 
that as the number of node-stages increases, the sys- 
tem throughput falls. 

We also find that the structure that yields the 
best performance in terms of system throughput 
and expected number of hops a packet takes on 
the network is the two-stage network for N=64. In 
such a network, the shortest path to the desired 
destination is mostly unique. Even with high offered 
loads, networks with high node-access efficiencies 
still perform better in terms of hop instances. In 
other words, routing flexibility does not improve the 
performance of multihop networks. 
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