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Abstract 
Multi-hop communication networks are drawing increasing 
interest recently. Shufflenet is a multi-hop communication 
network which achieves high performance while overcoming 
the current shortcomings in device technology [l]. In this pa- 
per, we present a new and comprehensive analysis for shuf- 
flenet. By making use of the connectivity properties of any 
( p ,  k) shufflenet, we characterize the probabilistic behavior of 
a typical packet in the network in terms of a simple discrete- 
time Markov chain with only 2k states, one of which is an 
absorbing state. We then derive analytic expressions for sev- 
eral important network performance parameters such as hops 
distribution, average delay for a packet to travel to its des- 
tination and the probability of don’t care in each hop that 
the packet takes. The expressions derived can be applied to 
any ( p , k )  shufflenet. The calculation of throughput of the 
shufflenet can then be obtained by finding the relationship 
between ne! twork packet generation probabili 

1 Introduction 

every node has access to only a single channel a t  a time. As 
a result, the performance of the networks falls off for each 
additional user in the networks. To increase the throughput, 
parallel or concurrent transmission has to be provided. If 
different users in the network can transmit packets at  the 
same time through a number of channels, the throughput of 
the network can be increased. Shufflenet is a Wavelength 
Division Multiple Access (WDMA) network making use of 
this principle of concurrency to achieve high throughput per- 
formance [3]. 

In this paper, we report the performance analysis of shuf- 
flenet. We first describe some important network parame- 
ters and topologies of shufflenet. Then the performance of 
the network with deflection routing is analyzed. By using the 
topological properties of shufflenet, we can model the routing 
behavior of a packet in the network as a single Markov chain 
with an absorbing state. The simple Markov chain represen- 
tation enables us to obtain close form solutions for important 
performance measures of the network. Finally, we present 
the throughput analysis for shufflenet with hot-potato and 
store-and-forward routing algorithms. Our analyses agree 
excellently with the simulation data of the network. 

Optical fiber provides a tremendous amount of bandwidth for 

2 Shufflenet System communication. By using its low-loss low-dispersion “win- 
dow” at  1.2pm-1.6pmI a bandwidth of tens of terabits per 
second is available for information transmission. Because of 
the enormous usable bandwidth offered by optical fiber, any 
communication scheme that utilizes only a small fraction of Shufflenet is a multi-hop network [ l ~ .  Each in the shuf- 
the bandwidth can provide substantial capacity. If a network flenet accesses the network through the Network Interface 
makes use of only 1% of the bandwidth, the throughput Of Unit (NIU). Each NIU has a number of lightwave receivers 
the system can be very impressive. Therefore, optical fiber and transmitters. A shufflenet is characterized by two num- 
holds promise for the future wideband communication [2]. k) shufflenet consists of k p k  nodes ar- 

2.1 Shufflenet with Deflection Routing 

bers and k. A 
Current high-Performance Optical Area Net- ranged in k columns, and ea& column consists ofpk NIUs. 

work/Metropolitan Area Network (LAN/MAN) such as Figure 1 shows a (2, 3)  shufflenet. All the NIUs are in- 
Fiber Distributed Data Interface (FDDI) and the IEEE802.6 
Distributed Queuing Dual Bus (DQDB) are systems in which 
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terconnected as a perfect shuffle, with the last column be- 
ing “wrapped-around” to the first column like a completed 
cylinder. In this way, packets can be continuously circulated 
around the network until they reach their destinations. 

Packets are transmitted within shufflenet in a store-and- 
forward fashion, if there is storage in the NIUs. A packet will 
hop through the nodes until it reaches its destination, where 
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Figure 1: 
k = 3. 

A ,n example of a ( p ,  k )  shufflenet, with p = 2 and 

the packet will be absorbed. Shufflenet is internally blocking 
in the sense that different packets destined to  different des- 
tinations may suffer collision with each other for an output 
channel during the process of routing. In this case, one of 
the packets will be routed correctly while the rest of them 
will be either stored if storage is available, or 'deflected" 
temporarily to the wrong channels. Therefore, in deflection 
routing, packets are never lost due to  buffer overflow. In a 
(p, k) shufflenet, for each deflection it suffers, a packet sim- 
ply takes k more hops to reach its destination. In this way, 
a shufflenet with deflection routing is a packet-switched net- 
work in which packets are continuously circulated around 
until they get absorbed. 

In a ( p , k )  shufflenet, each NIU can be identified by an 
address ( c ,  r ) ,  where c E {0,1, ..., k-1) and r E (0, 1, ..., p'- 
1). For a given packet at node ( c , r ) ,  let D be the number 
of columns between the source ( c ,  r )  and destination ( c d , r d ) .  
We clearly have: 

(c - c d )  mod k if cd # c,  
if cd = c. D = {  k 

D represents the lowest bound on the number of hops the 
packet must take to  go from ( c ,  r )  to (cd,  r d ) .  In shufflenet, 
a packet a t  a node is said to be 'don't care" with respect to 
its destination if the destination cannot be reached within k 
hops by the packet under no deflection. A node is said to  be 
a "don't care" node for a packet if the packet a t  the node 
can go from this node to its destination with the minimum 
number of hops by taking any link emanating from this node. 
Therefore, if a packet is at a 'don't care" node, it will never 
suffer deflection. It should be noted that if a packet is in 
a "don't care" node, it is not possible for the packet to be 
routed in D steps; it takes D + k steps. This is an important 

property of shufflenet which will greatly reduce the state 
space when we analyze the network. 

2.2 Topological Properties 
In dealing with multi-hop communication networks, there 
are three important topological performance parameters [SI: 
e Diameter - the maximum distance, dma,, between any two 
nodes in a network is called the diameter of the network. 
This parameter shows how compact a network is and how 
fast a packet can go to  its destination. For a ( p ,  k )  shufflenet, 
dma, = 2k - 1. Let N be the total number of nodes in the 
shufflenet, N = kpk,  then k fi: log,N. Therefore, for large 
N, d,,, k: 210gpN for shufflenet. 

e Deflection cost - the maximum increase in the number of 
hops due to a deflection is the deflection cost. For a ( p , k )  
shufflenet, deflection cost is k k: logpN, for large N. This 
parameter indicates the delay of a packet once the packet is 
deflected, thus i t  also indicates how well the network per- 
forms with deflection routing. 

e Number of 'don't care" nodes - High fraction of 'don't 
care" nodes helps to  keep the deflection probability low, thus 
implies high performance of the network. In a ( p , k )  shuf- 
flenet, all the nodes that are within k hops from a packet's 
destination are 'care" nodes. Since a shufflenet is symmetric 
with respect to  all the N nodes, we may specify any node as 
a destination. The total number of 'care" nodes, n,, with 
respect to  the destination node can be written as: 

k 

nc = C p '  
i= l  

- P ( P k  - 1) - -. 
P - 1  

Therefore, the fraction of 'don't care" nodes in a shufflenet, 
P d o  is: 

The fraction increases with the size of the shufflenet and 
approaches unity as k + 00. This is an important and at- 
tractive property of shufflenet because a packet at a 'don't 
care" node will never contend for an output link. It means 
that a large shufflenet will have a lower deflection probability 
than a smaller one for a given load. 

3 Analysis of Shufflenet 
3.1 Descriptions 
There are several parameters that are important when the 
performance of shufflenet is considered. They are: 
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0 Normalized throughput (throughput per node) - It is de- 
fined as the average number of packet absorbed (or gener- 
ated) by each node in the steady state of the network in each 
clock cycle. Note that in shufflenet with deflection routing, 
the normalized throughput can be lower than the offered load 
as the packets may suffer deflections and continuously circu- 
late around the network without reaching their destinations. 

0 Hops distribution and average number of hops - The proba- 
bility distribution of the number of hops that a packet makes 
before being absorbed is important when we deal with time- 
sensitive information, such as voice or video packets. The 
hop distribution and the average number of hops are appro- 
priate indicators of the delay performance. With deflection 
routing, the delay increases and distribution tail broadens 
with the deflection probability. 

0 Probability of deflection in the “care” node, P d e f  - A 
packet can be deflected only when it is in a “care” node with 
respect to  its destination. The deflection probability criti- 
cally determines how well a shufflenet performs. The higher 
the deflection probability, the lower the throughput of the 
network and the longer the packets take to reach their des- 
tinations. Deflection probability, P d e f ,  generally increases 
with the the packet generation probability in each node, 
which is called the offered load, g. 

0 Probability of don’t care, Pdc - It is defined as the prob- 
ability that a packet enters one of its “don’t care” nodes in 
a given hop that it takes in the network. Except for its last 
hop, a packet in the shufflenet is always put into a “don’t 
care” node for each deflection it suffers. Note that in order 
to route a packet to its destination in the minimum number 
of hops [9], a packet is always directed to go to its “care” 
nodes. Therefore, in any shufflenet, the higher the probabil- 
ity of don’t care, the worse the performance of the network. 
Let N d c  be the random variable that represents the number 
of “don’t care” nodes that a packet visits on its way to  the 
destination, and let D be the number of hops that the packet 
takes. Then we have 

where E[V] is the expected value of the random variable V. 
Without any deflection, Pdc is equal to pdc mentioned in 
Section 2.2 (Equation ( 1 ) ) .  With deflection, Pdc is always 
greater Pdc. 

3.2 Analysis 
w e  now present analytical relationships among Pdef , P d c ,  

hops distribution and the expected number of hops, E[D], 
and obtain the throughputs of shufflenet with hot-potato 
and store-and-forward routing algorithms. As we remarked 
earlier, we make use of the special pattern of the “care” 
nodes in a shufflenet. Using this property, we need to deal 
with a Markov chain with only 2k states, instead of the usual 
N ( =  k p k )  states reported by previous investigators [7, lo]. 

In any ( p ,  k )  shufflenet, the “care” nodes for a packet are 
the nodes within diameter k from its destination. All the 
other nodes are “don’t care” nodes where the packet will not 
suffer deflection. We assume that the traffic generated in the 
network is uniform and independent among all the N ( =  k p k )  
nodes in the network. We further assume that the users in 
the network will not generate any packet to themselves. 

Let us select a packet arbitrarily and observe the behavior 
of the “tagged” packet. Let our state space S = {0,1, ..., 2k- 
1) be a collection of possible distances between the current 
position of the tagged packet and its destination. Here the 
distance is defined as the minimum number of hops that the 
packet must make to  travel to its destination in the absence 
of deflection. Let 

Di = E[number of hops when the tagged packet is at 
distance i from its destination I probability 

of deflection = P d c f ] ,  V i  E S. (3) 

We model the network as an absorbing Markov chain with 
state space S, and state 0 is the absorbing state. As in a 
( p ,  k )  shufflenet, each deflection increases the packet’s hops 
by k, we have 

Da = p d e f D i - l + k  + ( 1  - Pdef)Di-l  + 1 ,  15 i 5 k. (4) 

When the packet is at a distance more than k hops from its 
destination, it is in its “don’t caren node and therefore will 
not suffer deflection (i. e. P d e f  = 0) until it is k hops from 
its destination. Hence, 

D ;=  D k + ( i - k ) ,  k + l < Z < 2 k - l .  (5) 

Since state 0 is the destination of the tagged packet, we 
have Do=O. Solving Equations (4) and (5), we get 

k 

(6) 
- (l - Pdef)’I, <_ j I k t  

k +  15 j 5 2 k -  1 .  

Note that Equations (4)-(6) hold for any ( p ,  k )  shufflenet and 
do not depend on the parameter p .  

As for 1 5 j < k - 1, there are p’ nodes a t  j hops away 
from a given node, and for 0 5 j 5 k - 1, there are ( p k  -9) 
nodes at k+ j hops away, the expected number of hops, E[D], 
for any packet in the network is therefore given by 

- r k - 1  6 - 1  1 

- - kp(1 - p k - ’ ( l  - Pde,)k-’) 
- 

( k p k  - 1 ) ( 1  - Pdef)’-’(l - P + p P d e f )  

(7) 
kpk k - 1 k +- 

k p k  - 1 (1) + ( 1 - P d e f ) ’  . 

With no deflection, limp,,,,o E[D] = 4.6349. 
To find the probability distribution of the number of hops, 

we form a (2k) x (2k) transition matrix, T, where the entry 
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ti,, is the one step transition probability: and from the theory of Markov chain, we can show that 

!3 ' = Pr[The tagged packet at distance j from its destina- lim P, = eo, (13) A 
n+oo 

tion hops to distance i in the next time epoch], (8) 
where eo is a column vector whose entries are all zero ex- 
cept the firet element (corresponds to state 0), which is 
unity. Therefore the tagged packet reaches its destination 
with probability one. 

Since the state 0 E S is the absorbing state, Q, is given 
by the firet element of the vector (P, - P,-l). Thus, we 
have 

V i , j  E S. Then we have 

to,o = 1, (absorbing state), 

t i + k - l , i  = P&j1 for 15 i 5 k, 
1 - P d e f ,  for 1 5 i 5 k, 

for k + 15 i 5 2k - 1, ti-1,i = 

('1 Qn = ex - (P, - P,-l) for n = 1,2,3, ..., (14) 
ti,j = 0, elsewhere. 

Clearly t i j ' s  satisfy 
where e: is the transpose of vector eo. 

The average number of "don't care" nodes which a packet 
hops through before it is absorbed can be obtained in an 

CiEs t i , j  = 1, V j  E S. 

Let Qn be the Probability that a Packet (first) reache' "5 analogous way BB in the c..culation of E[D]. Let 
destination at  the nth hop. (Q,, n = 1,2,3, ...} is then the 
probability distribution of the number of hops taken by a j ~ p  = of udonit nodes that the tagged 

(15) 
packet in the network and is given by: packet at distance i visits in its lifetime], 

Pr[Packet generated at  distance i 

reaches its destination exactly a t  the nth hop.] 

then we have 
i<min(n,2k-l) 

(10) 
Let PO and P, be column vectors. The ith element of and 

Po is the initial probability that a packet is generated at  
distance i and the ith element of P, is the probability that 
the packet visits state in its nth hop, where i E s. Then, 

agonal matrix formed by the eigenvalues of T and S is the 

As the destination of a packet just generated is randomly 
distributed among all the other (N - 1) users in the network, 
the initial probability distribution for the distance of a packet The expected number Of 

can be written as 

Np = PdefNid+ck-1 + (1 - P&f)Nid_cl, 1 5 a 5 k, (16) 

Np = NF+ ( i - k ) ,  k +  15 is 2k- 1. (17) 

As state 0 is the destination of the tagged packet, N,d" = 0. 

p, = TPndl = Tnpo = SAnS-lPo. where A is the di- From Equations (16) and (17)1 we get 

corresponding matrix formed by the eigenvectors of T. Nj"" = 

nodes that the packet 
hops through can then be obtained as 

1 
Po = - kfl - 1 

0 '  
P 

Pk-l 
p k  - 1 
Pk - P  

pk - pk-' 

Note that the underlying Markov chain has one absorbing 
state (i. e., state 0) and all the other (2k - 1) states are 
transient (see Figure 2). Therefore it is known that only one 
eigenvalue of the transition matrix T is unity, A0 = 1, and 
the magnitudes of all the other eigenvalues are strictly less 
than 1. Therefore in the limit 

/ 1  0 ... o \  

- f k - 1  k - 1  

The probability that the node which the tagged packet visits 
is a Udon't care" node is then given by Equation (2) with the 
use of Equations (7) and (19). We obtain limp,,,+o Pdc  = 
0.2123. 

The throughput of (2,k) shufflenet has been presented 
by Forghieri, Bononi and Prucnal [7]. Let the normalized 
throughput be A. Then, 
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where 
10 

8 -  Our analysis presented above shows that the average num- 
ber of hops, hops distribution, probability of deflection and 
throughput of the network can all be analytically obtained, 
once the probability of deflection, PdeJ, is specified. The 
analysis of the shufflenet is then reduced to the problem of 
finding the relationship between the offered load, g, and the 
deflection probability, Pde f [6, 81. The relationship depends 
on the routing algorithm and buffer architecture used in the 
network [5 ] .  With independence assumptions, Pde f is ob- 
tained by solving a nonlinear equation in hot-potato routing 
for each offered load, g, and P d e j  E 0 in store-and-forward 
routing for alI offered load, g (71. 

- 
ED1 

8 lo[ 

. ~ - 0 3 , r i m ~  

Pdcf Pdef Pdef Pdcf + s=o.l,rimulrim - 
'*. 

, .... .. 
. ' .  .. 

' * *  .*. 
, .  *e.* 1 0 3  I 

t . I .  ,'.. Figure 2: State transition diagram for (2,4) shufflenet. The *. - 
. .  ... - * t  state number represents distance i , O  5 i 5 2k - 1, i. e., the 

104 T 

4 '  I 
0 0.1 0.2 

Pdef 

Figure 3: Simulation and analytic results of average number 
of hops, E[D], versus probability of deflection, Pdef for a 
(2,4) shufflenet. 

0 0 1 - P d e f  0 0 0 0 0  
0 0  0 1 - P d e f  0 0 0 0 
0 0  0 0 1 - P d e f  0 0 0 
0 Pdef 0 0 'network versus the deflection probability, Pdef.  We also 
0 0  pde f 0 plot our earlier results based on simulations [4]. As we can 
0 0  0 Pde f see, both analyses and simulation results agree very well. 
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Figure 5: Probability of don't care plotted against probabil- 
ity of deflection, P&f for a (2,4) shufflenet. 

norm. throughput 

0.3 
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I I 

1 
OF 
0 0.5 
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Figure 6: Normalised throughput for (2,4) shufflenet with 
hot-potato and store-and-forward routing algorithms. 

4 Conclusion 

We have presented a complete performance analysis of ( p ,  k) 
shufflenet with hot-potato and store-and-forward routing al- 
gorithm. By using the symmetric connectivity pattern of 
shufflenet, we are able to  model the behavior of an arbitrary 
chosen packet in the network as a discrete time Markov chain 
with 2k states, one of which is an absorbing state and the 
remaining (2k - I) states are transient. Several important 
network parameters and performance measures can then be 
analytically derived. Both analysis and numerical evaluation 
are greatly simplified compared with earlier results, in which 
the network is modelled as a Markov chain with N ( =  k p k )  
states, where N is the total number of users in the network. 
This simplification enables us to put some performance mea- 
sures in closed forms. The parameters we obtained - average 
number of hops, hops distribution and probability of don't 
care - hold for any (p, k) shufflenet. The throughput analy- 
sis of shufflenet is simply reduced to finding the relationship 
between the offered load, 9,  and the probability of deflec- 
tion, P&f.  The relationship depends on the parameters of 
the shufflenet, routing algorithms, buffer designs and mem- 
ory capacity [5, 6, 81. We finally present numerical results 
together with the simulation data for a (2 ,4)  shufflenet with 

hot-potato and store-and-forward routing algorithms. The 
analyses agree very well with our previous simulation results 
[41. 
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