
IEEE TRANSACTIONS O N  COMMUNICATION TECHNOLOGY, VOL. COM-19, NO. 6, DECEMBER 1971  1087 

a  separate  digital  expandor,  multiplier,  and  compressor. 
The conversion algorithms follow directly  from  the  digital 
expansion and compression  algorithms  developed  pre- 
viously [6].  Digital  attenuators ha.ving arbitrary  at- 
tenuation  have been systematically  synthesized  using 

’ simple  serial logic. Signal  impai,rment  attendant to  this 
operation  has  been  shown. 
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A Survey of Coding Schemes  for Transmission or 
Recording of Digital Data 

Abstract-In this  survey  we  shall  review  coding  techniques  and 
results  which  pertain  to  such  problems as  reduction of dc  wandering, 
suppression of intersymbol  interference,  and  inclusion of self- 
clocking  capability. These problems  are of engineering  interest 
in  the  transmission or recording of digital  data.  The  topics  to  be 
discussed  include: 1) dc  free  codes  such as  bipolar signals  and 
feedback  balanced  codes, 2) correlative  level  codes  and  optimal 
decoding  methods, 3) Fibonacci codes and  run-length  constraint 
codes,  and 4) state-oriented  codes. 
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I. INTRODUCTION 

HE PRESENT paper is intended  to  review  various 
coding  schemes  which have been developed and 
applied to  the  transmission or recording  of  digital 

data.  The coding  schemes to be discussed are  those 
primarily  developed  for  pulse-code  modulation (PCM) 
systems, high-speed data communication  systems, and 
high density  magnetic  recording  systems  in  order to  rk. 
duce  dc  wandering,  suppress i n t e r w m k l  interference! 
m~aintain . .. self-clocking ..... - .  capability,  and  allow^ effective 
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error  monitoring.  We will  show that these  various  tech- 
niques are  quite  similar  in  t’heir  underlying  concepts. 

I n  Section I1 we review the  bipolar  signal [2] used 
in  PCM  transmission  systems  and  extend  this  sig,naling 
method  to  the  multilevel case  in two  different  forms. 
The  feedback  balanced codes of Kaneko  and  Sawai [5] 
are discussed  in this  context. 

In  section I11 we discuss the  correlative level  coding 
technique  developed  by  Lender [6]-[8] , [ lo]  , and 
others  (often  called  the  partial-response  technique [14]- 
[161 which  is adopted  in a large  number of high-speed 
data modems today.  We  also  clarify  the  important 
analogy [17]-[20] between  a  digit’al  magnetic  record- 
ing  system  and  a  na,rtial-resnonse  channel.  Various  nro- 

- - - . 

- .  

-~ cessing - -~ .. techniques .. -- - developed for  partial-response 
modems are  equally ~ ~- applicable to  magnetic  recording - 
svstems.  Recent  develonments  related to  the  techniaue 

- -- 

--?- - 
will be brought  to’  the  reader’s  attentdon; tha t  is,  the 
maximum  likelihod  decoding (MLD) method [ 191 , [22] , 
[24] and  the  ambiguity decoding method [34]. Some 
recent  work  by  Miyakawa  and H a r a s h i w  [37] , [38] 
which  extends  the  correlative level  codinv  concept  is  also 
discussed. 

Section IV discusses t,he problem of constructilg  opti- 
mal a,lgebraic  block  codes  subject to  constraints  on  the 
maximum  and  minimum  separation  between successive 
changes  in  signal  levels. The  Fibonacci codes of Kaute 
[40] and  the run-lengt,h  limited  codes of Tang [41], 
[42], and  Tang  and  Bahl [44] will  be  reviewed. 

Section  V  discusses  a  class of codes similar  to  those 
of Sectmion IV,  but  the code generation  techniques  are 
ba.sed on  a  finite  state  machine model of the encoder. 
The  important  results  due  to  Freiman a.nd Wyner [46] 
are  revisited,  and  more recent.  work by  Gabor [52], Tang 
1431, and  Franaszek [49] , [53] is discussed. 

11. D C  FREE CODES 
For transmission of binary  digital  information  over  a 

line, the  simplest code format is unipolar  in  which  the 
binary  symbols 1 and 0 are coded for  transmission  as 
presence and absence of pulses,  respectively.  There  are 
three  significant  practical  problems  associated  with  this 
unipolar  format  (Sipress [ 11 ) . First,  timing  information 
must be  extracted  from  the  pulse  train  by  regenerative 
repeaters.  Transmission of long  sequences of 0’s results 
in long  periods  without  timing  information.  Secondly, 
transmission of long  sequences of 1’s results  in  dc  wander 
since the  repeaters  cannot  be  dc coupled to  the cable 
medium,  and  dc  restoration  circuits  are  in  general ex- 
pensive. Thirdly, some  technique  for  in-service  perform- 
ance  monitoring  is  desirable.  Performance  monitoring 
of the line  error  rate wit’h the  unipolar  format is impos- 
sible  without  inclusion of some  redundant  digits. 

One of the  simplest  approaches  is  the  bipolar code 
(Aaron [2])  used  in  t,he  Bell  System’s T1 carrier  PCM 
system. I n  bipolar,  the  binary  symbol 0 is  represented 
by  no  signal  on the line, and  the  binary  symbol 1 is 
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represented  alternately  by  positive  and  negative  pulses. 
This coding  method  has the  advantage of reducing  the 
effects of dc  wander, since: a pulse of one polarity  is  cer- 
tain  to be  followed  eventually by  a  pulse of the opposite 
polarity. 

The bipolar  signal  can  be  generated  in  various  ways. 
Probably t’he  simplest  way is to use the  binary  input 
{ a k }  to  drive  a  binary  counter,  and  to  control  the  polarity 
of the  ternary  output { c k } ,  by  the  present  state of the 
counter.  Here  we  discuss  two  other  methods that  have 
the  advantage of being  easily  generalized  for  m-ary 
alphabets. I n  Fig. 1 the  input  binary  data { a k }  is first 
“integrated”  modulo 2. That  is, the  integrated  output 
{ b k }  is  related  to {uk} by 

bk = b k - 1  0 Uk 
(1) 

= a0 @ a1 @ * ‘ ‘  @ ak-1 @ ak 

where @ means  “modulo 2” addition. It will be  clear that  
the sequence { b k }  corresponds to the  binary  counting 
of { uk}. The sequence { b k )  is then passed into  the “dif- 
ferential”  circuit  with  a  transfer  function 

G(D)  = 1 - D (2) 
where D means  a  one  unit  delay.  Then  the  output 
sequence { c k }  given by 

c k  = b, - b k - l  

is a three-level  sequence. Equation (1) 

b k  - b k - 1  = Uk modulo 

Therefore,  from (3) and (4) we have 

c k  = Uk modulo 2 .  

Thus the.  original  binary  signal  can 

(3) 
can be written  as 

2 .  (4) 

( 5 ) -  

be reconstructed 
--- simply  by  rectifying  the  ternary  signal { c k } .  

Another  method of generahe;  the bipolar  signal  is 
depicted  in  Fig. 2. Here  represents  the  quantity  in 
the  feedback loop and  corresponds to  the  running  sum 
(or integration) of the  past  output { c n :  1 5 n 5 k - 1}:  

= C C .  

k-1 

lL=1 

S” = 0. (7) 

It is not difficult to see, by  referring  to (3) ,  that  the 
running  sum { s k }  is  equivalent t o  { bk} .  The  quantity 
sgn {1/2 - s ~ - ~ }  controls the  polarity of the  next  digit 
ck so tha t  f l  and -1 alternate in the  output sequence 

The power  spectrum of the  bipolar  sequence { c k }  is 
obtained  as follows. If { a k }  takes on 0’s and 1’s inde- 
pendently  and  with  equal  probability, so does the se- 
quence { b k } .  Therefore  the  power  spectrums of sequences 
{ a k }  and { b k }  are  flat, i.e., 

{clc}. 
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MOD 2 {bk) OIFFERENTIAL 
INTEGRATOR  CIRCUIT 

Fig. 1. Generation of bipolar signals 

where 6 (  .) is the  Dirac  delta  function,  the power 
spectrum of a given  sequence {xk} is  defined  by [3] 

m 

P ~ ( x )  = R&) exp ( - - i k ~ ) ,  -r I X I 7r (9) 

and-R,(k) is the  autocorrelation  function of the sequence 
{xt}. The  inverse  transform of (9) is defined by 

k s m  

k = 0, $1,  +2, . . * . (10) 

The  mapping  from { b k }  into {ck} is  a,  linear  transforma- 
tion  with  a  transfer  function G (D) of ( 2 ) .  Therefore  the 
power spectrum of the sequence { c k }  is given by 

P.(V = IG[exp ( - i X ) l l  'Pb(X) 

-7r <: x I 7r. (11) 

Note  that as expected  there  is  no  power a t  dc. 
When  the  signal-to-noise  ratio (SNR) of the  channel 

is sufficiently  high,  one can  use  many levels for  trans- 
mission and consequently  increase the  data  rate  with 
the  same  symbol  rate.  L'et us assume  without loss of 
generality that  the  input sequence { a k }  takes on  values 
from a  set of integers (0 ,  1, , m - l } .  If we  redefine 
the  summation of (1 )  as  "modulo m" sum,  the  sequence 
{ b k }  is  also an m-level  sequence. This  transformation of 
{al,} into [ b k }  is  usually  referred  to a s  "precoding" and 
will be further discussed  in  Section 111. The  values which 
{clC} takes on range  from - ( m  - 1 )  to' (m' - 1). For 
a given ck, the original data UT, is  reconstructed  simply  by 

ah = c k  modulo m,. (12) 

The  last  relationship  guarantees  that  propagation of 
errors  in  bit-by-bit  detection  can be avoided.  The  first- 
order  distribution of { c k )  is given by 

- ( m  - 1) 5 i 5 m - 1. (13) 

1i2 

Fig. 2. Generation of bipolar signals (11). k-0.. , 1 .h 
o.; i .  ",<,{ ( .-c,.,lJ.r 

The power spectrum of this  multilevel  bipolar  sequence 
t.akes  trhe  same form as (11) : 

C!- ' I \ -  

(1 - cos A) (m2 - 1) 
6 Pc(l> = 

The bipolar  signal-generating  circuit of Fig. 2 is  also 
generalizable to  the multilevel  case: 

Sk = Sk-1 + c k .  (16) 

This encoding  procedure  is  a  special  case of the  feedback 
balanced codes (FBC) studied  by  Kaneko  and  Sawai 
[ 5 ] .  The  running  sum sk now takes on 2 (m, - 1 )  different 
values; (0,  1, , 2m - 3) .  From (15) and (16) we 
can see that  the sequence { s k }  is  a Markov sequence 
characterized  by  a  regula,r  chain  with 2 ( m  - 1)  states. 
The  range of values which { c k }  takes on  is  still [ - ( m  - 
I ) ,  (m  - l)] ,  but  its  distribution is different  from (13) : 

- _ _ _ _ ~  

i = O  
Pr (ck = i) = (17) 

With some  manipulation,  the  autocovariance  function of 
{ s k }  can be shown, [5] to be given by 

A - ( 2 m ( m  - 1) - 11, k = 0 

1 ( k (  # 0. (18) 
Therefore,  the  spectral  density of the sequence { s k }  

(except  for  dc  component)  is given by 

P,(x) = 1 1  - exp (-ix)I2 P.(x) 

Clearly  when m = 2, (20) is  equal t o  (14) the  spectrum 
of multilevel  bipolar  signal.  However, the  right-hand 
expression of (20) approaches  twice tha t  of (14) for -. 



1090 

large ?n. This is  due  to  the difference in  distribution 
forms (13) and (17).  

Sipress [ l ]  a.nd Franaszek [58] discuss ternary block 
codes in  which the  running sum sk of (16) is  defined as 
the  state of the  encoder;  a code  word  is chosen so as to 
maintain  the  value of sk close to zero. Some other  results 
which pertain  to  dc  free  constraint  or  spectral  shaping 
‘are  discussed  by Wolf [54], Gorog [55], and  Croisier 
[56]. Chien [ 5 7 ]  compares  various  dc  free codes in  terms 
of their coding efficiency. 

111. CORRELATIVE LEVEL CODING AND OPTIMUM 
DECODING METHODS 

The  correlative level  coding  or partial-response  signal- 
ing  schemes  have been  developed for applications to  
digital  data  modems. As we shall see later,  the  underlying 
concepts of these  techniques  are  quite  similar  to  those 
of the  dc  free codes  discussed in the previous  section. 

The  communication  model we assume here  is  a  base- 
hand  channel wit,h  pulse amplitude  modulation  (PAM) 
signal  transmission.  The  results  to  be  obtained  later 
are  extendable  to  other  modulation  systems.  Many 
authors  report.  applications of t’he  correlative  level cod- 
ing  technique t o  FA4 [6]- [ S I ,  phase-shift  keyed (PSK) 
[8],  quadrature  amplitude  modulation (&AM) 191, [ 101, 
vestigial  sideband (VSB) or single-sideband (SSB) sys- 
tems [ l l ] ,  [ l a ] .  

The system is characterized  by  a  t’ransfer  function 
H (f)  , which  summarizes  the  overall  frequency  character- 
istics of the  signal  generator,  the  eqoivalent  baseband 
channel,  and  the  receiving  filter  (including  an  equalizer, 
if any)  as shown  schematically  in  Fig. 3. Let. the  impulse 
response  function of channel H ( f )  he given by h ( t )  (Fig. 
4 ) .  A conventional  digital  communication  system chooses 
digit  spacing T large  enough to avoicl intersymbol  inter- 
ference,  thus  a  linear  system H ( f )  combined  with the 
sampler  is  essentially  a  “memoryless”  digital  channel. 

If we  choose the  sampling  spacing  and  phase  as  shown 
in Fig.  4(b),  the  resulting  digital  channel  has a one 
time-unit  memory,  and  the  transfer  function  from  the 
data source to  the  sampler  out,put is given by 

G(D)  = 1 + D. (21) 

Here we assume  the  values of h (t’) a t  t’ = iT’ are 
virtually zero except  for i = 0 and 1. If these  conditions 
are  not  met,  addit,ional  channel  shaping  is  necessary  via 
either  an  analog  filter or a  tmnsversal  filter.  Another 
way of looking a t  Fig. 4 (b j  is t.hat TYC introduce  a  full 
amount of intersymbol  int’erference  at, t’ = T’. Lender’s 
duobinary  signaling [6]-[8], which we will  describe 
later, is based on this  principle. 

A binary  data,  sequence {alc} is  first  precoded  into 
another  binary  sequence {bJ<}  according to  the rule 

b k  = b k - 1  @ ak. (22) 

The precoding  allows  us to  avoid possible propagation 
of errors.  and this transformation  is  eauivalent t o  the 
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Fig. 3. Digital  communication system. 

I - _- I - t’ 
-2T’ -T’ 0 T’ 2T‘ 3T’ 

Fig. 4. Impulse response  function h ( t )  and sampling instants 
( a )  Conventional signal. (h)  Duobinary signaling. 

modulo 2 integration defined by (1) for  bipolar  signaling 
of (2) .  This is  because the precoder  is an  inverse  filter 
1/G ( D )  defined 
the precoders of 
are o-iven by [ I / I  - D],,,,,~ 2 and [1/1 + DI,,,~ 2 ,  respec- D -----__.LL_ -- 
tively.  Clearly  these  two  are  equivalent.  The  accomplish- 
ment of this  duobinary  scheme  is  to  tra’nsmit  binary 
data atj the  Nyquist  rate  using  realizable  filters.  Further- 
more,  the system-is. rather insensitive to  the  change  in 
data.  rate [31] , O K $  

Lender [13] e. nded  the  duobinary  concept  to  poly- 
binary  signaling 

- 
G ( D )  = 1 + D + . . .  + DN (313) 

and  to  polybipolar  signaling 

G(D)  = 1 + D + . . . + DN-’ - DN - . . . - DZN-’ .  (24) 
The cases N = 1 in (23) and (24) reduce to  the  duobi- 
nary  and  bipolar  signals,  respectively.  Since  the  resulting 
signal is of multilevel  with  correlation  among successive 
digits, this class of code transformation  is  called  “corre- 
lative level  coding.”  A  communicat’ion  channel  with 
t’his type of signaling  technique is often called a “partia.1- 
response  channel” [ 141, [15], since  sample  points  are 
chosen a t  points  halfway to  a  full-reyonse  [Fig. 4 (b)  1.  . ’7 

A discrete  system  representation of correlative level 

-- - 

I 

coding  or  partial-response  system  with a precoder is 
given in  Fig. 5, where A ( D )  is the  polynomial  repre- 
sentation of sequence {as}  : 

m 

A(D)  = ukDk. (25) 

Among the  general  class [16] of  correlative  level coding 
or partial-response  signaling  methods  the  most frequently- 7 

k = l  

--- 

G(D)  = 1 - D2 a d ( 2 6 )  

used  is 

. -  
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paid in exchmge for the increase  in data  rate  and  the 
insensitivity to  system's  pert.urbation. 

Recently,  however,  Kobayashi [ 191-[22] and  Forney 
[23], [24] have  shown that  this  apparent decrease  in 
noise margin  is  not a.n inherent  drawback of the corre- 
lative  level  coding  technique,  but is due  to  nonopti- $" 
nlality of the  conventional  bit-by-bit  detection  method. ! 7 
They clarified an  analogy  between  a  correlative level (-1 
coder and a  co'nvolutional  encoder:  both  systems are 
representable  by  finite  state  machines.  This  observation lf 

led them  to  develop  a new type of decoding  method, (4 
namely,  the M L D  algorithm, which  is  analogous to  the 
Viterbi  algorithm  [25],  [26]  for  convolutional codes. 
Omura  [27]  has shown that   the  MLD algorithm  is  a 
special  case of dynamic  pro'gramming.  He  also discusses 
applications of this  algorithm  to  optimum receivers  for  a 
general  class of channels  with  memory [28],  [29]. Unger- .. - boeck 11591 dJlscusses a  sequence  decision  scheme by 
applying  the  maximum likelihood  decision rule  on bit: 
by-bit  basis. 

In  the present  section we will  derive the MLD al- 
gorithm in a different  way  from  the  earlier  publications 
[ 191, [22].  We will  show that  under  the  Gaussian noise 
assumption  the MLD algorithm  can  be viewed as a  new 
solution to  perform  matched  filter  detection on sampled 
sequences of infinite  length  without  requiring  an  un- 
reasonable  number of matched  filters. 

L,et us  consider the  simplest  case, i.e., G ( D )  = 1 - D 
with a binary  input which  charact'erizes  a  bipolar  en- 
coder  or a magnetic  recording  channel. The  input {ak},  
precocled sequence { b k } ,  and  the  channel  input  sequence 
{ck} are  related  by 

\ 

_I ___ __ .--. - 

- 

b k  = ak @ b k - 1 ,  bo = 0. (29) 
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CORRELATIM NOISE 
LEVEL 

PRECODER  ENCODER I 

Fig. 5. Discrete  system representation of correlative  level coding 
system. 

which  is obtained  by  shaping  the  channel  transfer  func- 
tion  into H ( f )  such tha t  

T 2 H ( f  - F) = G'[exp (-i2nfT)] 
m=-m 

= 2 exp [ -i(SafT - t) ]  sin 2afT (27) 

for  a chosen data  rate R = 1/T. The  simplest  solution t o  
(27) is clearly 

H ( f )  

2 exp [ - i(2njT - t)] sin ZafT, - 2 ~  5 f _< - 1 1 
_ .  - 2T 

lo , elsewhere 

(28) 
t,hat is, the  phase  characteristic of H ( f )  is  linear,  and  its 
amplitude  characteristic  is a.  half-cycle of sine  function, 
possessing  nulls a t  dc and at  the  Nyquist  frequency 
1/2T.  The  spectral n u i a t  b0t.h ends  are  desirable.  since- 
they  allow  insertion of pilot  tones which  convey the 
modulating  carrier  phase  and  the  data  clock. It will 
be clear  th-aAhe  system GAD) = 1 .=-D2 is mdhmat-  
ically  equivalent - to   an ,  interleaved formf_th_e bipolar 
signaling  system. 7 %\;> t* mz&%~ i7 c d  1 % ~  

Kobayashi and  Tang  [17],  [18]  recently  pointed  out 
that  a  digital  magnetic  recording  system  is  equivalent 
to  a  system  with G ( D )  = 1 - D. This is  due  to  the 
fact  that  saturating  recording  at  the  writing process 
followed by differentiation at  the  readback process  yields, 
in  effect, a digital  transfer  funqtion G ( D )  = 1 - D. The 
so-called  nonreturn to zero $k,&l$ayed (NRZQ  record- 
ing  method  is  equivalent to. the precoding  operation of 
( 1 ) .  They  have  proposed  a high density  recording  system, 
named  NRZI, which is  essentially  equivalent  to G ( D )  
= 1 - D2.  As far  as  the processing of readback  signal 
is  concerned,  the  system is linear; hence  processing 
techniques  developed for partial-response moderns ar3 
equally  applicable  to  magnetic  .recording  systems [ 191, 

Because of the  many  desirable  features  and  the  sim- 
plicity of implementation,  the  duobinary  signaling  and 
other  correlative  level  coding  schemes  have been  widely 
used in high-speed data modems.  However,  the  duobinary 
signal  has  three levels  in the  channel  output  which  must 
be distinguished;  thus i t  seems to  require  a  higher  SNR 
(ranging  2.1  dB - 3.0 dB  depending  on  the  location of 
the  channel noise source)  for  equal  performance  than 
the idea.1 binary  system.  This is the  penalty we have 

-~~_- - --_- -.--- 

- 

c__ 

PO]. ' 
-~ ~. ~.._ .. u- . ~. 

and 

c k  = b k  - b b - 1 .  (30) 

Suppose that  the  binary  information sequence { u k }  is 
of length N ,  i.e., 1 5 IC I N .  Since the sequence {UT,} is 
mapped  into { c k }  in  one-to-one  fashion,  there  a,re 2N 
different  vectors  which {ek} can  take on. 

Let ( Y k }  be the noisy output  from  the  channel: 

Yk = c k  + nk. (31) 

If we assume that  the noise  sequence { n k }  is a Gaussian 
randorn  variable  and is uncorrelated  from.  digit  to  digit, 
then  the  maximum likelihood  decision  criterion  is equiv- 
alent to the  minimum  distance decision rule  based on 
the  measure 

B(e) = (Yk - 8k)' = I IY - 1' (32)  
k 

where we denote e t o  represent  sequence { 8 k )  for  brevity. 
The  maximum likelihood solution  is that  b which  mini- 
mizes D(E), where 2 and L are  related  through (29) and (30). 
Let us rewrite D ( e )  as 

m e )  = - 2  < Y, e > + lle1I2 + IJY1I2. (33) 
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Since the  last  term is independent of C, the  maximum Then  starting  from 
likelihood  solution  is that  L which  maximizes 

J(C) = (Y, e) - 4 l l C 1 1 2 .  (34) 

Then a brute-force  method would  be to  compute J(c)  
of (34L)j for 2N different  patterns of c and  select  the 
greatest  one.  Such  a decision system could  be implemented 
using 2N different  matched  filters  in  parallel whose  impulse 
response  sequences  are { c ~ - ~ } ,  1 5 n 5 N .  This receiver 
structure is, of course,  impractical, since the sequence 
length N is virtually  infinite.  Now we will show that  this 
dimensionality  problem  can  be  overcome  by  applying  the 
discipline of dynamic  programming [30]. 

Let C k  denote  the  first k components of  sequence c 

= ((6, - 6"-,) Y" - +(6, - 6n-l)2). 
n = l  

the  repetitive  use of (40) and (41),  for k = 1 , 2 ,  . , N ,  
uniquely  determines the  maximum likelihood  solution. 
An implementation example of the MLD is  discussed in 
[19]. In   that  paper,  several  other  important  problems . 
are  addressed:  the effect of precoding  on the decoding 
error  rate  and  error  pattern,  the  number of quantization 
levels required,  and  the  problem of decoder  buffer  over- 
flows. 

The results  obtained  previously hold  with appropriate 
modification  for  a  class of systems GJI) = 1 +x ' 
and for  m,-level  signaling nL 2 2. The performance of 
the "ID is analyzed elsewhere [19], [22],  [24] in  great 
detail,  therefore we simply  quote  the  results. An asympto- 
tic  (i.e.,  for  a  high SNR) expression  for the  symbol  error 
rate in the MLD met,hod is given by [22], [24] : 

_ _  . 

P,,, = 4(m - l)Q ((,."!! -~ J / * )  (43) 

Then  the  maximum likelihood solution is equivalent to  where 
finding the sequence ( 6, ,  6,, . . . , 6,) which  maximizes 
J N  = J(C) ,  where N ,  the size of data,  can  be infinite. & \ &(x) = lm & exp {-g} d t  ps /'k pa+ 

(44) Now we write J ,  in  an  iterative  form 3 

and where R is the  channel SNR. The symbol  error rate 
-k (" - "-'"' - %(" - 6k-1 )z '  (37) of the con&ntiona,l  bit-by-bit  &tection  method is  given Jk = 

On  defining a  function p,( i )  as by c311 

and substituting (38) into (37), we obtain  the recursive 
relationship for { p k ( i ) )  : 

pk( i )  = F a x  { Jk-l + (i - 6,-,) Y, - $(i - 
Ibk- - l l  

i = 0,  1. 

Or, equivalently 

and 

Note  that (40) and (41) are  not  independent. For example, 
if &(o) = p k - - l ( ~ )  - Yk - i/i, then  it  follows,  that 
p,(l)  = p,-,(1). Similarly if pk(l) = pk-'(0) + Yk - 1/2, 
then ~ ~ ( 0 )  = C ( , - ~ ( O ) .  

Given  the  channel  output Yk, the  function pk(i) repre- 
sents a metric (or the likelihood value) of the  most likely 
sequence  among  all possible. candidates  with  the con- 
straint 6, = i. We know  the initial  condition bo = 0. 

The significance of the difference in  the  arguments of Q 
function  by a factor of a will be  appreciated if one  recalls 
the following approximation  formula [32] :  

&(x) L Z  q q ~ ? z  exp {-$} , z > 3.5. (46) 
1 

dn- 

In  terms of SNR,  the performance  gain of the MLD 
' method  over the  bit-by-bit detection  method  corresponds 

to  2.5 3.0 dB.  Therefore we can  recover, by use of 
this new decoding method,  the loss in noise margin 
previously  accepted as a  penalty  in exchange  for the 

The MLD discussed  previously  provides the best  per- 
formance  among  the  reception schemes known so far. 
We  can view this decoding  scheme as  the one  which 
makes  full use of the  redundancy  inherent in correlative 
level  coded  sequences. The conventional  bit-by-bit de- 
tection  method  has  partially  utilized  the  sequence  re- 
dundancy,  that is,  its  error  detection  capa.bility  has 
been  used for  monitoring  purpose  (See  Lender [8] and 
Gunn  and  Lombardi [33]) .  Kohayashi  and  Tang [21], 
[34] have  generalized  the  error  detection  method  to  an 
algebraic  form so that  a  simple  circuit  can  perform 
error  detection  for  any G ( D )  and'for  any m .  They  have 
extended the  algebraic  approach  to a more  general  de- 

\ desired spectral  shaping. 



cision scheme,  named the  ambiguity zone  decoding 
(AZD)  method,  in which the  quantizer  makes  a  soft 
decision including  ambiguity (or erasure) levels. Most 
of the  digits  in  the  ambiguity levels are  replaceable  by 
correct  values  by  using  the  inherent  redundancy of the 
sequence. The  AZD  method  is  an  extension of the  null- 
zone detection  method st3udied by  Smith [35]. An im- 
plement'ation  and  the  performance of this  algebraic  de- 
coder are discussed  in [34] in  great  detail. An asymptotic 
expression for  the  decoding  error  rate is given by 

Although  somewhat  infe,rior to t8he MLD  in  its  per- 
formance,  the  AZD  method possesses an  advantage  over 
the  MLD in its simple  implementation.  The  number of 
quantization levels  is in general  much  smaller than  that 
required  in  the 8iIL.D 1191, [22].  Furthermore,  in  the 
MLD method  the  number of "states," which determines 
the decoder  complexity, is mN for a' system G ( D )  = 
1 + Da'. Thus  the MLD algorithm  tends  to  require a 
significant  amount of computation effort and  memory 
requirement when the  number of signa'l  levels is large. 
The AZD  method will be more attractive in tha t  respect. 

The discussion we have  made  thus  far  in  the  present 
section  is,  in  principle,  applicable to  a general  form 

G(D)  = go + g1D + . * * + gnD" (48) 

if the {yi} are  a.  set of integers  wit,h their  greatest com- 
mon  divisor  equal  to 1, and go and  m  are  relatively  prime 
[36], @220 NIiyakawa'  and  Harashima 
recently'proposed a scheme  which  can  remove  this  con- 
straint. [3711 [3g1 i 

In  the correlative level  coding system of Fig. 5 we 
transformed  an  m-level  sequence A ( D )  into  another 
m-level  sequence B ( D ) .  However,  there is no  essential 
reason  why the precoded  sequence B ( D )  must be alssan 
m-level . ~ sequence. ~ . In  the scheme  which Miyakawa  and 
I%&ashima propose  (Fig. 6) , t,he  information  sequence 
A ( D )  is  transformed  into  sequence C ( D )  via  transforma- 
tion T ,  which is then  passed  into G - l ( D )  , the  inverse 
of the  channel G ( D )  . The  output l? ( D )  is  then  trans- 
mit.ted  over the  channel G ( D )  where the { s i }  are  not 
n%essarily integers.  The  transformation T must  satisfy 
the following constraints : 

a 

1) T is  invertible; 
2) sequence B ( D )  is  peak  limited, i.e., bInin I bk 5 

blllllX, for ~ 0 1 m  bmin and b,nlax. 

If, in  particular, G ( D )  represents  a  conventional  corre- 
lative level  coding system,  i.e., gi are integers and (go, 
?n) = 1, then  by  setting I 

8 .  
, , I . '  , ' I '  

T = C(D)[C-'(D)],,, , ' , \  , ". ; . (49)- 

finite  st&  machine G-l ( D )  has been  derived  by Kanaya +- 
W I .  

Clearly  the  class of T we allow  here  is  larger than  the 
cla'ss represented  by (49). We  determine T from  the 
following  considerations  in  addition  t'o the  two  conditions 
given previously: 

3) we should  be  able  to  obtain A ( D )  = T- ' .Q(D) 
without significant  problem; 

4) spectrum of 

go = 1. Then  the  implementa,tion of transformation T 
followed  by G-'(D) is  given by  Fig. 7, and sequence 
I ( D )  in  this figure represents  the  intersymbol  interfer- 
ence  sequence  due to preceding  digits 

I(D) = [G(D) - l ]B(D)  (50) 

or 

n 

i, = g i b k - , .  (51) 

The  intermediate  sequence {ck} should be determined 
so that 

i = l  

b m i n  5 c k  - i k  5 brnax. ( 5 2 )  

If the  information  sequence {ak}  is binary  and b,,i,, = 
- b,,:,, then  a possible transformation T can  given 
graphically  by  Fig. 8. Note ck is  determined  hy the 
present  input nk and precursor  interference  term i, which 
is a function of a-1, ak-2, * . Thus cli is uniquely  de- 
termined  by  the  past  input of { a,}. 

It will  be clear  that  the  MLD  and AZD  methods  de- 
veloped for  correlative level  coding systems  are,  in 
principle,  applicable to  this generalized  class,  since the 
system  is  representable  as a finite state  machine.l  The 
practical  implementation  and  performance  evaluation 
are  left  for  further  investigation. 

IV. ALGEBRAIC BLOCK CODING WITH  RUN-LENGTH 
CONSTRAINTS 

I n  sections I1 a,nd 111 we discussed methods of t'rans- 
forming  a given digital  sequence  into  a  sequence  with 
some desirable  properties. But  the  resulting  sequences 
contained  more  signal  levels than  the original  one. In  

cc , . L\( 5 ,  other  words,  redudancy  was  introduced  amplitudewise. 
B ( .D)  corresponds to t,he  precoded  sequence. It should 8bbpfd.j, ' 1 '  . ,  

in  terms of a  finite d a t e  machine T followed by  another i,e,, Qi = 0, i > [see (48) and ( 5 1 ) ~ .  
be remarked here that the representation Of  a precoder Ink- 1 Of cOurSe we aSSume here that  the channel is of finite  memory, 
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BOOLEAN {bk) DIFFERENTIAL 
INTEGRATOR  CIRCUIT 

Fig. 7. Implementation of transform T and G-l(D) ,  (go = 1). 
-3 

,There  are  some  applications, however,  in  which the  in- 
crease  in  signal  levels  is  not  desirable or allowable. 
Binary signals are easier to  generate  and  modulate  than 
ternary or multilevel  signals. As pointed out  earlier, 
there is a strong analogy  between  digital  communica-  system’that  generates  a  sequence  under.such  a  constraint 
t,ion system and a digital  magnetic  recording system. is  a  special  case of “discrete  noiseless  channels” studied 

Ok = I  
-0k =o 

Fig. 8. Transform T for  binary  input { a ~ } .  
c ;!-.?‘e/ - 5?w I=& 3% 4 673 . .  

r T h e  present  recording  technology,  however,  limits by  Shannon  in his  celebrated  Paper [45Il and  by  Freiman 

1 therefore, i t  is  necessary to  introduce sequences Of length n. Then we have 

input  signal levels to  two, since the  two  sahration and Wyner [461* 
are  the  only  sta.ble levels. Under  these Let N k ( n )  denote the number Of distinct 

! form  different  from pseudo terna y or  correlative level 
c ’ codes. . - - - -P I .L /L ” .2  uulc\&\ /U- !% <Ik’8x% Nk(n) = n 5 k  (54) 

Kautz  [40]  introduced  a  family of codes to  represent 
binary  data  subject  to  constraints  on  the  maximum 
separation between  successive  changes in  signal  levels. 
This  constraint is motivated by applications  to  record- 
ing  systems in  which the clock of reading  (receiving) 
side  must be derived  from  the  data  itself. As was  men- 
tioned  in  Section 111, level transit.ions  yield  plus or minus 
pulses at  the  readback process ; this  information  can be 
used as  synchronizing  information. Naturally  the  same 
argument holds for  communication channels with bipolar 
signaling. 

Given  a  sequence X = [X,, X,, . . . ]  of 0’s and l’s, its 
((modulo 2 derivative” is  defined as  a  sequence Y = 
[Y1 ,  Y,, . . .] with 

Y ;  = x; @ xi-ll i 2 1 (53) 

where X, is  defined as  a reference binary  state.  By  this 
transformation, each string of 0’s and 1’s in X is  converted 
into  a  string of 0’s (but  shorter  by one) in Y. For example, 
if X = [001111000001111000] with X ,  = 0, then Y = 
[001000100001000 1001. Therefore  the  problem  originally 
addressed  is  reduced to finding the class of Y in which it 
is required that  at  most k O’s’occur  between  successive l’s, 
where k is the  constraint  parameter k = 1, 2,  3, . 1 . . 
We  call  a  sequence  (code)  subject  to  this  constraint  a 
“k-limited”  sequence  (code) or  iLk-constraintll  sequence 
(code),  following  Tang’s  terminology [41]-[44].’ 

The  system which generates  a  k-constraint  sequence 
can  be  conveniently  represented by a  finite state  machine 
model as  in Fig. 9, where the nodes  correspond to  the 
states  and 0 or 1 is generated a t  each state  transition. A 

constraint  parameter. 
2 There is  no particular meaning in choosing the symbol k as  a 

1% Nk(n - i), n 2 k + 1. 
i = l  

The preceding  equation is obtained  based on the follow- 
ing observation. For n < IC, any  binary  sequence does 
not  violate  the given constraint.  For n 5 k + 1, if a code 
sequence starts  with (i - 1) zeros  followed by  one, i t  
may be followed  by any of N k  (n  - i) k-limited se- 
quences of length (n - i). When k = 1, the recursive 
of  (54)  generates N 1  (0) = 1, AT1 (1) = 2, N 1  (3) = 5, 
etc.,  and  this is  well-known  Fibonacci  numbers [47], 
[48] .3 For IC > 1, Kautz calls the sequence { N k ( n ) }  
generalized  Fibonacci  numbers. As we shall see later, 
these  numbers  appear as weighting coefficients in  en- 
coders and decoders. 

Equation  (54) is rewritten as 

Nk(n) = i”’ O l n l k  

2Nk(ns- 1) - N,(n - k - a ) ,  n 2 k + 1. 

(55) 

In  order to  o’btain  asymptotic expressions for N k ( n )  , 
let us  consider the  generating  function4 G ~ ( z )  of 
{N, (n)  1 : 

0, 

Gk (2) = Nk(n)zn. (56) 
“ = O  

From  (54)  and (56) we obtain  after some manipulation 

3 The so-called Fibonacci  sequence {Fn} is  defined by Fo =. 0, 
Fl = 1, F,, = F,, + F,.?, n 2 2. Therefore, the following r e l a t m  

41f we use 2-1 instead of z, then G r ( z )  represents  the z trans- 
holds: Nl(n)  = Fn+z, n 2 2. 

form o f  sequence { N r ( n ) } .  
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For :t finite state machine of Fig. 9, b is  given  by 

Fig. 9. Finite state machine  model of k-constraint  sequence 

1 + x +  . . .  + X k  ( q 2 )  = ~ _ - _ _ _ - .  
1 - EXi 

k + l  

i = 1  

Consider,  for  example, the case k = I 

(57) 

where 

Then we get a closed  form  expression for A T l  (72) as  fol- 
lows : 

1 N,(n)  = Ti - T+,). (60) 

It can be shown [48] thnt N l ( n )  is  bounded as follows: 

1 
n n log, 4 5 - log, N,(n) I --- log, 4 .  n + l  (62) 

Therefore  the  information per  symbol  in an  optimal 
code  with the  const'raint k = 1 is  givcn  for  large n by 

C = lim log' N1(n)  = log, + = 0.6942. (63) 

This is  called the  "capacity" of the given  "noiseless 
discrete  channel," if  we follow  Shannon's  terminology 
[45]. For a  general k 21, t'he  capacity C is given by [45] 

n+m n 

C = log, X" (64) 

where zO is the largest  real  root of the  characteristic 

k + l  

1 -  CX"0 
i = 1  

or  equivalently 

(65) 

1 - 22 + X k + ,  = 0. (66) 

Franaszek [49] ha,s  found  another  met,hod  to  compute 
the  capacity C based  on the  transition  matrix. Define the 
transition  matrix b = [dii]  by 

if a  transition  from  state i to  state j is allowed 

d i i  = r" 0, otherwise (67) 

b = l .  1 0 0 1  

11 0 0 0 . : . .  0 ll 
Then C is  bounded  by 

(69) 

for any n 2 1. The IC is the  number of states. 

Example 1 

Consider the case  where n = 4 and lc = 1. Then  there 
are  N,(4) = S such  codewords, Y, as  listed  in  Table I. 
In Table 19 lists the complements of code  words of Y and 
therefore  satisfies the following  condition: 

every n (  = 4)  digit  code  word in Y contains  no 1 strings 

longer than IC( = 1). (70) 

The  set of all  4-digit binary sequences (with no IC con- 
straint)  contains 24 members,  and  they  can be mapped  to 
integers o to 24 - I, using 2i (0 5 i 5 3) as  weights. It 
will not  be difficult to see that  eight  sequences of Table I, 
Y, can  be  mapped  into int>egers 7  to 0 by assigning  weights 
5 ,  3 ,  2, 1 from  the  leftmost  to  rightmost  digits.  Consider, 
for  example, the second member  from  the  top of Table  I: 
Y = [OllO], P = [1001]. Then 

I@) = Nl(3) x 1 -k N1(2) x 0 

+ N,(O) x 0 + Nl(0) x 1 
= 5 X l + l X 1 = 6 .  (71) 

Kautz [40] has generalized this  observation  and  has 
shown that for general n and k the complement P of a 
code word Y = [Y,Y, . . . YJ in lc constraint code of 
71 digit,s can  be  enumerated  by  tJhe following  formula 

n 

I(P) = Nk(n - i) Pi (72) 
i = 1  

where N k ( n )  is a generalized  Fibonacci  sequence  defined 
by  (74).  The  linear  relationship of (72) makes the encoding 
and  decoding  operations  very simple.  Encoding  proceeds 
as follows. Given  a  binary  source sequence, we first  chop 
the sequence into blocks of length 8, where 8 = rlog, N & L ) . ~  
A binary Gector of length 8 is mapped  into  an  integer I ,  
where 0 5 I 5 Nk(77,) - 1 5 2' - 1. Integer I is then 
transformed  into  vector P of size 7~ according to  the 
following rule: 

R, = I (73) 

x I t ! < z + l .  
5 For a given  real  number x, we define the  integer R = x by 
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The preceding equation is ohstained based  on the fol- 
lowing observation, If a code  sequence starts  with 0 it 
may be  followed  by any of N d ( n  - 1) d-limited  se- 
quences of lengt’h (n - 1). On the  other  hand if a code 
starts with  a, 1, a t  least d 0’s must follow but  then  it  may 
be followed  by any of N d ( n  - d - 1) d-limited  se- 
quences of length (n  - d - 1 ) .  When n i d, the se- 
quence must  either be all 0’s or contain 1 a t  only  one 
digit.  (Recall that  d constraint is not  required for 
boundary  runs.) 

The  generating  function Gd(Z)  of { N d ( n )  } is  defined  by 

0101 
0110 ’ 1001 

1010 

0111 1000 
1010 
1011 
1101 

0100 
0010 

oloi 

1110 0001 
1111 0000 

pi = jl, if Ri 2 N,(n - i) 
(74) 

0, otherwise 

R i + l  = Ri - p i  X Nk(n - i), i = 1, 2 ,  . . . , n. (75) 

The decoding operation  obviously  performs the inverse of 
the encoding  procedure. 

Tang  [41], [42], [44]  has ext,ended  t’he results  of 
Kautz  to  a class of codes in which the  minimum  as well 
as  the  maximum  string  length is limited.  This  additional 
constraint  keeps  adjacent  transitions  apart  to  avoid ex- 
cessive intersymbol  interference. Tang  and  Bahl  [44] 
further  generalize  the  result  to  multilevel  cases. 

Tang defined a  dk-limited  sequence  as a ,  sequence 
satisfying  simultaneously  the following  conditions: 

1) between  any  pair of adjacent 1’s the  run-length of 0’s 

2 )  any  run-length of 0’s is a t  most k .  
is a t  least d ;  

When we “integrate,  modulo 2” a dk-limited  sequence Y, 

x; = x,-1 @ Y i  

= x, + Y 1 @   Y , @  . . *  @ Yi (76) 

then  the  length of any  run of 0’s and 1’s in  the  resulting 
sequence X is a t  most k + 1; and except  for  boundary  runs, 
the  run-length  is  also a t  least d + 1. 

Example 2 

Let  d = 1, IC = 3, and n = 9. A sequence  which  satisfies 
these  constraints is given,  for  example, byY = [100010101]. 
By  integration we get  the X sequence X = [111100110] or 
[000011001] depending  on X ,  = 0 or X ,  = 1. The  run- 
length  in X is a t  most k + 1 = 4  and  is a t  least d + 1 = 2 
except a t  block boundaries. 

Let us  first  consider the case k = m, i.e.,  no  constraint 
on  the  maximum  run of 0’s. Such  a  sequence is  referred to  
as d-limited or &constraint  sequence  [41], [44]. Let N,(n) 
denote  the  number of distinct  d-limited  sequences of 
length n. Then  the following  recursive equation 

Nd(n) = N d ( n  - 1) + N d ( n  - d - l), 71. 2 d 

with  t.he  initial  condition 

O < n < d  

n < 0. 

(79) 
S = l  

From (77)-(79) we obtain 

- - (1 + z  + * . .  + z d ) .  
(1 - z - Z d + l )  

Thus  the  characteristic  equation of the d-limited  sequence 
is 

1 - - zd+l = 0. (81 1 
Note  that Gd(z) ,  for d = 1, is equivalent to  Gk(z), for 
k = 1, given by (58). I n  fact,  a k-limited  code, for k = 1, 
and  a  d-limited code, for d = 1, are  complementary  to 
each  other,  for  all n. For example, the  eight. code  words 
of Table I, E, form  the  d-limited code, for d = 1, n = 8. 

Tang  and  Bahl [44] obtained  the recursive  equation 
for Ndk(n) ,  the  number of dk-sequence of length n: 

‘12+1,  l l n < d  

Ndk(n - 1) + Ndk(n - d - l), 
d + l < n i k  

I k + l < n < d + k  

The  characteristic  equation of  dk-sequence  is  obtained as  

Z k + 2  - Z k + l  - z k - d + l  + 1 = 0 .  (83) 

It will  be clear that  (83) reduces to (66) and  (81), for 
d = 0, and k = 00, respectively. 

The d, k ,  and dk sequences of finite block  length 
n  cannot  in  general be concatenated  without  violating 
the given constraints at  the boundaries. Tang  and  Bahl 
[44] describe a method of inserting buffering  sequences 
of smallest possible fixed length p between adjacent 
code  sequences so that  the given constraints axe not 
violated.  Degradation in overall  coding efficiency can be 
made  arbitrarily  small  by choosing n large  enough,  since 
B is a  function of d and  k  onlv. 
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In  the k-limited  case (d = O ) ,  the insertion of a  single 
1 between any  two k sequences  is sufficient to preserve k 
constraint.  Therefore, /3 = 1. In  the d-limited  case ( k  = 
00) , t.he insertion of ci zeros  is  sufficient. Therefore, ,8 = 
d. In   the  general  dk-limited  case  the  shortest buffer is  de- 
pendent  on  the end of the previous  sequence and  the be- 
ginning of the  next  sequence, [44]. 

Before closing the  present  section we discuss  some  other 
applications of the k sequences. If the  frequency  charac- 
teristic of a channel  contains  imperfections at both  the 
low- and high-frequency  ends,  alternations of 1’s and 0’s) 
as well as  runs~of 1’s and 0’s tend  to build up  intersymbol 
interference ~[50j) Sequences  which  avoid  these  two types 
of undesirable patterns  can  be  generated  based  on k 
sequences. Let a k sequence Y be  integrated t o  give X 
sequence,  whose  transitions are  separated  by (k + 1) 
digits. If we further  integrate X sequence, then  the resul- 
tant sequence 2 contains  runs of 0’s or 1’s or  alternations 
of 1’s and 0’s not more than ( k  + 2 )  digit  long. 

Mine et al. [51] discuss a scheme t o  encode a binary 
sequence into a three level  sequence  for  asynchronous 
transmission  where  they  require 1) the signal  level +1, 0, 
or - 1 cannot  hold  its  level,  i.e., a level transition  must 
occur  with  every  digit; 2 )  in  order t o  allow dc  free  trans- 
mission, + 1 and - 1 must  alternate.  Such  requirements 
are closely related t o  Kautz’s  Fibonacci  code (or Tang’s 
k sequence) and  to  the bipolar  signaling. First a binary 
sequence  is  encoded into a k sequence  using IC = 1. A 
typical  output  sequence Y is  shown  in  Fig.  10(a)  where 
two successive 1’s are  separated  by at most k (  = 1) zeros. 
The sequence Y is then  integrated  to yield X, where  runs 
of 0 and 1 are  at  most IC + 1 (= 2 ) .  The sequence X is 
then passed into a  differential  circuit 1 - D yielding  a 
desired  three-level  sequence  as  shown in  Fig. lO(c). It is 
interesting to note  that  the mod,ulo 2 integrator  is  equiv- 
alent  to precoding  for 1 - D. Thus  by  taking modulo 2 of 
the three-level  sequence 2, we recover the Fibonacci  code 
output Y with  no  propagation of errors. 

\ 

V. STATE-ORIENTED CODES 

In  the generalized  Fibonacci codes and  the  run-length 
limited codes, we added  some fixed symbols to avoid 
violations of the c0nstraint.s at   the code word boundaries. 
However,  the loss of the efficiency due  to  these  redundant 
digits is not negligible  when the code  length  is  relatively 
short. 

Freiman  and  Wyner [46’] developed  a method  for de- 
termining  maximum size  block  codes  with the  property 
t.hat no concatenation of code  words violates given  code 
restrictions.  Although  their  results  are  applicable  to  any 
type of constraint  characterized  by  finite  state  machines, 
we  limit  ourselves to  the  run-length  constrained codes. 

Let us  consider  k-constraint codes with k = 2. The 
state  transition  diagram is given by Fig. 11 (a) .  By in- 
troducing  time  paramet’er  explicitly we obtain  what we 
call  the  trellis  picture of the finite state  machine  as  is 
shown in Fig. 11 (b)  . We  consider the problem of finding 
an  optimal fixed code of length 3. Fo,r any chosen  code, 
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Fig. 10. Combination of Fibonacci coding and  correlative level 
coding. 
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Fig. 11. k-constraint sequence with k = 2.’ (a)  State transition. 

(b) Trellis. 

a sequence of coded  messages  corresponds to a path on 
the  trellis  picture  starting a t  time = 0. Code  blocks  ter- 
minate a t  times = 3,6,9, * * , etc. If we restrict  ourselves 
to fixed codes, the selection of a  code  is equivalent  to  the 
selection of a fixed terminal  set T .  Then  the  correspond- 
ing code  consists of those Sequences of length 3 which 
induce  transit.ion  from  every state in T to some state 
in T.  Consider  a  terminal  set T,) = {so}. Then i t  will be 
clear that  the code has  four  members 

Go = (001,011, 101, 111). 

Next,, we consider  a  terminal  set TI = {s,,, sl}. The cor- 
responding  code Cl now has five members 

c, = (010,011, 101,  110, 111). 
By adding s1 to  the  original  terminal set To,  we are 
forced to  eliminate  001  from  the code,  since  001 is  not 
allowable  from  the  terminal  state sl. However, we now 
have  t~wo  additional  members 010, 110;  thus  the  net 
gain  is 1 codeword.  Consider the 1a.rgest possible ter- 



minal  set T2 = {so, sl, s 2 } .  Since state s2 does not allow 
symbol 0 as  the  emanating  symbol,  sequences 010, 011 
cannot be codewords, and we add one codeword 100. 
Thus C2 has  four  members: 

6, = (100, 101, 110, l l l } .  

Therefore,  among  the  three  terminal  sets  considered 
previously, T1 = {s,,, sl} gives the code of the  largest 
size. In  fact,  it  can be  shown  t,hat Tl is  optimal  among  all 
possible terminal  sets. 

Freiman  and  Wyner [46] have  shown that  the op- 
timum  k-limited  block code  of  length n. ( > k )  is the one 
which corresponds  to  optima,l  terminal  sets TkI2  when k 
is  even, Tk-,/2 or Tk+,,2 when k is  odd,  where 

Ti = {so, s l ,  . . . , si). (84) 

The  generating  function of optimum code  size sequence  is 
given by [46] 

k = 0  

1 - min (i, k - i j x i + l  

1 - Czi 
F k ( z )  = 

i = o  
k + l  (85) 

i = 1  

Taking  the difference  between (57) and (85) 

k - 1  

[I + min {i, k - i ) l x i c 1  
Gk(x)  - Fk(z )  = 

i =0 
k + l  . (86) 

1 - Exi 
i = 1  

The coefficient of the z" term of (86) represents  the  num- 
ber of sequences  which must be discarded  from  Kautz's 
and  Tang's  k-limited codes of length n so that co'de 
words can  be  freely  concatenated. 

Similar  results  have been obtained  for  the  d-limited 
case.  Fig. 12 show the  state  transition  diagram  and  trellis 
diagram  for d = 2. Consider the code  length n =. 4.  
Since  every  sequence  allowable  from si is also  allowamble 
from sj, 0 5 i 5 j I: 2, we need  consider  only the fol- 
lowing three  terminal  sets: To = {sz}, TI =' { s z ,  SI}, T2 
= {sa ,  sl, .so}. For  terminal  set To ,  the code  consists of 
three  members, i.e., Co = (0000, 0100, 1000). For ter- 
minal  set T I  we have C1 = (0000, 0010, OlOO}, and  for 
T2 the corresponding  code  is  given by C2 = {OOOO, 0001, 
OOlO}.  Thus  an  optimal code has size  three  but  the code 
is  not  unique. In  fact  for  any  d-limited  code of any code 
length n > d, the following  t,erminal  sets are  all  optimal 
[46] : 

Ti = { S d ,   S d - 1 ,  * ' ' 7 s d - i ) ,  O 5 j I d. (87) 
The  generating  funct'ion of optimal  code size  series  is 

given by 

1 
F d ( 2 )  = d + l  ' (88) 1 - 2 - 2  

From (86) and (88) we see that  the coefficient of z" in 
the  polynomial 

.- 
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Fig. 12. d-constraint  sequence wit,h d = 2. (a) State transi.tion. 
(h )  Trellis. 

gives the  number of sequences  which  must  he  eliminated 
from  the  d-limited code of 1engt.h n t o  avoid  end effects. 

In   the class of codes studied  previously, code  words 
can  be  freely  concatenated  without  violating  the se- 
quence  constraints,  since  any code  word  is allowable 
from  every  state  in  the  terminal  set.  Thus  we  can decode 
without  knowing  the  present  state of the encoder. If we 
relax  the  requirement of state  independent  decoding,  we 
can  increase  the code efficiency. Gabor [52] introduced 
a state  dependent code for  the  constraint IC = 1 and  for 
code  length n = 4, achieving  the  rate 2,/3 which  corres- 
ponds to 96 percent of the  capacity.  Subsequently  Tang 
[43] obtained sirni1a.r encoding  rules  for  severa'l dk- 
limited codes of various  block  lengths.  We  denote  the 
length of information block and  the length of codeword 
by 1 and n, respectively.  Then  a  practical  encoding 
scheme  has' been found [43], for (d ,k;  Z,n) = ( 1 , ~ ;  2,3), 
( 2 , ~ ;  2,4),  (1,5;  3,5), ( 1 , l O ;  4,6),  (2,5;  2,5),  (2  10. 3 6) 
and ( 3 , l l ;  2 ,5) .  7 

The following  example (d , k ;  Z,n) = (2,co ; 2,4) is  based \ 
on  Tang's  result.  We  saw that Freiman-Wyner's code for 
d = 2, n = 4 contained  only N = 3 codewords.  Therefore, 
with a fixed code I = 2 is not  achievable.  Consider  the 
largest  terminal  set T 2  = { s 2 ,  sl, so} of Fig. 12. We see 
from  Fig. 12(b) that  there  are six sequences of length 4 
which are allowable  from s2. But  there  are  only  three of !i 
those  from  states s1 and sI,. Therefore if the enqoder is 
at   state sz, the  number of Sequences available  for  encod- 
ing I = 2 bits is more than sufficient; at   state sl, or so the 
number of sequences  is  insufficient. cA3 

Let t.he  present  state of encoder be d .  The vt is 
uniquely  determined  by  the  last d(=2)  symbols of the '.3. 
previous  codeword6: 

\ \  

wt = g(Xs t - ' ,  x,"-'). (90) 

u* is  uniquely determined by XSf-1  and X g t - l .  Specifically: g(0,O) 
6Since the finite state machine of Fig. 12 has memory d = 2, 

=s., g(1,O) = sl; and g(0,l) = so. 
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Let m( = 2 )  bit  information  data  to  be encoded  be  denoted 
by at = [ult, uzt ] .  Then we consider the following  encoding 
rule 

X t  = [ X l t ,  X," 

= f ( 2 ;  a,', u z t ,  U l t + ' )  (91) 

= f(g(X3"-',  X,"-'), U l t ,  uzt ,  a,'+'). 

The new state of the encoder  is then given  by 

at+l = g(Xst ,   X , ' ) .  (92) 

One  such  encoding  rule f ( ) is  given  in Ta.ble 11. Here 
a blank  in  the  column o.lt+l means that  it   can be  either 
1 or 0. As is  clear  from  this  t'able  and (91),  this  encod- 
ing  rule  is  a  ((look-ahead"  state  dependent  encoding 
scheme. The logical equation for encoding  and decoding 
can  be  derived  from  the  set of truth  table of Table 11. 

Wit.h a close observation of Table 11, the  reader  may 
be  able  to find the  rule which greatly simplifies the en- 
coder. That is, Table I1 can  be  .replaced  by the encoding 
rule of Ta.ble 111. This new encoding  rule is equivalent 
to assigning  terminal  state s2 a t  every  other  time  unit  in 
the  trellis  picture ass  shown  in  Fig. 13. Allowable  code 
words start  from sp and  end a t  s2 after  two or four  time 
units.  Franaszek [49] developed  a  method of construct- 
ing  this  type of code  which he  calls  synchronous  variable 
length  codes. Both  input  and  output block  lengths are 
variable  but  the  information  bit  per  symbol  ratio' is con- 
stant over  each  codeword. This  synchronous  feature 
eliminates  the need for buffers  in  encoding the decoding. 
Franaszek  reduces  the  problem of finding an  optimal 
variable code to  that  of selecting  a  set of principal states .  
This  notion is analogous to finding an  o'ptimal  terminal 
state  set  in  the method of constructing  a fixed code.  A 
principal  state  set T ,  has  the  property  that  from  each 
state in T,, there  exists  a sufficient number of distinct 
paths  to  other  principal  states  to  maintain  the  informa- 
tion  rate  required.  A  dynamic  programming  algorithm 
has been applied t o  a systematic  search of principal 
states.  Optimal  variable  length codes for  various (d,k) 
constraints  have been  found [53]. 

VI.  CONCLUDING REMARKS 
The review  has  covered  in  varying degree of detail 

several coding techniques  for  the  transmission or record- 
ing of digital  dat'a.  The  author hopes tha t  he  has  indi- 
cated  some of the  major  areas of recent  development  and 
some  underlying  mathematical  concepts  shared  by 
variety of efforts currently engaged in  digital  communi- 
cation  and  recording  techniques. 

The coding  schemes  treated  in  the  present  paper  are 
different  from  error  detection or correction codes which 
are  intended to combat  against  the  random or burst 
noise. Rather.  these  techniaues  are  the  means to  comDen- 
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sate for undesirable_.dets&inistic Charac te r i s t icsTa  
giveri channel.  Whatever  the  motivation for code con- 
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t t  

TABLE I1 

a:+l X:  X: X: X: a t+l 

0 0  

1 0  

1 1  

0 1  
0 1  

1 0  

1 1  

1 1  

0 0  

0 1  
0 1  1 0 0 1 0  

TABLE I11 

Input output 

1 1  l n n n  

I 

0 

Fig. 13. Assignment of terminal  states s2 at  every other  time 
unit.. 

version may be, the encoded  sequence  includes  some  re- 
dundancy which  should be exploited  as  muchag.pJssible 
to  improve  the  reliability  against  random noise. We 

____ .. - ~~ 

have  found  practical  solutions  (i.e.,  the MLD and  AZD 
methods) to  a  class of correlative level codes'. An exten- 
sion o f  similar  approaches to other types of codes (e.g., 
run-length  limited codes) is  left for the  future  investiga- 
t* 

--__ ~. ~ 
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