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a separate digital expandor, multiplier, and compressor.
The conversion algorithms follow directly from the digital
expansion and compression algorithms developed pre-
viously [6]. Digital attenuators having arbitrary at-
tenuation have been systematically synthesized using
‘simple serial logie. Signal impairment attendant to this
operation has been shown.
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Abstract—In this survey we shall review coding techniques and
results which pertain to such problems as reduction of dc wandering,
suppression of intersymbol interference, and inclusion of self-
clocking capability. These problems are of engineering interest
in the transmission or recording of digital data. The topics to be
discussed include: 1) dc free codes such as bipolar signals and
feedback balanced codes, 2) correlative level codes and optimal
decoding methods, 3) Fibonacci codes and run-length constraint
codes, and 4) state-oriented codes.
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I. INTRODUCTION

i HE PRESENT paper is intended to review various
Tcoding schemes which have been developed and

applied to the transmission or recording of digital
data. The coding schemes to be discussed are those
primarily developed for pulse-code modulation (PCM)
systems, high-speed data communication systems, and
high density magnetic recording systems in order to re-
duce de wandering, suppress intersymbol interference,
maintain self-clocking capability, and allow effective
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__error monitoring. We will show that these various tech-
‘niques are quite similar in their underlying concepts.

In Section II we review the bipolar signal [2] used

in PCM transmission systems and extend this signaling

method to the multilevel case in two different. forms

The feedback balanced codes of Kaneko and Sawai [5]
are discussed in this context.

In section IIT we discuss the correlative level coding
technique developed by Lender [6]-[8], [10], and
others (often called the partial-response technique [14]-
[16] which is adopted in a large number of high-speed
data modems today. We also eclarify the important
analogy [17]-[20] between a digital magnetic record-

ing system and a partial-response channel. Various pro-

_cessing  techniques developed for partial-response

modems are equaﬂx_applicable to- magnetic recording

_systems. Recent developments related to the technique
will be brought to the reader’s attention; that is, the
maximum likelihod decoding (MLD) method [19], [22],
[24] and the ambiguity decoding method [34]. Some
recent work by Miyakawa and Harashima [37], [38]
which extends the correlative level coding concept is also
discussed.

Section IV discusses the problem of constructing opti-
mal algebraic block codes subject to constraints on the
maximum and minimum separation between successive
changes in signal levels. The Fibonacci codes of Kautz
[40] and the run-length limited codes of Tang [41],
[42], and Tang and Bahl [44] will be reviewed.

Section V discusses a class of codes similar to those
of Section IV, but the code generation techniques are
based on a finite state machine model of the encoder.
The important results due to Freiman and Wyner [46]
are revisited, and more recent work by Gabor [52], Tang
[43], and Franaszek [49], [53] is discussed.

II. DC Frer CobEs

For transmission of binary digital information over a
line, the simplest code format is unipolar in which the
binary symbols 1 and 0 are coded for transmission as
presence and absence of pulses, respectively. There are
three significant practical problems associated with this
unipolar format (Sipress [1]). First, timing information
must be extracted from the pulse train by regenerative
repeaters. Transmission of long sequences of O's results
in long periods without timing information. Secondly,
transmission of long sequences of 1’s results in de wander
since the repeaters cannot be de¢ coupled to the cable
medium, and de restoration circuits are in general ex-
pensive. Thirdly, some technique for in-service perform-
ance monitoring is desirable. Performance monitoring
of the line error rate with the unipolar format is impos-
sible without inclusion of some redundant digits.

One of the simplest approaches is the bipolar code
(Aaron [2]) used in the Bell System’s T1 carrier PCM
system. In bipolar, the binary symbol 0 is represented
by no signal on the line, and the binary symbol 1 is
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represented alternately by positive and negative pulses.
This coding method has the advantage of reducing the
effects of de wander, since a pulse of one polarity is cer-
tain to be followed eventually by a pulse of the opposite
polarity.

The bipolar signal can be generated in various ways.
Probably the simplest way is to use the binary input
{ax} to drive a binary counter, and to control the polarity
of the ternary output {c;)}, by the present state of the
counter. Here we discuss two other methods that have
the advantage of being easily generalized for m-ary
alphabets. In Fig. 1 the input binary data {a;} is first
“integrated” modulo 2. That is, the integrated output
{bs} is related to {ax} by

b, = blc—1@ak
=ao®al®"'@ak—1@vak

where @ means “modulo 2" addition. It will be clear that
the sequence {b,} corresponds to the binary counting
of {a:}. The sequence {b,} is then passed into the “dif-
ferential”’ eircuit with a transfer function

GD)=1~D )

where D means a one unit delay. Then the output
sequence {cx} given by

¢y

6 = by — by (3)
is a three-level sequence. Equation (1) can be written as
by — bi-1 = a, modulo 2. (4)

Therefore, from (3) and (4) we have
¢ = a, modulo 2. )

Thus the original binary signal can be reconstructed
simply by rectifying the ternary signal {¢;}.

Another method of generating the bipolar signal is
depicted in Fig. 2. Here {s; 1} represents the quantity in
the feedback loop and corresponds to the running sum
(or integration) of the past output {¢,: 1 < n <k —1}:

Sg—1 T Sz + Ci-s (6)

E

—1
= Cp
1

(i

n

so = 0. 7)

It is not difficult to see, by referring to (3), that the
running sum {s;} 1s equivalent to {bx}. The quantity
sgn {1/2 — s1} controls the polarity of the next digit
¢k so that +1 and —1 alternate in the output sequence
{cx}.

The power spectrum of the bipolar sequence {c¢z} is
obtained as follows. If {a;} takes on 0’s and 1’s inde-
pendently and with equal probability, so does the se-
quence {b;}. Therefore the power spectrums of sequences
{ax} and {by} are flat, i.e.,
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Fig. 1. Generation of bipolar signals (I).
P,(\) = P,,(>\) +Z 5000, —r<A<r (9
where §8(-) is the Dirac delta function, the power

spectrum of a given sequence {z;} is defined by [3]

P,(N)

= SRMexp(—ikN), —r<A<r (O

and R, (k) is the autocorrelation function of the sequence
{z:}. The inverse transform of (9) is defined by

R =5 [ P.O) exp (Hikn) an,

k=0,41,+2, - (10)

The mapping from {bs} into {¢i} is a linear transforma-
tion with a transfer function G (D) of (2). Therefore the
power spectrum of the sequence {c;} is given by

P.(\) = |Glexp (—iN]|*P,(\)

(1 — cos N V
2 H

It

il —exp(=iN| =

—r < A<x. (1D

Note that as expected there is no power at de.

When the signal-to-noise ratio (SNR) of the channel
is sufficiently high, one can use many levels for trans-
mission and consequently increase the data rate with
the same symbol rate. Let us assume without loss of
generality that the input sequence {ax} takes on values
from a set of integers {0, 1, , m — 1}. If we redefine
the summation of (1) as “modulo m” sum, the sequence
{b} is also an m-level sequence. This transformation of
{ax} into {by} 1s usually referred to as “precoding” and
will be further discussed in Seetion I11. The values which
{c} takes on range from —(m — 1) to (m — 1). For
a given ¢y, the original data ay is reconstructed simply by

a, = ¢, modulo m. (12)

The last relationship guarantees that propagation of
errors in bit-by-bit detection can be avoided. The first-
order distribution of {c;} is given by

m_—_i]

m )

—m—1D<i<m—1. (13
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Fig. 2. Generation of bipolar signals (II). ‘)\U
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~ The power spectrum of this multllevel bipolar sequence
qUuence
97<’”n’{\§jf£d

takes the same form as (11):

1 — cosN(m* — 1)
6

The bipolar signal-generating circuit of Fig. 2 is also
generalizable to the multilevel case:

m — 1
ay - sgn 5 — Sgy

S e

(,v\UUL

Py =t (14)

it

Cs (15)

(16)

This encoding procedure is a special case of the feedback
balanced codes (FBC) studied by Kaneko and Sawai

[5]. The running sum s, now takes on 2 (m — 1) different’

values; {0, 1, , 2m — 3}. From (15) and (16) we
can see that the sequence {sx} is a Markov sequence
characterized by a regular chain with 2(m — 1) states.
The range of values which {¢;} takes on is still [—(m —
1), (m — 1)], but its distribution is different from (13):

,  i=0
(17)

'2—7;, S[’LISWL*I

With some manipulation, the autocovariance function of
{sx} can be shown, [5] to be given by

E{(s,- - 1><8i+k - 75 1>}

]

C.(k)

_ {5—2{2m(m - —1}, k=0
tz(m — 2)m' ™ "*', k| = 0. (18)

Therefore, the spectral density of the sequence {si}
(except for de component) is given by

(m*> — D{2m® — 2m 4 1 — 2m cos )\}‘

P&y = 12(m* — 2m cos A\ + 1)

(19)

Then the power spectrum of sequence {c;} is obtained
from (16) and (19) as

P.(\) = |1 — exp (=N’ P.(\)

_ (1—cos N {2m® —2m+1—2m cos A} (m’—
 B(m*—2m cos \+1)

Clearly when m = 2, (20) is equal to (14) the spectrum
of mulmlevel _bipolar signal. However, the right-hand
expression of (20) approaches twice that of (14) for

D. 20
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large m. This is due to the difference in distribution
forms (13) and (17).

Sipress [1] and Franaszek [58] discuss ternary block
codes in which the running sum s, of (16) is defined as
the state of the encoder; a code word is chosen so as to

maintain the value of s; close to zero. Some other results -

which pertain to de free constraint or spectral shaping
are discussed by Wolf [54], Gorog [55], and Croisier
[56]. Chien [57] compares various de free codes in terms
of their coding efficiency.

III. CorrELATivE LEVEL CopiNng AND OPTIMUM
DEcobiNG METHODS

The correlative level coding or partial-response signal-
ing schemes have been developed for applications to
digital data modems. As we shall see later, the underlying
concepts of these techniques are gquite similar to those
of the dec free codes discussed in the previous section.

The communication model we assume here is a base-
band channel with pulse amplitude modulation (PAM)
signal transmission. The results to be obtained later
are extendable to other modulation systems. Many
authors report applications of the correlative level cod-
ing technique to FM [6]-[8], phase-shift keyed (PSK)
[8], quadrature amplitude modulation (QAM) [9], [10],
vestigial sideband (VSB) or single-sideband (SSB) sys-
tems [11], [12].

The system is characterized by a transfer function
H (f), which summarizes the overall frequency character-
istics of the signal generator, the equivalent baseband
channel, and the receiving filter (including an equalizer,
if any) as shown schematically in Fig. 3. Let the impulse
response function of channel H (f) be given by h (t) (Fig.
4). A conventional digital communication system chooses
digit spacing T large enough to avoid intersymbol inter-
ference, thus a linear system H(f) combined with the
sampler is essentially a “memoryless” digital channel.

If we choose the sampling spacing and phase as shown
in Fig. 4(b), the resulting digital channel has a one
time-unit memory, and the transfer function from the
data source to the sampler output is given by

GD) =

Here we assume the values of h(¥) at t' = T are
virtually zero except for ¢ = 0 and 1. If these conditions
are not met, additional channel shaping is necessary via
either an analog filter or a transversal filter. Another
way of looking at Fig. 4(b) is that we introduce a full
amount, of intersymbol interference at ¢’ = 7”. Lender’s
duobinary signaling [6]-[8], which we will describe
later, is based on this principle.

A binary data sequence {a;} is first precoded into
another binary sequence {by} according to the rule

bk = blc-l (‘B ay.

The precoding allows us to avoid possible propagation

1+ D. (21)

(22)

of errors, and this transformation is equivalent to the
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Fig. 3. Digital communication system.

1
s t
-2T -7 ©o T 27T 3T

Fig. 4. Impulse response function h(¢) and sampling instants.
(a) Conventional signal. (b) Duobinary signaling.

modulo 2 integration defined by (1) for bipolar signaling
f (2). This is because the precoder is an inverse filter
1/0(D) defined over .meodulo 2 aédltlon [17]. That is,
the precoders of the;xlpokar and _duobinary signaling
are given by [1/1 — DJ]meae and [1/1 + D]mea 2, respec-
tively. Clearly these two are re equivalent. TMmphsh-
ment of this duobinary scheme is to transmit binary
data at the Nyquist rate using realizable filters. Further-
more, the system-is rather insensitive to the change in
data rate [31],
Lender [13] €
binary signaling

[ tg)
extended the duoblnary concept to poly-

GD)=14+D+ --- +D" (23)
and to polybipolar signaling
GD)=14+D+ --- +D"'— D" — — D*7' (24)

The cases N = 1 in (23) and (24) reduce to the duobi-
nary and bipolar signals, respectively. Since the resulting
signal is of multilevel with correlation among successive
digits, this class of code transformation is called ‘“‘corre-
lative level coding.” A communication channel with
this type of signaling technique is often called a “partial-
response channel” [14], [15], since sample points are
chosen at points halfway to a full-response [Fig. 4(b)].
A discrete system representation of correlative level
coding or partial-response system with a precoder is
given in Fig. 5, where A(D) is the polynomial repre-
sentation of sequence {az}:

Z a, D"

Among the general class [16] of correlative level coding

AD) = (25)

or partial-response signaling methods the most frequent} ‘j

used 1s

C/Qmﬁ(%)

GD) =1—D°

. \\
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CORRELATIVE  NOISE
LEVEL
PREGODER ENCODER
FROM Ay B(D) cD) X(D)
1/6(0) To
gg'{ﬁ? el [ Jmod 2 6(D) RECEIVER

Fig. 5. Discrete system representation of correlative level coding
system.

which is obtained by shaping the channel transfer func-
tion into H (f) such that

r £l

) Glexp (—22#fT)]

= 2 exp [—i(waT - g)] sin 20fT  (27)

for a chosen data rate R = 1/7'. The simplest solution to
(27) is clearly

H(f)

1 _ ( _ vr>] - 1 1
T 2 exp [ i\ 2mfT 5/ | sin 2xfT, ~57 <f< oT
0 , elsewhere

(28)
that is, the phase characteristic of H(f) is linear, and its
amplitude characteristic is a half-cycle of sine function,
possessing nulls at dc and at the Nyquist frequency

1/2T. The spectral nulls at both ends are desirable, since

they allow insertion of pilot tones which convey the
modulating carrier phase and the data clock. It will
be clear that the system m G(D) =1 =D
1031\1_)1_¢gu1va1ent to an 1nterleaved form _of the bipolar
signaling system. \ |\ SE LS E‘j Cictasn 156X

Kobayashi and Tang [17], [18] recently pointed out
that a digital magnetic recording system is equivalent
to a system with G(D) = 1 — D. This is due to the
fact that saturating recording at the writing process
followed by differentiation at the readback process yields,
in effect, a digital transfer fun'c,%on G(D) =1— D.The
so-called nonreturn to zero igtglgaif:ed (NRZI) record-
ing method is equivalent to the precoding operation of
(1). They have proposed a high density recording system,
named NRZI, which is essentially equivalent to G (D)
= 1 — D? As far as the processing of readback signal
is concerned, the system is linear; hence processing
techmques developed. for partial-response modems are
equally apphcable to magnetlc recording systems [19],
[20].-

Because of the many desirable features and the sim-
plicity of implementation, the duobinary signaling and
other correlative level coding schemes have been widely
used in high-speed data modems. However, the duobinary
signal has three levels in the channel output which must
be distinguished; thus it seems to require a higher SNR
(ranging 2.1 dB ~ 3.0 dB depending on the location of
the channel noise source) for equal performance than
the ideal binary system. This is the penalty we have

is mathmat-
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paid in excha}lge for the increase in data rate and the
insensitivity to system’s perturbation.

Recently, however, Kobayashi [19]-[22] and Forney
[23], [24] have shown that this apparent decrease in
noise margin is not an inherent drawback of the corre-
lative level coding technique, but is due to nonopti-
mality of the conventional bit-by-bit detection method.

They clarified an analogy between a correlative level /.
both systems are °

coder and a convolutional encoder:
representable by finite state machines. This observation
led them to develop a new type of decoding method,
namely, the MLD algorithm, which is analogous to the
Viterbi algorithm [25], [26] for convolutional codes.
Omura [27] has shown that the MLD algorithm is a
special case of dyhamic programming. He also discusses
applications of this algorithm to optimum receivers for a
general class of channels with memory [28], [29

applying the maximum likelihood decision rule on bit-
by-bit. basis. T

In the present section we will derive the MLD al-
gorithm in a different way from the earlier publications
[19], [22]. We will show that under the Gaussian noise
assumption the MLD algorithm can be viewed as a new
solution to perform matched filter detection on sampled
sequences of infinite length without requiring an un-
reasonable number of matched filters.

Let us consider the simplest case, ie, G (D) =1—D
with a binary input which characterizes a bipolar en-
coder or a magnetic recording channel. The input {a:},
precoded sequence {b,}, and the channel input sequence
{cx} are related by

by = a @ blc—l7

b = 0. (29)

and
by — bp_1. (30)

Suppose that the binary information sequence {a;} is
of length N, ie, 1 < k < N. Since the sequence {a;} is
mapped into {c;} in one-to-one fashion, there are 2¥
different vectors which {c;) can take on.

Let {Y;} be the noisy output from the channel:

Cr =

Yk = C + Nk

If we assume that the noise sequence {n;} is a Gaussian
random variable and is uncorrelated from digit to digit,
then the maximum likelihood decision criterion is equiv-
alent to the minimum distance decision rule based on
the measure

@1

= ; (Y, — &) = |y — ¢||° (32)
where we denote ¢ to represent sequence {é.} for brevity.
The maximum likelihood solution is that & which mini-
mizes D(¢), where € and 4 are related through (29) and (30).
Let us rewrite D(€) as

D@ = —2<Y, e >+ [F+ ¥ (33)

]. Unger-
_hoeck [59]_discusses a sequence decision scheme by
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Since the last term is independent of &, the maximum
likelihood solution is that 4 which maximizes

J(@®) = (¥, & — ¥ [jel” (34)
Then a brute-force method would be to compute J(c¢)
of (34); for 2V different patterns of ¢ and select the
greatest one. Such a decision system could be implemented
using 2 different matched filters in parallel whose impulse
response sequences are {¢y-.}, 1 < n < N. This receiver
structure is, of course, impractical, since the sequence
length N is virtually infinite. Now we will show that this
dimensionality problem can be overcome by applying the
discipline of dynamic programming [30].
Let ¢, denote the first & components of sequence ¢

¢ = [ -+ el (35)
and let J, denote J(&,). Then
Ji = (Y4, ék> -3 HékW (36)

k

= 2 (b~

n=1

Bn—]) n %(Bn - Bn—l)z}'

Then the maximum likelihood solution is equivalent to

finding the sequence {b,, bs, --- , by} which maximizes

Jn = J(€), where N, the size of data, can be infinite.
Now we write J, 1n an iterative form

ch = Jk—l + (Bk - 51c—1)ch - %(Bk - Bk-1)2- (37)
On defining a function u,(?) as

w(@) = _max J,, i=0,1 (38)

(br—y,br=1)

and substituting (38) into (37), we obtain the recursive
relationship for {u,(2)}:

m(@) = max {J_y 4+ @ — b)Y — 3G — b))

{br--1}
= max (pea () + G = PV, — 36— i), O
i=0,]1.
Or, equivalently
u:(0) = max {"““” } (40)
peaa (1) = ¥, —
and _
k(1) = max {"k-l@ LR } (1)
pir—1 (1)

Note that (40) and (41) are not independent. For example,
if u(0) = we_(1) — Y, — 1/2, then it follows that
#e(1) = per(1). Similarly if (1) = e (0) + ¥y — 1/2,
then .U-k(O) = I-‘k-l(o)-

Given the channel output Y,, the function u,(z) repre-
sents a metric (or the likelihood value) of the most likely
sequence among all possible candidates with the con-
straint b, = 7. We know the initial condition b, = 0.
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Then starting from

. 0, =0
(@) = Jl ’ (42)
—, i=1
the repetitive use of (40) and (41), fork =1,2, --- | N,

uniquely determines the maximum likelihood solution.
An implementation example of the MLD is discussed in
[19]. In that paper, several other important problems
are addressed: the effect of precoding on the decoding
error rate and error pattern, the number of quantization
levels required, and the problem of decoder buffer over-
flows. A

The results obtained previously hold with app_ror’nqgte
modification for a class of systems G(D) = 1 + DX
and for m-level signaling m. > 2. The performance of
the MLD is analyzed elsewhere [19], [22], [24] in great
detail, therefore we simply quote the results. An asympto-
tic (i.e., for a high SNR) expression for the symbol error
rate in the MLD method is given by [22], [24]:

P - ()

(43)

where 7\ M e 2. ¢0ey  tals o {+DK /
o 2 e /'JZ’.‘ f3}1
Wﬁ\Q Q) = f % exp {—%} dt (44)

and where F is the channel SNR. The symbol error rate
of the conventional bit-by-bit detection method is given

by [31]
o=l o))

The significance of the difference in the arguments of Q
function by a factor of V2 will be appreciated if one recalls
the following approximation formula [32]:

(45)

2

Qx) = x(T}r)TE exp {—%} , x> 3.5. (46)

. In termé of SNR, the performance gain of the MLD

method over the bit-by-bit detection method corresponds
to 2.5 ~ 3.0 dB. Therefore we can recover, by use of
this new decoding method, the loss in noise margin
previously accepted as a penalty in exchange for the
desired spectral shaping. _

The MLD discussed previously provides the best per-
formance among the reception schemes known so far.
We can view this decoding scheme as the one which
makes full use of the redundancy inherent in correlative
level coded sequences. The conventional bit-by-bit de-
tection method has partially utilized the sequence re-
dundancy, that is, its error detection capability has
been used for monitoring purpose (See Lender [8] and
Gunn and Lombardi [33]). Kobayashi and Tang [21],
[34] have generalized the error detection method to an
algebraic form so that a simple eircuit can perform
error detection for any G (D) and for any m. They have
extended the algebraic approach to a more general de-
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cision scheme, named the ambiguity zone decoding
{AZD) method, in which the quantizer makes a soft
decision including ambiguity (or erasure) levels. Most
of the digits in the ambiguity levels are replaceable by
correct values by using the inherent redundancy of the
sequence. The AZD method is an extension of the null-
zone detection method studied by Smith [35]. An im-
plementation and the performance of this algebraic de-
coder are discussed in [34] in great detail. An asymptotic
expression for the decoding error rate is given by

3R

7))

Pan = 3(1 = D)o — (-

Although somewhat inferior to the MLD in its per-
formance, the AZD method possesses an advantage over
the MLD in its simple implementation. The number of
quantization levels is in general much smaller than that
required in the MLD [19], [22]. Furthermore, in the
MLD method the number of “states,” which determines
the decoder complexity, is mN for a system G (D) =
1 4+ D¥. Thus the MLD algorithm tends to require a
significant amount of computation effort and memory
requirement, when the number of signal levels is large.
The AZD method will be more attractive in that respect.
The discussion we have made thus far in the present
section is, in principle, applicable to a general form

GMD) = go+ 9D+ --- + ¢.D" (48)

if the {¢;} are a set of integers with their greatest com-
mon divisor equal to 1, and g, and m are relatively prime
[36], @22] / Miyakawa and Harashima [37], [38]
recently proposed a scheme which can remove this con-
straint.

In the correlative level coding system of Fig. 5 we
transformed an m-level sequence A (D) into another
m-level sequence B(D). However, there is no essentlal

(47)

putdtei i)

m- level sequence. In the scheme which Miyakawa and
Harashima propose (Fig. 6); the information sequence
A(D) is transformed into sequence C (D) via transforma-
tion T, which is then passed into G1(D), the inverse
of the channel G(D). The output B(D) is then trans-
mitted over the channel /(D) where the {g;} are not
necessarily integers. The transformation T must satisfy
the following constraints:

1) T is invertible;
2) sequence B (D) is peak limited, i.e.,
By, for some by, and buax-

bmin S bk S

If, in particular, ¢ (D) represents a conventional corre-
lative level coding system, i.e., g, are integers and (go,
m) = 1, then by setting N

= GD)G™ (D))o o o @g)

AY

B (D) corresponds to the precoded sequence. It should

be remarked here that the representation of a precoder N

in terms of a finite state machine T followed by another

ROV
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finite state machine G (D) has been derived by Kanaya &

[39].

Clearly the class of T we allow here is larger than the
class represented by (49). We determine T from the
following considerations in addition to the two conditions
given previously:

3) we should be able to obtain A(D) = T '-C(D)
without significant error propagatlon problem;

4) spectrum of sequence C ) should be desirable from
the viewpoint of SNR and possible 1nsert1on of pilot

tones. (c’l qLa\—U\c(Sw (:D) 4 Luul g,;L‘L

Let us assume here zhat G(D) 18 norm\jﬁ/;gmo that
go = 1. Then the implementation of transformation T
followed by G™(D) is given by Fig. 7, and sequence
I(D) in this figure represents the intersymbol interfer-
ence sequence due to preceding digits

I(D) = [G(D) — 1]1B(D) (50)
or
= g gibi_;. (51)

The intermediate sequence {cx;} should be determined
so that

bm‘in S Cr — ik S bmux- (52)

If the information sequence {a;} is binary and bn, =
— buax then a possible transformation 7' can given
graphically by Fig. 8. Note ¢, is determined by the
present input a; and precursor interference term ; which
is a function of a_y, azs, --- . Thus ¢; is uniquely de-
termined by the past input of {az}.

It will be clear that the MLD and AZD methods de-
veloped for correlative level coding systems are, in
principle, applicable to this generalized class, since the
system is representable as a finite state machine The
practical implementation and. performance evaluation
are left for further investigation.

IV. AvceEBraic Brock Copineg WirtH RuN-LENGTH
CONSTRAINTS

In sections IT and IIT we discussed methods of trans-
forming a given digital sequence into a sequence with
some desirable properties. But the resulting sequences

. contained more signal levels than the original one. In

other words, redudancy was introduced amplitudewise.

1‘"

1 Of course we assume here that the channel is of finite memory,
ie, gi = 0,7 > n [see (48) and (51)1.

m(l
)'37
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Fig. 7. Implementation of transform T and G 1(D), (go = 1).

There are some applications, however, in which the in-
crease in signal levels is not desirable or allowable.
Binary signals are easier to generate and modulate than
ternary or multilevel signals. As pointed out earlier,
there is a strong analogy between a digital communica-
tion system and a digital magnetic recording system.
The present recording technology, however, limits the
input signal levels to two, since the two saturation levels
are the only stable levels. Under these circumstances,
therefore, it is necessary to introduce redundancy in a
form d;fferent from pseudo ternary or correlatlve level
_codes. N\ A g TNZTT

Kautz [40] 1ntr0duced a family of codes to represent
binary data subject to constraints on the maximum
separation between successive changes in signal levels.
This constraint is motivated by applications to record-
ing systems in which the clock of reading (receiving)

side must be derived from the data itself. As was men-

tioned in Section III, level transitions yield plus or minus
pulses at the readback process; this information can be
used as synchronizing information. Naturally the same
argument holds for communication channels with bipolar
signaling.

Given a sequence X = [X;, X,, ---] of 0’s and 1’s, its
“modulo 2 derivative” is defined as a sequence Y =
[Yy, Ys, -+ -] with

Y, = X.’@Xi—n 7/2 1 (53)
where X, is defined as a reference binary state. By this
transformation, each string of 0’s and 1’s in X is converted
into a string of 0’s (but shorter by one) in Y. For example,
if X = [001111000001111000] with X, = 0, then Y =
[001000100001000 100]. Therefore the problem originally
addressed is reduced to finding the class of Y in which it
is required that at most & 0’s occur between successive 1’s,
where k is the constraint parameter &t = 1, 2, 3,

We call a sequence (code) subject to this constraint a
“k-limited” sequence (code) or ‘“‘k-constraint”’ sequence
(code), following Tang’s terminology [41]-[44].

The system which generates a k-constraint sequence
can be conveniently represented by a finite state machine
model as in Fig. 9, where the nodes correspond to the
states and O or 1 is generated at each state transition. A

2 There is no particular meaning in choosing the symbol k as a
constraint parameter.
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system that generates a sequence under-such a constraint
is a special case of ‘‘discrete noiseless channels” studied
by Shannon in his celebrated paper [45], and by Freiman
and Wyner [46].

Let N,.(n) denote the number of distinct allowable Y
sequences of length n. Then we have

" <
2", n<k (54)

n>k+ 1.

N.@n) =

k+1

Z: Nk(n - 7‘)}

The preceding equation is obtained based on the follow-
ing observation. For n < k, any binary sequence does
not violate the given constraint. For n < k + 1, if a code
sequence starts with (¢ — 1) zeros followed by one, it
may be followed by any of Ny (n — 1) k-limited se-
quences of length (n — 7). When k = 1, the recursive
of (54) generates Ny (0) =1, N, (1) =2, N, 3) = 5,
etc., and this is well-known Fibonacci numbers [47],
[48].* For k > 1, Kautz calls the sequence {Nx(n)}
generalized Fibonacei numbers. As we shall see later,
these numbers appear as weighting coefficients in en-
coders and decoders.
Equation (54) is rewritten as

- o<n<i
2N, (n — 1) — N,(n — k& — 2), n>k+1.
(55)

In order to obtain asymptotic expressions for N(n),

let us consider the generating function* Gi(z) of
{Ni(n)}:
Gi(2) = X Nuln)?". (56)
n=0

From (54) and (56) we obtain after some manipulation

3 The so-called Fibonacci sequence {F.} is defined by Fo = 0,
Fi=1, Fn = Fay + Fus,n > 2. Therefore, the following relation
holds: Nl(n) = Fnyp, 0 > 2.

+Tf we use 21 instead of z, then Gi(z) represents the z trans-
form of sequence {N.(n)}.
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Consider, for example, the case k =1

G\(e) = Tlig = __1__{ o - fz _ } (58)

— 2 — 2

where

1 5 . 1 -

2 bl

v

2

¢ (59)

Then we get a closed form expression for Ny(n) as fol-
lows:

1
N n) = _ n+2 . n+2 . 60
1(n) Vi (¢ ¢ (60)
It can be shown [48] that N;(n) is bounded as follows:

¢" < Ni(n) <¢"*' (61)

which leads to
1
log, ¢ < " log, N.(n) < n*;l_t—l log, ¢. (62)

Therefore the information per symbol in an optimal
code with the constraint & = 1 is given for large n by

C = lim Ingi\fl(n) —

n—

log, ¢ = 0.6942. (63)

This is called the “capacity” of the given “noiseless
discrete channel,” if we follow Shannon’s terminology
[45]. For a general k >1, the capacity C is given by [45]

C = log, 2, (64)

where z, is the largest real root of the characteristic

(65)
or equivalently

1 — 242" =0 (66)

Franaszek [49] has found another method to compute
the capacity C based on the transition matrix. Define the
transition matrix D = [d,;] by
j 1, | if a transition from state 7 to state j is allowed

(67)

di,- = .
10, otherwise

1095
For a finite state machine of Fig. 9, D is given by
1100 - 0]
1 010
p-|t o0l (63)
: . 1
11 0 0 0 --- 0]
Then C is bounded by
log, { Z (D]:;} — 2 log, k log; { Z D).}
”n +k—-1 sCs ”n -
(69)

for any 7 > 1. The k is the number of states.

Ezample 1

Consider the case where n = 4 and &k = 1. Then there
are N,;(4) = 8 such codewords, Y, as listed in Table 1.
In Table I ¥ lists the complements of code words of Y and
therefore satisfies the following condition:

every n{ =4) digit code word in Y contains no 1 strings

longer than k(= 1). (70)

The set of all 4-digit binary sequences (with no k con-
straint) contains 2* members, and they can be mapped to
integers 0 to 2* — 1, using 2° (0 < 7 < 3) as weights. It
will not be difficult to see that eight sequences of Table I,
Y, can be mapped into integers 7 to 0 by assigning weights
5,3, 2, 1 from the leftmost to rightmost digits. Consider,
for example, the second member from the top of Table I:
Y = [0110], ¥ = [1001]. Then

IY) = N3 X 14+ Ni(2) X0
+ N,(0) X0+ N,(0) X 1
=5X1+1X1=6. (71)

IKautz [40] has generalized this observation and has
shown that for general n and & the complement ¥ of a
code word Y = [YV,Y, --- Y,] in k constraint code of
n digits can be enumerated by the following formula

I¥) = 2 Nuln — 97, (72)
i=1

where N,(n) is a generalized I'ibonacei sequence defined
by (74). The linear relationship of (72) makes the encoding
and decoding operations very simple. Encoding proceeds
as follows. Given a binary source sequence, we first chop
the secquence into blocks of length ¢, where £ = [log, N.(n) B
A binary vector of length £ is mapped into an integer I,
where 0 < I < N,(n) — 1 < 2° — 1. Integer I is then
transformed into vector ¥ of size n according to the
following rule:

R, =1 (73)
5 For a given real number z, we define the integer £ = z by
< <<+ 1.
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TABLE I
Y ¥
0101 1010
0110 1001
0111 1000
1010 0101
1011 0100
1101 0010
1110 0001
1111 0000

7 - {1, if R, > Nyn — 1) 74
0, otherwise
Riyy=R,— V. XNin—3), i=1,2,--- ,n. (75)

The decoding operation obviously performs the inverse of
the encoding procedure.

Tang [41], [42], [44] has extended the results of
Kautz to a class of codes in which the minimum as well
as the maximum string length is limited. This additional
constraint keeps adjacent transitions apart to avoid ex-
cessive intersymbol interference. Tang and Bahl [44]
further generalize the result to multilevel cases.

Tang defined a dk-limited sequence as a sequence
satisfying simultaneously the following conditions:

1) between any pair of adjacent 1’s the run-length of 0’s
is at least d;
2) any run-length of 0’s is at most k.

When we “integrate, modulo 2” a dk-limited sequence Y,
Xi = Xi—l @ Yi
= X0+ Y1@ Y2®"'@Yi

then the length of any run of 0’s and 1’s in the resulting
sequence X is at most k 4+ 1; and exeept for boundary runs,
the run-length is also at least d + 1.

(76)

Ezxample 2

Letd = 1,k = 3, and n = 9. A sequence which satisfies
these constraints is given, for example, by Y = [100010101}.
By integration we get the X sequence X = [111100110] or
[000011001] depending on X, = 0 or X, = 1. The run-
lengthin Xisatmostk 4+ 1 =4andisatleastd + 1 = 2
except at block boundaries.

Let us first consider the case k = «, i.e., no constraint
on the maximum run of 0’s. Such a sequence is referred to
as d-limited or d-constraint sequence [41], [44]. Let N (n)
denote the number of distinet d-limited sequences of
length n. Then the following recursive equation holds

Nun) =Non— 1) +Non —d —1), a>d-+1 (77)
with the initial condition

n+1l, 0<n<d

Nd(n) = { (78)
0, n < 0.
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The preceding equation is obstained based on the fol-
lowing observation, If a code sequence starts with 0 it
may be followed by any of Ng(n — 1) d-limited se-
quences of length (n — 1). On the other hand if a code
starts with a 1, at least d 0’s must follow but then it may
be followed by any of Ng(n — d — 1) d-limited se-
quences of length (n — d — 1). When n < d, the se-
quence must either be all (0’s or contain 1 at only one
digit. (Recall that d constraint is not required for
boundary runs.)

The generating function G4(z) of {Ngz(n)} is defined by

Gy = T Nuw)e" 19)
From (77)-(79) we obtain
_ 1 _ Zd+1
Gd(z) s (1 . Z)(l —z — Zd+l) (80)

_ A4zt +2)

(1 —p — zd+l)

Thus the characteristic equation of the d-limited sequence
is

1—z—2"""=0. (81)

Note that G,(z), for d = 1, is equivalent to G,(2), for
k = 1, given by (58). In fact, a k-limited code, for k = 1,
and a d-limited code, for d = 1, are complementary to
each other, for all n. For example, the eight code words
of Table I, ¥, form the d-limited code, ford = 1, n = 8.

Tang and Bahl [44] obtained the recursive equation
for N4 (n), the number of dk-sequence of length n:

n—+1,
Nuylm — 1) + Nyy(n — d — 1),
d+1<n<k

1<n<d

Naum) = 4 (82)

&
(d+k+1"n)+ ZNdk(n_?:”_l)
i=d

k+1<n<d+k

2 Nuln—i—1), d+k+1<n

The characteristic equation of dk-sequence is obtained as

k+2 k+1

TP g L] = 0. (83)

It will be clear that (83) reduces to (66) and (81), for
d =0,and k = o, respectively.

The d, k, and dk sequences of finite block length
n cannot in general be concatenated without violating
the given constraints at the boundaries. Tang and Bahl
[44] describe a method of inserting buffering sequences
of smallest possible fixed length B between adjacent
code sequences so that the given constraints are not
violated. Degradation in overall coding efficiency can be
made arbitrarily small by choosing n large enough, since
B is a function of d and k only.
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In the k-limited case (d = 0), the insertion of a single
1 between any two k sequences is sufficient to preserve k
constraint. Therefore, 8 = 1. In the d-limited case {(k =
o0 ), the insertion of d zeros is sufficient. Therefore, g =
d. In the general dk-limited case the shortest buffer is de-
pendent on the end of the previous sequence and the be-
ginning of the next sequence [44].

Before closing the present section we discuss some other
applications of the k sequences. If the frequency charae-
teristic of a channel contains imperfections at both the
low- and high-frequency ends, alternations of 1’s and 0’s,
as well as runs of 1’s and 0’s tend to build up intersymbol
interferencé [50]) Sequences which avoid these two types
of undesirable patterns can be generated based on k
sequences. Let a k sequence Y be integrated to give X
sequence, whose transitions are separated by (¢ + 1)
digits. If we further integrate X sequence, then the resul-
tant sequence Z contains runs of 0’s or 1’s or alternations
of 1’s and 0’s not more than (k¢ 4 2) digit long.

Mine et al. [51] discuss a scheme to encode a binary
sequence into a three level sequence for asynchronous
transmission where they require 1) the signal level 41, 0,
or —1 cannot hold its level, i.e., a level transition must
occur with every digit; 2) in order to allow dc free trans-
mission, +1 and —1 must alternate. Such requirements
are closely related to Kautz’s Fibonaeci code (or Tang’s
I sequence) and to the bipolar signaling. First a binary
sequence is encoded into a k sequence using £ = 1. A
typical output sequence Y is shown in Fig. 10(a) where
two successive 1’s are separated by at most k(= 1) zeros.
The sequence Y is then integrated to yield X, where runs
of 0 and 1 are at most & + 1 (= 2). The sequence X is
then passed into a differential circuit 1 — D yielding a
desired three-level sequence as shown in Fig. 10(c). It is
interesting to note that the modulo 2 integrator is equiv-
alent to precoding for 1 — D. Thus by taking modulo 2 of
the three-level sequence Z, we recover the Fibonacci code
output Y with no propagation of errors.

V. StAaTE-ORIENTED CODES

In the generalized Fibonacci codes and the run-length
limited codes, we added some fixed symbols to avoid
violations of the constraints at the code word boundaries.
However, the loss of the efficiency due to these redundant
digits is not negligible when the code length is relatively
short.

Freiman and Wyner [46] developed a method for de-
termining maximum size block codes with the property
that no concatenation of code words violates given code
restrictions. Although their results are applicable to any
type of constraint characterized by finite state machines,
we limit ourselves to the run-length constrained codes.

Let us consider k-constraint codes with & = 2. The
state transition diagram is given by Fig. 11(a). By in-
troducing time parameter explicitly we obtain what we
call the trellis picture of the finite state machine as is
shown in Fig. 11(b). We consider the problem of finding
an optimal fixed code of length 3. For any chosen code,
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a sequence of coded messages corresponds to a path on
the trellis picture starting at time = 0. Code blocks ter-
minate at times = 3,6,9, -+ , etc. If we restrict ourselves
to fixed codes, the selection of a code is equivalent to the
selection of a fixed terminal set 7. Then the correspond-
ing code consists of those sequences of length 3 which
induce transition from every state in 7 to some state
in T". Consider a terminal set Ty = {s,}. Then it will be
clear that the code has four members

C, = {001, 011, 101, 111}.

Next, we consider a terminal set Ty = {sy, $1}. The cor-
responding code C; now has five members

¢, = {010, 011, 101, 110, 111}.

By adding s; to the original terminal set T,, we are
forced to eliminate 001 from the code, since 001 is not
allowable from the terminal state s;. However, we now
have two additional members 010, 110; thus the net
gain is 1 codeword. Consider the largest possible ter-
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minal set To = {4, 81, s2}. Since state sy does not allow
symbol 0 as the emanating symbol, sequences 010, 011
cannot be codewords, and we add one codeword 100.
Thus C» has four members:

Cz=

Therefore, among the three terminal sets considered
previously, Ty = {s,, 81} gives the code of the largest
size. In fact, it can be shown that T4 is optimal among all
possible terminal sets.

Freiman and Wyner [46] have shown that the op-
timum k-limited block code of length n (>k) is the one
which corresponds to optimal terminal sets T/, when k
iseven, Tx..1/2 or Ty 12 when k is odd, where

{100, 101, 110, 111}.

T: = {So, 81, -+, 8;]. (84)

The generating function of optimum code size sequence is
given by [46]

k=0
1~ > min {2, k — ¢}z’
i=0

Fk(z) = = T (85)
1— 27
i=1
Taking the difference between (57) and (85)
k-1 ) ]
2 [1 4 min {7, k — 4}]"™
Gk<z) - Fk(z) = =2 51 (86)

1— 24
i=1
The coefficient of the z” term of (86) represents the num-
ber of sequences which must be discarded from Kautz’s
"and Tang's k-limited codes of length n so that code
words can be freely concatenated.

Similar results have been obtained for the d-limited
case. Fig. 12 show the state transition diagram and trellis
diagram for d = 2. Consider the code length n = 4.
Since every sequence allowable from s; is also allowable
from s;, 0 < 7 < j < 2, we need consider only the fol-

lowing three terminal sets: Ty = {82}, Th = {sg, 81}, T2~

= {8, $1, S¢}. For terminal set Ty, the code consists of
three members, i.e., Co, = {0000, 0100, 1000}. For ter-
minal set T, we have C; = {0000, 6010, 0100}, and for
T2 the corresponding code is given by Cy = {0000, 0001,
0010}. Thus an optimal code has size three but the code
is not unique. In fact for any d-limited code of any code
length n > d, the following terminal sets are all optimal
[46]:

0<j;j<d (87

The generating funetion of optimal code size series is
given by

T; = {84) 8a-1, *** 5 Saci},

Fu@) = 1 1

— 0z — zd+1'

(88)

From (86) and (88) we see that the coefficient of 2" in
the polynomial -
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(89)

gives the number of sequences which must be eliminated
from the d-limited code of length n to avoid end effects.

In the class of codes studied previously, code words
can be freely concatenated without violating the se-
quence constraints, since any code word is allowable
from every state in the terminal set. Thus we can decode
without knowing the present state of the encoder. If we
relax the requirement of state independent decoding, we
can increase the code efficiency. Gabor [52] introduced
a state dependent code for the constraint k = 1 and for
code length n = 4, achieving the rate 2/3. which corres-
ponds to 96 percent of the capacity. Subsequently Tang
(43] obtained similar encoding rules for several dk-
limited codes of various block lengths. We denote the
length of information block and the length of codeword
by I and n, respectively. Then a practical encoding
scheme has been found [43], for (dk; Ln) = (1,20; 2,3),
(2,0; 24), (1,5; 3,5), (1,10; 4,6), (2,5; 2,5), (2,10; 3,6),
and (3,11; 2,5).

The following example (d,k; In) = (2,0; 2,4) is based
on Tang’s result. We saw that Freiman-Wyner’s code for
d = 2, n = 4 contained only N = 3 codewords. Therefore,
with a fixed code [ = 2 is not achievable. Consider the
largest terminal set T2 = {s2, s1, 8y} of Fig. 12. We see
from Tig. 12(b) that there are six sequences of length 4
which are allowable from $.. But there are only three of
those from states s; and s,. Therefore if the encoder is
at state sz, the number of sequences available for encod-
ing | = 2 bits is more than sufficient; at state s; or sy the
number of sequences is insufficient.

Let the present state of encoder be of. The of is
uniquely determined by the last d(=2) symbols of the
previous codeword®:

0" = g(th_l, X4t_l). (90)

6 Since the finite state machine of Fig. 12 has memory d = 2,
o' is uniquely determined by X' 1 and X.' 1. Specifically: ¢(0,0)
=32, g(1,0) = 1, and ¢(0,1) = so.

—
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Let m(= 2) bit information data to be encoded be denoted
by a’ = [a’, a,']. Then we consider the following encoding
rule

Xt = [Xlt) XZt) X3>t; X4t]

= f(o'; a,", @', a,"*") 91)
= f(g(X,' 7", X,'™Y), a)f, @), @, ).
The new state of the encoder is then given by
ot = g(Xs', X.J). 92)

One such encoding rule f(-) is given in Table II. Here
a blank in the column a,’+* means that it can be either
1 or 0. As is clear from this table and (91), this encod-
ing rule is a “look-ahead” state dependent encoding
scheme. The logical equation for encoding and decoding
can be derived from the set of truth table of Table II.

With a close observation of Table 11, the reader may
be able to find the rule which greatly simplifies the en-
coder. That is, Table II can be replaced by the encoding
rule of Table TII. This new encoding rule is equivalent
to assigning terminal state s» at every other time unit in
the trellis picture as shown in Fig. 13. Allowable code
words start from s, and end at s, after two or four time
units. Franaszek [49] developed a method of construct-
ing this type of code which he calls synchronous variable
length codes. Both input and output block lengths are
variable but the information bit per symbol ratio is con-
stant over each codeword. This synchronous feature
eliminates the need for buffers in encoding the decoding.
Franaszek reduces the problem of finding an optimal
variable code to that of selecting a set of principal states.
This notion is analogous to finding an optimal terminal
state set in the method of constructing a fixed code. A
principal state set T, has the property that from each
state in T, there exists a sufficient number of distinct
paths to other principal states to maintain the informa-
tion rate required. A dynamic programming algorithm
has been applied to a systematic search of principal
states. Optimal variable length codes for various (d,k)
constraints have been found [53].

VI. ConcLupING REMARKS

The review has covered in varying degree of detail
several coding techniques for the transmission or record-
ing of digital data. The author hopes that he has indi-
cated some of the major areas of recent development and
some underlying mathematical concepts shared by
variety of efforts currently engaged in digital communi-
cation and recording techniques.

The coding schemes treated in the present paper are
different from error detection or correction codes which
are intended to combat against the random or burst
noise. Rather, these techniques are the means to compen-
sate for undesirable deterministic characteristics of a

giveri channel. Whatever the motivation for code con-
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TABLE II
t t t t+l t t t t t+1
c a; a, ay Xl XZ X3 XA [
8, 0 0 0 o Y o s,
1 0 [ 1 0 0 Sy
1 i 1 0 0 0 sy
0 1 0 0 0 0 1 So
0 1 1 0 (] 1 0 sy
s, 1 0 0 ] 0 0 s,
1 1 0 0 0 1 g
1 1 1 ] 1 0 sy
sg ] 0 0 s,
] i 0 0 1 5o
0 1 1 0 1 0 59
TABLE II1
Input Qutput
0 00
1 0 0100
11 1000

Fig. 13. Assignment of terminal states s. at every other time
unit.

version may be, the encoded sequence includes some re-
dundancy which should be exploited as much as possible
to improve the reliability against random noise. We
have found practical solutions (i.e., the MLD and AZD
methods) to a class of correlative level codes. An exten-
sion of similar approaches to other types of codes (e.g.,
run-length limited codes) is left for the future investiga-
tion,
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