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Sumnary. A correlative level encoder is treated
as a linear finite state machine and an application of
the maximum likelihood decoding algorithm is discussed.
Asymptotic expressions for the probability of decod-
ing error are obtained for a class of correlative
level coding systems, and the results are confirmed
by computer simulations. It is shown that a substan-
tial performance gain is attainable by this probabi-
listic decoding method.

Introduction

A technique in digital data communication devel-
oped in recent years is the so-called correlative
level coding (Lender) or the partial-response channel
signaling (Kretzmer). It has been widely accepted
that although such a signaling method possesses the
property of being insensitive to channel imperfections,
the increase in the number of signal levels results in
loss of noise margins.

Recently an analogy between correlative level
coding and convolutional coding has heen pointed out
by Kobayashi, Tang, and Forney. A correlative level
encoder can be viewed as a simple type of linear finite
state machine defined over the real number field as
opposed to a Galois field over which a convolutional
encoder is defined. The present paper will show that
the maximum likelihood decoding algorithm devised by
Viterbi in decoding convolutional codes is applicable
to our problem. Both analytical and experimental
results of this probabilistic decoding scheme will be
presented. The perfommance of the maximum likelihood
decoding (MLD) is much superior to any other method
reported thus far, Asymptotic expressions for the
decoding error probability are derived. Several other
important problems associated with the MLD method are
discussed: the effect of precoding on the decoding
error rate and error patterns, the number of quanti-
zation levels required, and the problem of decoder
buffer overflows.

The Maximun Likelihood Decoding of
Correlative Level Coded Sequences

In the present paper we limit ourselves to the
correlative level coding system G(D) = 1 - D (which
corresponds to a digital magnetic recording chanmel).
The so-called modified ducbinary or thepartial
response class IV correspond to the transfer function
G(D) = 1 - D?*, which is merely an interleaved form of
1 - D, The duobinary signaling 1 + D holds a dual
relationship with 1 - D. Thus the basic decoder
structure and the performance are common to the class

6) =105, K=1, 2, ++ .

Let {ak} be the information sequence which takes
on integer levels {0, 1, ---, m-1}. We define the
state of the encoder by

1
S ™ Sk mod m (with precoding)k (2)

or S ™ A (without precoding)

If we assume that {a.k} takes on 0, 1, *+ , m-1 with
equal probability and independently and that the
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the additive noise of the channel is Gaussian and is
independent at sampled instants, the maximum likeli-
hood decoding algorithm is simply a repetitive use of
the following recursive formula, which determines a
unique survivor for each of m different state nodes at

time k. (See Ref. 8 for the derivation of Eqs. (3)§(4)
A
W) = max {y (D) + (G-1) vy - G- 2 :
1
j=0,1, »+» , m1 and k > 1,

and -

Lb(j) = 0 for j = So (4
0 for j # Sy

where pk(j) is the metric of the survivor which ends at
state j at time k, and Vi is the decoder input at time
k. Constant A represents the signal spacing in the
channel .

Performances of the Maximum Likelihood Decoder

In the present section we present analytical
results on the performance of the MLD algorithm and
then computer simulation results will be reported to
confirm the analytical results.

Let us assume a high SNR (signal-to-noise ratio)
condition. Then we consider, as possible adversary
paths (paths competing against the correct path) only
those which are '"'closest' to the correct path. Since
the slope of the trellis correspond to the signal level
in the channel, adversaries are those which stay closes
to, and in parallel with, the correct path. After some
manipulation, we obtain the following symptotic expres-
sions for the decoding error rate when the MLD algor-
ithm of Eqs. (3) and (4) is adopted:

Pyp = 4% Q l;%—) (without precoding) (!

and
Pyp = 4(n-1) Q¢ -’.}3;) (with precoding) [
m -
(m2-1) A%
where R is the channel SNR : R = =y . Except fo
s
m= 2 (i.e. binary inputs), Pyip < PMLD.‘ Thus pre-

coding is beneficial not only in the conventional bit
detection but also in the MLD method. In the conven-
tional bit detection method the error rate is given by

1 2R
P = 2(1 -
srT = 2( m-’z) Q(\/ ﬂ-n) | (

It will be interesting to campare these results with a
m-level PAM system without correlative level coding.
The expression for the error rate is

1 3R
Pp=2(1-2 QG r—n-zth) : (

In case of m = 2, for example, PlCiLD is only four

times of P thus the MLD method allows a PAM system t



adopt a correlative level coding technique to attain
same desired spectral shaping with a very little pen-
alty in its performance. In other words the loss in
noise margin can be almost completely recovered by
the MLD method.

Some Practical Considerations

Thus far we have tacitly assumed that the
receiver input y, is quantized into infinitely many
levels. In an a%tual implementation which is pre-
sumably in a digital form, the channel output y. must
be quantized into a finite number of levels. IT a
uniform quantization is performed, the metric compu-
tation can be done in the integer format. The per-
formance of the MLD for a system with G(D) = 1-D and
m = 2, is obtained when the quantization spacing is
A/N where N = 4, 8, 16, and 32. According to this
result we may conclude that N = 16 achieves almost
the same performance (less than 0.1 dB loss) as the
infinite level quantization.

The second problem which would arise in imple-
mentation will be the memory size required in the
decoder. The decoder can store only a finite history
of m surviving paths. Let t and t' (t' > t) be times
at which m survivors branch out of a common node.
Then for a binary input system (i.e. m = 2) the dis-
tribution of separation s = t' - t is given by

2 __,12-5

P(S) = Z-S ['g' - 'S-}TI'] = 's‘ (9)
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Figure 1. Comparison of the MLD Method
and the Bit Detection Method
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Figure 2. Effect of Finite Quantization Levels

(m=2 : quantization spacing = %)



