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On Decoding of Correlative  Level  Coding 
Systems with Ambiguity Zone Detection 

Abstrucf-Decoding of a correlative level coding or  partial- 
response signaling system is discussed in an algebraic framework. 
A correction scheme in which the quantizer  output includes am- 
biguity levels is proposed. The implementation and  algorithm of 
error  correction is discussed in some detail. An optimum design 
of the quantizer based on  Chow's earlier work is discussed. Both 
analytical and simulation results on the performance of the pro- 
posed decoding scheme are presented. An asymptotic expression 
for the decoding error rate is derived in closed form as a function 
of the channel signal-to-noise ratio. This is also compared with 
the conventional bit-by-bit detection method and the maximum- 
likelihood decoding method recently studied. 

I. INTRODUCTION 

A TECHNIQUE in  digital data communication de- 
veloped in  recent  years is the so-called correlative 

level coding method  (Lender [ 2 ] )  or the partial-response 
signaling method  (Iiretzmer [3]), in which a controlled 
amount of intersymbol  interference is introduced  to  attain 
some desired spect,ral  shaping,  achieving n high trans- 
mission rate  at t'he  same  time. An equivalent but some- 
what  different  interpret,ation of the effectiveness of cor- 
relative level coding is given in t,he time  domain [4]. The 
correlative level coding system possesses the  property of 
being relatively insensit,ive to channel  imperfections and 
also to  variations  in  transmission  rate [4],  [5]. Recently, 
i t  has been pointed out  by  the present authors [C] that 
a  digital  magnetic  recording  channel  can be regarded also 
as  a  partial-response  channel  due to  its  inherent differ- 
entiation  in  the  readback process. 

Methods for controlling  errors in such  a coding or sig- 
naling  system are discussed in  this  paper from the  stand- 
point of an algebraic treatment. A mathematical  model 
of a correlative level coding system is reviewed in Section 
11. Section 111 describes error-detection schemes which 
make  full use of the inherent  redundancy of a correlative 
level coded output.  In these schemes a modulo m detector 
in the conventional receiver (where m is the number of 
information sequence levels) is replaced by  an inverse 
filter and a decoder. 

I n  Section IV the algebraic  approach is extended to a 
more general decision scheme, named the  ambiguity zone 
decoding (AZD) method,  in which the quant,izer  makes 
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Fig. 1. Conventional system configuration of correlative level 
coding system. 

a  soft decision including  ambiguity (or rejection) levels. 
Nost of the digits in  tbe  ambiguity levels are replaceable 
by correct  values  by using the inherent,  redundancy of 
the sequence. The  correction-  method developed here is 
an extension of the null-zone detection  method  studied 
by  Smith [7]. 

In  Section V an optimum choice of t,he ambiguity level 
zones for the  quantizer is discussed. The performance of 
this algebraic decoder is analyzed and is confirmed by 
computer  simulations.  Finally, in Section VI,  an asymp- 
totic expression for the decoding error rate versus signal- 
to-noise ratio (SNR) is obtained  and compaked with the 
convent,ional bit-by-bit (BIT) detection  method and with 
the maximum-likelihood decoding (MLD) method re- 
cently  studied by Kobayashi [8],  [9] and  Forney [lo], 
c111. 

11. MATHEMATICAL  MODEL [6], [SI, [9] 

Throughout,  this  paper we deal  with  a  linear  discrete 
systjem  as  depicted in Fig. 1. Here the channel  has  been 
treated  as a  digital  link comprising the signal  generator, 
modulator,  transmission  medium,  demodulator, filter (pos- 
sibly an equalizer),  and  a  sampler. A correlative level 
coding can be realized by  shaping  any  part of the aug- 
mented  channel just described. However,  for the sake of 
clarity we single out this  linear  transformation at  the 
transmission side and represent it  by a  linear  discrete 
filter  operating  on  the  information  sequence. 

Let us represent  a sequence by  a power series in  the 
delay  operator D which is  equivalent  to  the  inverse of 
the  2-transform  variable 2. An information sequence (akj 
is thus represented by 

A (D) = 2 &Dk. 
ea 

(1) 
k=O 

A correlative level encoder is  characterized by a transfer 
function 

N 
G(D) = giDi ( 2 )  

i=o 
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where the gi are  integers  with  a  greatest  common divisor Ece TO 

equal  to one. We  assume without loss of generality that 
in  the pulse-amplitude  modulation (PAM)  system  the 
input  symbol (ak) is  chosen  from the set of integers 
{O,l,-..,m - 1 ) .  

The  information sequence A (D) is first transformed  by 
a  precoder with  a  transfer  function [l/G(D)],,d ,,, into 
another m-level sequence B (D) : 

Chonnel 

or, equivalently, 

G ( D ) B ( D )  = A ( D ) ,  modulo  m. (4) 

The precoding.  is  a  technique  devised by Lender [2] to 
avoid  the  error  propagation.  A  generalization  to  multi- 
level cases was apparently  first  done  by  Gerrish  and 
Howson [la]. I n  order that  the precoder  [l/G(D)],,d ,,, 
exist, we require that  the inverse of go exist in  the residue 
class ring  modulo m. This is assured if go and  m  are rela- 
t'ively  prime. 

The correlat.ive level encoder  transforms B ( D )  into 
X (0) according to the relat,ion 

G ( D ) B ( D )  = X ( D )  ( 5 )  

or, equivalently, 
N 

x k  = gibk-il for all k .  (6) 
i = O  

The encoder output X ( D )  is a  correlated  sequence  which 
takes  on M different levels, where 

N 
M =  (m- 1) IgiI + 1. 

i=O 

A simple relat,ionship exists between X ( D )  and A (0) 
because of (4) and ( 5 )  : 

X(D)  -= A (D) modulo m (7) 

or 

xk 3 uk, modulo m, for all k .  ( 8 )  

The encoder output X ( D )  is sent over  a  channel with 
an additive noise' Z(D), the  output of which is denoted 
by Y ( D )  : 

Y ( D )  = X(D)  + Z ( D ) .  (9) 

I n  the  conventional  receiver  structure,  the  channel  out- 
put Y (0) is first  led to  an M-level quantizer whose out- 
put is  denoted by Q ( D )  . If no  errors  are  introduced in 
the  channel  and  quantizer,  then Q ( D )  = X ( D )  , and  the 
information  sequence is recovered  simply by  performing 
modulo m operation on Q ( D ) ,  the  output of which  is 
denoted  by A ( D )  (Fig.  1).  Propagation of errors  in  the 

random sequence; so is the channel output Y ( D ) .  
The noise Z(D) is a time discrete but  amplitude continuous 

(3) 
Fig. 2. Combination of precoder and correlative  level encoder. 
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Fig. 3. Receiver structure  with error-detection  capability. 

output sequence Â  (D)  due  to  errors  in Q ( D )  is  thus 
avoided. 

Fig. 2 shows an efficient implementation of the  precoder 
and  the correlat,ive level encoder in which ( l/go),,,  means 
t'he inverse of g o  in  the residue class ring  modulo m, and 
( E )  ,,, denotes  the  summat'ion  in modulo  m sense. 

111. ERROR DETECTION 

Detectable Errors 

Alt.hough t.he system shown in Fig. 1 is ext,remely simple 
in  structure,  this  detection  method is not  capable of taking 
advantage of the  inherent  redundancy  in  an m-level  se- 
quence X ( D j  and will not  detect  any  errors. To remedy 
this  ,weakness,  Lender [Z] proposed an . error-detection 
scheme for the  duobinary  system. In  that  scheme the 
quant'izer  output Q (D) is monitored by logic circuits to 
check exist.ence of any unallowable patterns. 

I n  t'his  section we shall describe certain algebraic detec- 
tion schemes whicli do riot rely on the  observation  sequence 
&(I)). Fig. 3 shows  a receiver structure which has been 
reported  independently  by  Gunn  and  .Lombardi [13], 
the  present  authors [SI, and  Forney [lo], [ll].   The 
modulo m detector of Fig. 1 is replaced  here by  the  inverse 
filter wit,h a  transfer  funct,ion [l/G(D)]  and  the decoder 
with a transfer funct,ion [G(D) ]mod m. The decoder  per- 
forms the inverse operation of the precoder, and  its  input 
B ( D )  and  output if ( D )  are  related  by 

B ( D )  = G ( D ) B ( D )  , modulo m. (10) 

The inverse filter and  the decoder t.ogether perform an 
equivalent  modulo m operat,ion, namely, 

A ( D )  E Q ( D )  , modulo m (11) 
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and so the object,ive of avoiding  error  propagation is still 
preserved. 

If there  are no  errors in  the  quantizer  output,  the in- 
verse  filter output  B(D) is  clearly the same  as the pre- 
coder output  B(D) . When an error exists in  Q(D) , it is 
said  to be detectable if it could not be generated by a 
legitimate  input  A(D)  in  the absence of errors. Detect- 
able  errors  can  always  be  detected in  the receiving system 
of Fig. 3 simply by marking the occurrence of any illegiti- 
mate coefficients in B ( D ) .  The validity  and  the  optimality 
(in  the sense of minimal  delay) of such  a  detection scheme 
is assured by  the following theorem. 

Theorem 1 

Any  detectable  error  in the quantizer  output  Q(D) 
must result in  an inverse  filter output  B(D) which con- 
tains a coefficient of level other  than  the allowable levels 
{0,1,.-.,m - 1 ) .  Furthermore,  the  delay between the 
occurrence of an error 'and  its detection is the smallest 
possible. 

Proof: We first note that  the precoder  maps an m-level 
sequence {ak)oK (a sequence of a finite length { u,,,uI,cc.~, - - -,uK)) onto  another m-level sequence { bkIOK m . a one- 
to-one fashion.  Suppose that  the quantizer  output { q k )  
contains some detectable  errors.  Then  there exists no 
m-level sequence { uk}OK which would yield this  particular 
sequence { qkIOK in  the absence of errors. It follows that 
there  is  no sequence { b k )  OK which could produce { qk}oK 
in  the absence of errors;  i.e., 

CG(D)BK(D)IK # QK(D) (12) 

for any m-level sequence (bk)oK. Here BK (D) is  a Kth- 
degree polynomial of D and c.1~ means  truncation of a 
polynomial in  the  bracket  up  to degree K.  Then a se- 
quence  corresponding to 

is  not an m-level sequence and hence must  contain levels 
other  than  the allowable levels {O,l, - .,m - 1 ) .  To show 
this, suppose that  the inverse  filter output of (13) were 
a legitimate m-level sequence. Then 

and this  result  contradicts the assumption  (12).  The 
minimum-delay property of error  detection follows from 
the preceding argument, since  as soon as an event of (12) 
holds  for some K ,  B K ( D )  of (13) becomes an illegitimate 
sequence  for that K.  ' Q.E.D. 

Thus  the inverse  filter output  &(D) contains illegiti- 
mate digits if any detectable  error exists in  the sequence 
&(D). When go = 1, these  illegitimate  digits are always 
integers and  thus  must lie outside the allowable integer 
levels {O,l,...,m - 1 ) .  On the  other  hand, when go # 1, 
illegitimate levels in 8 (D) correspond, in general, to non- 
integer  numbers. In  the next  section we shall discuss an 

error-detection scheme based on  Theorem 1 and  then  intro- 
duce  a further simplified scheme. 

Error-Detection  Schemes 

In  this  section we shall discuss a more detailed  struc- 
ture of the error-detection  system of Fig. 3 and observe 
its operation.  An  implementation example is  depicted in 
Fig. 4. Note  that  the inverse filter and  the decoder share 
the portion  G(D) - go, resulting in a minimum amount 
of hardware. A(D) could be  derived  directly  from 
Q(  D) mod instead of from B( D) . But  the configuration 
of Fig. 4 leads  us  naturally to  the  other scheme, which 
will be discussed in  the sequel. 

There  are a t  least  two courses of action one may  take 
in response to a detected  error. One possible method is 
to request  the retransmission of data tracing  back  a  num- 
ber of digits  from the point where an error is detected. 
Another possible course of action is to monitor the per- 
formance of the  system  by counting  detected  errors.  Trans- 
mission of data is not suspended in  this case;  consequently, 
some  kind of resetting  must be  done each time an error is 
detected.  Let us assume that we are dealing  with  a class 
of G(D) = 1 f DN. In  such cases reset pulses (which 
form  a sequence { & }  ) of Fig. 4 are delayed  estimates of 
the error terms  and  are used to cancel detected  errors in 
the sequence { b }  a t  the earliest possible state  in order to 
prepare the system  for  the  detection of future errors. The 
error  estimate { & }  is the minimum  number in  its magni- 
tude such that 8, - 6 k  is an admissible integer. That is, 
this  resetting pulse-generation rule agrees with the mini- 
mum-distance decision rule and  is given by 

1 S k  - (m - 11, for 6, > m - 1 

.?k = S k ,  for 6, < o (15) 

0, otherwise. 

Polynomials Q(D) , B(D),  A  ̂(D) , and  B(D)  are related 
as follows : 

B ( D )  = 1_ CQ(D) - {G(D) - 901 {B(D) - B ( D ) I l  
go 

(16) 

A(D) E goB(D) + { G ( D )  - go){B(D) - B(D)}, 
modulo m 

= &(Dl ,  modulo m. (17) 

Before discussing the  operation of the detection  circuit, 
we shall  present  a  different receiver configuration in which 
the  quantizer is embodied in  the inverse filter rather  than 
at the head of the receiver (Fig. 5 ) .  Note  that  the thresh- 
old  range of the quantizer  is  reduced  from M to 
(m - l )go  + 1 although  the spacing  between  thresholds- 
is  still  unity.  The principle for the detection  procedure 
and  its  capability  are  the same as those of Fig. 4. The 
output of the  subtraction circuit at  the head of the re- 
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ceiver is now an analog  voltage,  which we denote  by 
{ U k )  01: U ( D ) :  

U(D) = Y(D) - ( G ( D )  - go) { B ( D )  - E ( D ) ) .  (18) 

The  operation of the  system will be clarified by providing 
some  examples. Let  us first consider  a  simplest case in 
which go = 1. 

Example 1 : G ( D )  = 1 - D and nz = 2 

Let G ( D )  - go = -D in  Fig. 5. The entries of Table I 
will  be self-explanat'ory. A strong noise is observed a t  time 
k = 4. This  naturally causes an error in 6,. However, the 
error  can  be  detected  instantly since 6 4  = 2 i s  clearly 
illegitimate.  Alt,hough (i4 = 1 is in  error,  the  error does 
not  propagate  in  the following  digits. Note  that 6, cannot 
be corrected  even  though  the  error  is  inst,antaneously 
detected, since the  same sequence { 6,) would  be  observed 
if ba = 0 (hence as = 0,  u4 = 1 )  and 23 were  a strong 
positive noise and z4 were  weak, say 23 = 0.6 and z4 = 0.4; 

We note  that if det'ection of an error is always followed 
by  a  retransmission,  then  there  is no need for resetting 
and  tJhe  detectmion  method  described earlier is  certainly 
applicable for all G(D)-  wit,h (g0,m) = 1. However, if un- 
interrupted  transmission  is desired, resetting  is  then  in 
order.  The  requirement of a  simple  resett,ing  scheme  tends 
to constrain G ( D ) .  We  have  seen that, for G ( D )  = 
1 f Dv, the  resett'ing  can be  simply  achieved.  For G ( D )  
other  than 1 f D N ,  we may need  more than one  observed 
illegitimate level in 6 sequence to decide how the  resetting 
can be  achieved.  This implies the need  for extra logic 
circuitry  which  strongly  depends  on  the specific G ( D )  
chosen. 

Next we consider cases with G ( D )  = go f - q ~ D " ,  where 
go > 1. I n  the receiver configuration of Vigs. 4 or 5 ,  once 
an error  in  quantizat,ion  is  introduced, a noninteger  num- 
ber cycles in  the  feedback loop unless the  error  is an 
integral  multiple of go. Now we modify the  st,ructure of 
Fig. 5 to  a more practical one  which  avoids the occurrence 
of noninteger  numbers.  This  structure is diagrammatically 
shown in Fig. 6, in which  Quantizer I has  the  quantiza- 
tion spacings equal  to  unity. We denote  the  output of 
this  quantizer  by c (D) (or { ck} ) , which is equal  to goB (0) 
unless there exist errors. C ( 0 )  is then  led  to  Quantizer 11, 
whose spacing is go( > 1). By  applying  the following quan- 
tiiation  rule,  the  out,put { 6,) is  assured to be an integer: 

TABLE I 

k 0 1 2 3 4 5  

0 1 1 1 0 1  

bk ='ak + bk-l (mod 2)  0 1 0 1 1 0  

% - bk - bk-l 
0 1 - 1  1 0 - 1  

"k 

z ' 0 . 1  0 .2  -0 .1  -0.4 0 -0.3 

Yk - Xk + Zk 0 . 1   1 . 2   - 1 . 1   0 . 6   0 . 6  -1.3 

> = yk + bk-l - 'k-1 0 . 1   1 . 2   - 0 . 1   0 . 6   1 . 6  - 0 . 3  

bk 0 1 0   1 0 0  
0 0 0 0 1 0  

==k 
"~ ~ 

% ' bk - bk-l + ek-l 0 1 1  1 0 1  

(mod 2)  

6 . . .  
1 . . .  
1 . . .  
1 . . .  

0 . 2  . . . 
1 . 2  . . . 
1.2  . . . 
1 . . .  
0 . . .  
1 . . .  

- -  A 

Fig. 4. Error-detection circuit I. 

Fig. 5. Error-detection circuit I1 (quantizer imbedded in inverse 
filter). 

Fig. 6. Error-detection circuit 111. 

The decoding stage is to be  modified accordingly, as  in 
Fig. 6; Le., 

A ( D )  = C ( D )  + { G ( D )  - g o } ( B ( D )  - B(D)}. ( 2 0 )  

Example 2 : G ( D )  = 2 + 3 0  and In = 3 
See  Table 11. The precoding  formula is 

2bk + 36,-1 E U k ,  modulo 3 ( 2 1 )  

which to  equivalent  to 

b k  204, modulo 3. (2% 
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TABLE I1 

k 0 1 2 3 4 5 6 7 8 9  

Bk 0 1 1 2 0 2 1 0 2 1  

bk E 2 (mod 3) 0 2 2 1 0 1 2 0 1 2  

8 3 2 7 6 2 7  \ - bk + 3bk-1 

- * 0  'k 

'k - \ i- 'k" 

0 .1   -0 .1   -0 .7   0 .2  -0 .3  0. 0 . 1   0 . 3  -0 .1  0 . 1  

0 . 1   3 . 9   8 . 3   8 . 2  2 . 7  2 .  4 . 1   6 . 3   1 . 9   7 . 1  

- yk - 3(bk-l-ek-+) 0 . 1   3 . 9   2 . 3   5 . 2  -3.3 2 .   4 . 1   0 . 3   1 . 9   4 . 1  

c 0 4 2 5 - 3 2 4 0 2 4  

bk 0 2 @ 2 j - g 1 2   0 1 2  

e 0 0 0 0 - 1 o o o o o  

ek 5 ck + 3(bk-1-ek_l) 0 1 @ 2 0 2 1 0 2 1 
~~ 

(mod 3) ' 'k 

As  we see from  the  table t'here exists a strong noise at 
k = 2,  which causes an error in { 8,) and { & )  . This  error 
cannot  be  detected  until k = 4, a t  which { b k )  takes  an 
outermost level 0. Then &k = -1 is generated  and is 
used as a  resetting pulse to  prepare  the  system for possible 
future errors. 

We should also remark that if go > 1, there  are some 
cases in which the propagating  error  pattern  in  the  in- 
verse filter 1/G(D) quickly dies out.  (Take  for example, 
G(D) = 3 + 0 . )   I n  general, if all the roots of 

G(D) = 0 (23) 

lie outside the  unit circle in  the D domain, the propagat- 
ing error pattern 1 / G ( D )  is a converging sequence.  When 
the speed of convergence is  fast we may no longer need 
the precoding  operation. An advantage of eliminating 
precoding is that we can  eliminate  Quantizer I of Fig. 6, 
and  any noise less than 90/2 in  its  magnitude does not 
cause an error.  Not'e also that  the decoding stage  is now 
eliminated,  i.e., Â  (D) = B(D), since no precoding is 
performed. 

IV. AMBIGUITY ZONE DECODING METHOD 

Ambiguity Levels and Error Correction 
The preceding discussion has been  based on a  system 

model in which a  quantizer  makes  a  hard decision. Such 
decision schemes, however, discard  a substantial  amount 
of information  about  the reliability  originally  contained 
in  the received sequence Y(D) or U(D). It is  clear that 
the received digits  lying  near the boundaries of quantiza- 
tion levels are generally less reliable than those close to 
ideal  signal levels. One way to  retain such  reliability 
information of the unquantized  signal  is  to allow the  quan- 
tizer an option of rejecting  a decision for some digits when 
they lie close to  the decision-region boundaries.  Most of the 
rejected  digits will be reconstructed  later  from neighbor- 
ing  digits which will have  been received with  a  higher 
reliability.  An  optimum decision scheme with  a  rejection 
option  has been studied  by Chow [14],  [15] and  has 
been applied to  pattern recognition problems. In  coding 
theory,  a  rejection  is  usually  referred  to  as an erasure 
[lS], [17]. The null-zone detection  method which Smith 

- 1  0 1 2 .... i , * I  .... m - 1  m 

Fig. 7. Decision regions of quantizer with ambiguity zones 
(so = I). 

[7] developed for the duobinary  system  can be regarded 
as such  a decision scheme, 

We shall  next  extend the algebraic  method of error 
detection discussed in  the previous  section to include  am- 
biguity levels. Throughout  the present section we discuss 
the  system  G(D) = 1 - D. This  system  is  not only the 
simplest to analyze, but also represents  a class of systems 
G(D) '= 1 f DN. We  should  remark in passing that 
G(D) = 1 - D  with a binary  input represents  a  digital 
magnetic  recording  system [SI, [SI. All results  obtained 
in  the present  section are extendable to a class G(D) = 
1 f DN with  straightforward modifications. 

In  the absence of noise, the  input  to  the  quantizer of 
Fig. 5 U k  takes  on  integer levels (0,1,. - - ,m  - 1). Now 
the  quantizer is modified in  such  a  way that  i t  rejects an  
instantaneous decision or makes  a tentative decision on 
those  digits which fall in  ambiguity zones between levels 
i and i + 1,  where i = - 1,0,. - - ,m - 1. Fig. 7 shows a 
partitioning of the sample space of the  quantizer  input 
U = { u ;  - < u < 00 ) , using this generalized decision 
rule. The shaded  areas with noninteger  subscripts 
U-1/2,Ulp, - - -,Um--1/2 constitute  ambiguity  (rejection) level 
regions. (An  optimum choice of decision regions ( U,) will 
be  deferred  until the  next  section.)  There  are several ways 
to  handle these  ambiguity  digits. In  the scheme proposed 
here, we temporarily assign to  the quantizer  output i k  

either  one of the two closest integers. For example, an 
appropriate  quantization  rule  (in  general, we can choose 
randomly  one of two closest integers and assign it  tenta- 
tively  to i k )  \vi11 be 

i k  = i, if u k  E ~i or ~ i + ~ ~ ~  ( 24) 

where i = -l,O,l,-m -,m - 1,m. 
We shall now describe an error-correction procedure 

based on  this generalized quantization  rule:  the location 
k of u k  in  an  ambiguity level is  stored  temporarily. If the 
tent'ative  assignment of an integer to  the  ambiguity digit 
turns  out  to be incorrect, i t  can be found whenever the 
precoded output reaches the  bottom level 0; i.e., bkl = 0 
for some time k' 2 k ,  since under  the rule of (24), tbe 
error a t  IC, if m y ,  is - 1 and  the  propagating error pattern 
is  given by 

In  the system  G(D) = 1 + D,  on  the  other  hand,  the 
error-propagation pattern  has  alternating signs. Thus it 
is  clear that if either 8~ > nz - 1 or < 0 is  observed, 
the  error  is  detected. Once the  error is detected,  the 
ambiguity  digit  can  be  replaced  with  a  correct  value. 
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L - stage  storage Decoder Output 
h - La 

Ambiguity digit Indicator 
Uncorrected 

Y Y Y 

Z = X - Y  Z = X - Y ( m o d m )  z = x . y  

Fig. 8. Ambiguity zone  decoder for system G(D)  = 1 - D. 

Fig. 8 shows  one possible implementat,ion of the  error- 
correction  circuit  for a system  G(D) = 1 - D.  (The mod- 
ification of this receiver structure  into  a class G(D) = 
1 f D N  is  rather  straight,forward.)  The  input to  the  quan- 
tizer  is  given by 

u k  = y k  + b k - 1  - Zk-1. (26) 

Ambiguity  digit  indicator  sequence ( i k )  or I ( D )  is a 
binary sequence  defined by 

1, if u k  E u i + 1 / 2 ,  i = - l , O , l , - . . , m  - 1 
i k =  [ 

0, if otherwise. (27) 

That is, i k  is 1 if u k  is an ambiguous  digit,  and is 0 other- 
wise. 

The decoded output { (ik] is  obtained  by 

( i k   b k  - b k - 1  + & - I l  modulo m. (28) 

Here &k in (26) and (28) is a delayed  estimate of the 
propagat'ing  error  term,  as  was  already  defined  in  Section 
111. It is  generated  according  to  the  following  rule: 

I b k  - (m - I ) ,  for 6, > (m - 1) 

&k = 6 k ,  for 6 k  < 0 

0, otherwise. ( 29) 

If u k  is an ambigaous  digit  (i.e., ik = 1) and  its  tentative 
decision 6 k  is  incorrect,  then  with  a  high  probability we 
shall observe a nonzero  value2 i?kf a t  some time k ' (  2 k ) .  
Since  the  error-indicator signal ik is  stored  in  the  memory, 
signal  can  be  subtracted from the erroneously  decoded 
output ( i k ;  Le., i k  operates  as  a  gating signal to  the  error- 

cussions on the  treatment of multiple errors  are given  at  the end 
* I &k I can be greater than 1 in the case of multiple errors. Dis- 

of this  section. 

correction signal &k. For  the  sake of clarity,  Fig. 8 shows 
a circuit  which  can  handle  appropriately  only  a single 
error in  the buffer. 

The following  example will illustrate  our scheme  most 
effectively. 

Example 3:  G(D) = 1 - D and nl = 2 

Assume that  the  ambiguity level is defined by 

Ui+l/z = (u ;  i + 0.4 < u 5 i + 0.6) .  (30) 

In  Table I11 an  ambiguity level is  received a t  time k = 3:  
U S  = 0.49. Thus  an erroneous decision b3 = 0 is  given 
temporarily  and, at  the same  t'ime, i3 = 1 is stored in 
the memory. The  error  cannot be detected  until k = 5, 
a t  which t,ime 6, = - 1 is observed.  The  error  estimate 
& = -1 is then  generated  and cancels the  propagating 
error  pattern  in sequence & (D) . It is also used to  replace 
the  ambiguity  digit 6,  with  its  correct  value.  The sequence 
{ I & }  is t'he final decodw  output  after  the correction. 

We have  seen that  an error of plus sign (or minus  sign) 
can be detected  as soon as  the precoded  sequence b k  takes 
the top-level wz - 1 (or the  bottom-level 0) unless some 
addit'ional  error  with  the  opposite  polarity  takes  place 
before the  arrival of this  outermost level. Thus,  although 
the  probability of correct.ing an isolated  ambiguity  digit 
approaches  one  as  the  buffer  length L (see  Fig. 8) is 
increased without  bound,  the  probability of observing 
two or more ambiguity  digits  in  the  buffer  storage  in- 
creases accordingly. I n  order to handle  these  multiple 
ambiguity  digits  appropriately,  the  correction  circuit of 
Fig. 8 should  be  modified  as follows. Suppose that i?k # 0 
and  that  there  are  already more than one ambiguity  digits 
stored  in  the buffer memory; i.e., 

ikl = ik2 = . . . = 1 (31) 

where 
k > k i > k z . . *  > k - L L .  . (32) 
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TABLE I11 

k 0 1 2 3 4 5 6  . . .  
ak 0 1 1 1 0 1 1  

bk B ak + bk-l (mod 2) 0 1 0 1 1 0 1 

"k bk - bk-l 0 1 - 1  1 0 - 1  1 

E 0.1 0.2  -0.1 -0.51 0.1  -0.2  0.1 

0.1 1.2  -1.1 0.49 0.1  -1.2  1.1 'k 

9 - yk + bk-l - e,-l  0.1 1.2  -0.1  0.49  0.1  -1.2  1.1 

bk 0 1 0 0 0 . 0  1 

'k 0 0 0 . Q o  0 0 

xk + fk 

ek 
ak 5 bk - bk-l + ek-l 0 1 1 0 0 
^ ^ "  ~ 

(mod 2) 

Then a  correction  should be operated  on (Zkl first: 

akl = &kl - Sgn { e , ) ,  modulo m (33) 

and i k l  should  be  reset to zero. The error-estimat,e  signal 
is increased or decreased by one  depending  on  it,s polar- 
ity: 

bk, = &k - sgn { b k ]  . (34) 

If b k !  is not zero, i t  means that there  are  other  ambiguity 
digits yet  to be  corrected. The next  correction  should be 
made  on a k 2 ;  i.e., 

ak2 = ( ik2  - Sgn { e , ' ) ,  modulo ( 3 5 )  

and i k 2  is  set t.o zero, and so forth. 
The correction  should be operated  in  the order of (32),  

since the signal that indicates an ambiguity  digit  remains 
unreset if the error is positive, and hence is rounded down 
correctly by  the rule (24). 

V. OPTIMUM CHOICE OF AMBIGUITY ZONES AND 

PERFORMANCE ANALYSIS 

In  this  section we shall discuss how the observation 
space U = { u; - Q, < u < Q, } of Fig. 7 should  be  par- 
titioned  into a set of decision regions { U,) ,  based on  the 
results in  the  st'atistical decision theory [14],  [15],  [17], 
[19]. Analytical  and  simulation  results concerning the 
performance of the proposed correction scheme will be 
presented  next.  Finally, we shall  derive an asymptotic 
expression for the decoding error rate versus SNR in 
closed form. In  the present  section, we again  limit  our- 
selves to  the syst,em G ( D )  = 1 - D, but all  results  can 
be extended to  the class of G ( D )  = 1 f DN. 

If the information sequence A ( D )  takes  on  integer 
levels { 0,l; - - - ,m - 1 ] independently and equally  likely, 
so does the precoded sequence B ( D )  . Let  the  probability 
density  function of the additive noise { z k )  be  denoted  by 
p z ( x ) .  Then  the  probability of observing the  quantizer 
input u k  when b k  = i is  given  (assuming the previous N 
digits of quantizer  outputs & k - ~ , * * - , & k - ~  are correct) by 
p z ( u k  - i), i = 0,1,--  - ,m - 1. The probability that a 

digit is decided incorrectly is, therefore 
1 m-1 m-1 

m i = ~  +o, j#i  ~i 
E = - J p z ( u  - i) du 

m-1 P I m-1 P 

= /ui pu(u) du - / pl(u - i) du (36) 

where pu(u) is the composite probability of the  random 
variable u and is given by 

la m i=o ui 

1 m-I 

(37) 

Similarly, the rejection rate R, i.e.,  the  probability of 
ambiguous  reception, is given by 

m- 1 

R = / pzI(u) du = 1 - C 1 pu(u) du (38) 
U R  i=o ui 

where UR is the union of rejection regions 

m- 1 

U R  = ui+l/Z. (39) 
+- 1 

As  we have  already discussed, some of the rejected  digits 
are  not replaceable  either because of cancellation of prop- 
agating  error  patterns, or because of the finiteness of a 
delay allowed in  the decoder. Let  the  portion of ambiguity 
digits which fail to be replaced correctly be denoted  by 
f (  5 1 ) .  Then  t~he  total decoding error rate  is given by 

PeAzD = E + f - R  (40) 

where f is not a constant  value but a  monotonically in- 
creasing function of R, as will be  shown later. Recalling 
that  the optimum decision rule is the one that minimizes 
the rejection rate R for  a  given E,  we are now in a  position 
to  apply a  theorem  due  to Chow [14], [15] (see, also, 
the Appendix) to  our problem. 

The optimum decision rule stated  in Theorem 2 in  the 
Appendix says 

(l /m> max {pz(u - 4 1 
Reject u, if 

P u  (u) 
< I - t  

i , j  = 0,1, .,m - 1 (42) 

where the  parameter t satisfies 1 - l/m 2 t 2 0, and  the 
optimum choice of this  parameter  is  equivalent  to  the 
optimum choice of a set of decision regions { U,) . 
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+ 
Fig. 9. Decision regions of quantizer for input  range j 5 u 5 j + 1; 

orj = j + 1/2 - ut-r ,  = j + 1/2 + ua-r 

Let  the  additive noise of the channel  be  Gaussian  with 
zero mean  and  variance u2 (normalized by  the signal 
spacing). Then,  assuming a  reasonably high SNR,3we obtain 
after some  manipulation the following expression for  opti- 
mum  rejection regions (Fig. 9) : 

Uj+lp = ( u : j  + 3 - u2.r < u < j + 3 + a2-r) (43) 

where j = O,l, - - ,7n - 2 and 

r =  ln- 
1 - t  

t 
2 0. (44) 

The result (43) shows that,,  for  a high SNR,  an  optimum 
ambiguity region is  symmetrically  placed  between  the 
integers. Then E and R of (36) and (38) are  evaluated: 

E =  e&- 

2(m - 1) 
m (45) 

where 

Qf = Q (+ - u - r )  
dU 

Q- = Q(k+ u - r ) .  

(47) 

Here the function &(x) is defined by 

Now we shall  obtain  an expression for f of (40). As 
was defined  there, f represents the probability that  an 
ambiguity  digit is not, replaced  correctly. For a  reason- 
ably high SNR, f consists  mainly of the following two 
terms : 

f = fl + f2 ( 50) 

where f~ is the  probability  that  an  ambiguity  digit  has a 
negative  error (and  thus is decoded  incorrectly)  and that 
the inverse filt,er output sequence 6, does not exceed the 
outermost level in ko 5 k I ko + L, where ko is the loca- 
tion of the ambiguity  digit  and L is  the decoder  buffer 

Fig. 10. Decoding  error rate versus  channel SNR for systems 
G ( D )  = 1 f D with m = 2,4,8, and 16 and L = decoder buffer 
size. 0-experimental  results. 

memory size. It is  not difficult to see that fi can  be  written 

The  term f2 represents twice the probability of an  event 
in which an ambiguity  digit  with a negative  error  remains 
uncorrected and is followed by one  with  a  positive  error. 
When the error  due  to  the wrong  replacement of the first 
ambiguity  digit  is  detected  after the second ambiguity 
digit  is  received, the second ambiguity  digit  is also er- 
roneously  replaced. This  event  leads  to  two errors. It 
can  be  shown that f2 is  approximated by 

(m - 1) R 1 - (1 - l/m)L(l - R ) L  - - 
m 2 1 - (1 - l/m)(l - R )  

- . (52) 

When the decoder buffer size L is sufficiently large, then 

lim fl = 0 
L- m 

(53) 

lim fi = 
(1 - l/m) .R/2 

1 - (1 - l/m)(l - R )  ' (54) 
,L+m 

As can  be  expected, f2 is a  monotonically  increasing  func- 
tion of the rejection rate R. Now the,computation of the 
decoding  error rate  is  rather  straightforward. For a given 
SNR we calculate the  total decoding  error rate  Pe of 
(40) for  various  values of the  parameter r (or, equiva- 
lently,  for 2) and find the minimum  value. 

Fig. 10 shows PeAzD versus SNR when an  optimum re- 
jection region (i.e., the  optimum  value of r )  is used in our 
decoder for a  system G ( D )  = 1 f D with  numbers of 
input signal levels m = 2,4,8, and 16. Here the  buffer 
memory size L = 20, 40, and infinite are assumed. For 
nL = 2 and 4, the difference among  these  curves  for  differ- 
ent values of L is unnoticeable.  Fig. 10 also shows com- 
puter  simulation  results  in which the buffer size L = 20 
was used. The sample size in  the  computer  simulation was 
lo5 for the range Pe > and lo6 for the range Pe < 

The  SNR used in Fig. 10 is the average SNR of the 
channel defined by 

9 = - .  
m2 - 1 

6u2 ( 5 5 )  
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0.1 c1----l L=20,a, 

"b LO 0.05 -": L=20 

Equation (61) indicates that optimum  ambiguity zones 
for a high SNE,  are such that E = 2fR, i.e.,  a true  error 
is as probable as  two  ambiguity  digits  erroneously de- 
coded. The  optimum value  for the  parameter r is  obtained 
from (57), yielding 

I I Hence the  argument of &- is given by - 
IO II 12 13 14 15 (for m.2) 
17 18 19 20 21 22 ( for m=4)  

SNR (dB) 

Fin. 11. Ambieuitv zone width versus channel SNR for  svstem - %(B) = 1 f D with m = 2 and 4. 1 s (2 - f l )  - .  (64) 
U 

We see a  satisfactory  agreement  between the analytical 
and simulation  results. 

Fig. 11 shows the opt~imum  ambiguity zone width u2ropt 
(see (43)) as a function of SNR for m = 2 and 4. Note 
that these  curves (for L = m )  approach a2r = 1.5 - fl 
as  SNR goes to infinity,  i.e., as u + 0. This asymptot,ic 
value of the  ambiguity zone is derived  in  Section VI. 

VI. ASYMPTOTIC EXPRESSION FOR DECODING ERROR 
RATE AND COMPARISON WITH OTHER 

DECODING METHODS 
We shall now derive an asymptotic  (i.e.,  for a high 

SNR) expression for the relationship  between the decoding 
error  rate  and  the channel SNR.  By approximating  the 

Using t,he channel SNR defined by (55),  we finally 
obtain  the expression we have  been  seeking: 

An asymptotically  (i.e.,  for  a  small a) optimal choice of 
the  ambiguity zone U ~ + I / ~  is 

U.;+li.2 = { u; i + - a2ro < u 5 i + 8 + a2ro) (66) 

where u2ro is given from (63) by 

denominator Of (54) by  unity and using the fact that In fact, (67) agrees very well with  curves drawn for 
Q+ >> &- under  a high SNR condition, the decoding error = co in ~ i ~ .  I l .  
rate of the  AZD  method  can be  approximated  as  follows: Now ,~,e the asymptotic (65) with 

other decoding methods. In  the conventional BIT detec- 
(56) tion met,hod (see  Fig. 1) the  error  rate is given by [5] 

On differentiating PeAzD with  respect to the  parameter r 
and  setting  the  result to zero, we have 2(m2 - 1) reBIT = 2 (1 - 5)  Q ( 3v )" . (68) 

- 4 2, + ur = 2Qf.4 - - An asymptotic expression for the decoding error  rate for 
m ( ) ( i u  u * r )  = (57) the MLD method  has been recently  derived by one of the 

where d (  .) is the  unit normal  distribution  function,  i.e.,  present  authors  [SI, [91 and  Forney [I11 independeI1t1y: 

Using the  assumption u << 1 and  the  approximation for- Fig. 12 shows plots of (65), (68), and  (69). We see that 
mula [20] &(x:) (l/x:)+(x), x: > 3, we obtain  the performance of the error-correction method lies be- 

txeen  the  BIT detection  method  and  the MLD method. 
(59) If we ignore constant  factors  the decoding error rates 

for three  methods  are given in  the form 

' When (57) holds, we have where 

ff=(---- 1 3 + 2 a  

I 
I 2, for BIT. 

4 
- 1.457, for AZD (70) 

(62) 
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SNR (dB) 

Fig. 12. Comparison of BIT, AZD, and MLD methods. 

It is  interest,ing to observe4 that  the loss factor 
4/ (3  + 2 a )  = 4 (3  - 2*)  of the  AZD  method  with re- 
spect  to  the  MLD  method  appeared  in  earlier work by 
Forney [lS, eq.  (44)], where he discussed  erasure-and- 
error decoding of a  group  code  when  the  channel noise is 
white  Gaussian  and  modulation is binary  antipodal signal- 
ing. Although  somewhat inferior to  the  RILD  in  its per- 
formance, the  AZD  method possesses an  advantage  over 
the  RILD  in  its simple  implementmation.  The  number of 
quantization levels is, in  general,  much  smaller than  that 
required in  the RiILD [SI,  [SI.  Furthermore,  in  the  RILD 
method  the  number of “stateslfl which  determines  the 
decoder  complexity, is5 mN for a  system  G(D) = 1 f DN. 
Thus  the RiILD algorithm  tends  to  require  a significant 
amount of computation  effort  and  memory  requirement 
when the  number of signal levels increases. The  AZD 
method will be more attractive  in  that  respect. 

VII.  CONCLUDING REMARKS 
We have discussed in preceding  sections the  general 

problem of detection  and  correction of’ errors in a cor- 
relative level coding system using  ambiguit,y  zone  detec- 
tion.  The  applicat,ion of this  method  to a class of systems 
with G(D) = 1 f DN is  analyzed ‘in greater  detail,  and 
its  performance is shown t,o be  somewhat inferior to  the 
maximum-likelihood  decoding method  but  superior  to  the 
bit-by-bit  detection  ‘method. We have  recently  learned 
that  Forney [ll], in his  independent work, also proposed 
an error-correction scheme by  tracking  illegitimate levels 
in  the  inverse filter output,  except  that  the received-signal 
level is  considered  as a continuous  quantity.  The  addi- 
tional  quantization  in  the  form of ambiguity zones  sug- 
gested in  this  paper  can  be viewed as  an  attempt  to ob- 
tain  simpler  system design at  the expense of moderate 
performance  degradation. 

APPENDIX 

OPTIMUM DECISION RULE WITH 

REJECT  OPTION [14],  [15],  [17], [19] 
We  shall  derive an optimum decision rule of (41)  and 

(42). We  use  a  somewhat different  approach  from  the 
original proof given by Chow [14].  As one may realize 

This similarity was pointed out  by one of the reviewers. 

the interleaved  form) of the decoder for 1 rt- D. Note that  the 
The decoder for G(D)  = 1 + DN is composed of N copies (in 

number of states is mN for a general G(D) of the Nth degree. 

from  the following proof, the  error  and  rejection tradeoff 
in  this generalized decision rule  is  analogous to  the  trade- 
off between  two  types of error  in a simple  binary  hypoth- 
esis testing problem. The  derivation of the  optimum deci- 
sion rule is similar, to  the well-known  Neyman-Pearson 
lemma [19]. 

DeJinition:  We say  that a decision rule is optimum if, 
for a given  rejection  rate R 5 a, it minimizes the  error 
rate E. 

Theorem 2 
Let Hi ,  i = 1,2,...,n, be n  different  hypotheses,  and 

let ai be the a priori probability of hypothesis Hi.  Let y 
be the  observable  (possibly  a  vector, or a continuous 
function of time),  and  let  the  conditional  probability of 
observing y under  hypothesis H i  be  denoted  by p ( y  I H i ) .  
Then  the  optimum decision rule  is  det,ermined by  parti- 
tioning  the  observation  space  (sample  space) Y into a 
set of disjoint  subspaces Y1, Y,, - - - ,Yn and YR as follows: 

Yi = {Y: Max { p ( H i  I Y)) = p ( H i  I y) 2 1 - X ) ,  
j 

i , j  = 1,2,...,n  (71) 

YR = ( y :  max ( p ( H j  I y ) )  < 1 - X } .  (72) 

Here YR is the  rejection region and p ( H j  I y) is  the poste- 
rior probability of hypothesis H j  conditioned  on  the ob- 
servable y and is given by 

j 

(73) 
n 

i=l 

The threshold  constant X satisfies 1 - l /n  2 X 2 0 and 
is determined  from  the  constraint R 5 a; i.e., 

JYR aip(y I H i )  d p ( y )  5 a (74) 

where p (  . ) is t.he measure  defined in  the  space Y .  
Proof: Let Yl,Yz, - - , Y ,  and YR be any  set of disjoint 

and  exhaustive  subspaces of the  sample  space Y .  Then 
the  error,rate E and  the  rejection  rate R are given by 

n n  

E = c c / aip(y I H i )  d p ( y )  
i=l j=1, j # i  Y j  

R = J P ( Y )  dP(?J) = 1 - 5 / P ( Y )  (76) 
Y R  i=l Yi 

where p (y) is  the  probability  density  function of y 
n 

P (Y) 7 C aip(ylHi) .  (77) 
i=l 

We want  to minimize E under  the  constraint R 5 a. 
Following the  usual  procedure of Lagrangian coefficient 
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method, we define J by 

J = E + X.{R - a}, X 2 0. (78) 

On substituting (75) and (76) into (78), one obtains 
n 

J = X ( 1  - ff) - c /y, {..i*P(Y I Hi) 
1-1 

- (1 - X ) . P ( Y ) )  dcc(Y)* (79) 
Let us define bhe index m = m(y) by 

T,P(Y I H,) = max { R ~ P ( Y  I Hi) I .  (80)  
i 

Then, clearly, (79) is bounded below as follows: 

J 2 X ( l  - a) 

= X ( l  - ff) 

where p ( H ,  I y) is  defined by (73). 
Since p(y) 2 0, for  all y, the last expression of (81) is 

minimized when the rejectmion region YR is determined  by 
the following rule. 

If p ( H ,  I y) > 1 - X, then y E Y - YE, 

m = 1,2,-.*,n. (82) 

If p ( H ,  1 y) 5 1 - X, then y E YR. (83) 

The  equality  in (81) holds when the acceptance region 
Y - YR is partitioned  into a set of Yi according to 

yi = (y: p ( H ,  1 y) = P(Hi I y) > 1 - X } ,  

i = 1,2,..*,n. (84) 

The  parameter X is chosen in such a way that (74) is 
satisfied. Thus, for y E YR, we obtain  the following ex- 
pression from (73) and (83) : 

n c TiP(Y I Hi) 
1 i=l 

n P(Y> 
1 
n 

2 -  - _  - (85) 

Therefore, X is  bounded by  the following relation: 

l - - > X > O .  
1 
n (861, 

Q.E.D. 
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