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Iterative Synthesis Methods for a Seismic Array
Processor

HISASHI KOBAYASHI, MEMBER, IEEE

Abstract—Two methods for the iterative synthesis of an array
processor are discussed: the method of steepest descent and the
method of conjugate gradients with projection. These methods re-
quire no intermediate statistics such as the covariance matrix func-
tion or the cross-power spectral matrix, and therefore, require less
storage space than the conventional synthesis methods. A bound for
the rate of convergence is obtained for these iterative procedures and
it is shown that the convergence is geometric. The algorithms are
then applied to seismic data of the Montana large aperture seismic
array. Simulation results indicate that the convergence is so fast
that a few iterations are enough from the practical viewpoint. There-
fore, these methods can also save significant computation time as
well.

I. INTRODUCTION

HE MODEL usually adopted in the problem of
Tthe detection and estimation of seismic events

with an array of seismometers, is to assume thata
signal due to a seismic event is common to all seismom-
eters except for time delays 7,=7%-7, where 7 is the
inverse phase velocity of the event and 7 is the location
of the kth seismometer. In this model, if we assume that
the time delays 7, are compensated for, so that the
signal components are lined up, the input of the kth
seismometer is given by

xk(l) = S(t) + nk(t)y

where s(¢) is the unknown seismic signal and #,(¢) repre-
sents all other disturbances in the kth channel. Our
interest lies in the case where the noise #n.(¢), is highly
correlated among seismometers. This will be true, for
example, when the main noise source is another inter-
fering event, or when #n.(¢t) is the first arrival of an
event and s(¢) is a later arrival of the same event.
Throughout the present paper the incoming data x(¢)
are assumed to be time-discrete random processes, and
hence our discussion is limited to the case in which a
processor is a digital filter.

Let w(u) be a K-dimensional discrete linear filter
with finite duration [—L,, L;] whose kth component
wi(u) is the impulse response sequence of the kth
channel. Then y(f), the output of a processor, is the

k=192>"'7K (1)

Manuscript received August 16, 1969; revised March 10, 1970.
This paper was presented in part at the Third Annual Princeton Con-
ference on Information Science and Systems, March 27-28, 1969
[10]. This work was supported in part by the Advanced Research
Project Agency, Department of Defense, under Contract AF 19-
67-C-0198.

The author is with the IBM Thomas J. Watson Research Center,
Yorktown Heights, N, Y,

summation of these filter outputs:

22 Z we(w) e (I — )

y(&) =
u=L-2L, k=1 (2)
= _Z wT(w)x(t — u)

where w”(u) is the transpose of the K-dimensional
vector function w(u), and x(¢) is a K-dimensional
vector whose kth component is given by (1).

Our purpose is to design the optimum w(x), based on
the data taken over some fitting interval T that mini-
mizes the output noise power without distorting the
signal s(¢); i.e., the criterion for optimality is to mini-
mize

Pas =~ X () = s0)* (3)
Ny ery
under the constraint
0, u#0,
1, u=20
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which we call the “fidelity” constraint. Ny is the number
of data points in the fitting interval; 1 is a K-dimen-
sional vector whose entries are all unity. The fidelity
constraint (4) is set in order to pass the signal com-
ponent with no distortion [1].

Let us assume, for the moment, that a fitting interval
Ty is chosen in such a way that the unknown signal s(¢)
does not exist during 7. Then the output noise power
Pouy of (3) is simply given by the following quadratic
form:

La Lo

2. 2 Wi R(u, w() ©)

u=—1Ly v=—L)

Pout =
where

— 1
R(u,?) = v 2o x(— wxT( — v), )
NpoteTy

—I, = u, v = L.

Then the optimum solution for w(u) has been obtained
by Kelly and Levin [1] and Capon et al. [2]:

Wopt (1) = i R™'(u, v)Q(z, 0)1. (M

v=—1L,
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Here E—Ku, v) is the inverse of the matrix correlation
function R(u, v) of (6):

L . _
> R Yu, )R, ) = T8y, —LiSu, t <Ly (8)

v=—I

where T is K XK identity matrix. Function Q(v, t) of
(7) isdefined by
O Y(u,v) = 1"TR~(u, v)1 (9a)
and
Le
Z Q_l(u) 'l')Q(‘L’, t) = Bu,t; “Ll é u, t é Lg. (gb)

r=—2Lj

If the unknown signal exists in the fitting interval, (3)
becomes

1 1
Pous = — 20 92(t) — — 20 s%(0) (10)
Vi teTy iNfery
where we have used the approximation
1
— 2 wT(u)n(t — u)-s(1) = 0. (11)

A’\Tf teTy

Since the second term of (10) does not depend on the
filter, the minimization of Pous is equivalent to mini-
mization of (5).

I1. ITERATIVE DESIGN OF AN ARRAY PROCESSOR

In this section we will discuss two methods for the
iterative synthesis of an array processor: the method of
steepest descent and the conjugate gradient method
with projection. An iterative procedure generates a
sequence of the filters [wi(x)] which converges to the
optimum filter w,p¢(u) as 7 increases. These techniques
lead to very efficient software implementations on gen-
eral purpose computers. The major advantage of these
methods is that the synthesis does not require the cal-
culation of intermediate statistics, such as the covari-
ance matrix function or the cross-power spectral matrix.
As a result storage requirements are kept to a mini-
mum. Further, the optimum solution is achieved, start-
ing from an arbitrary initial estimate by the repetitive
use of the same formula. Hence, the processing program
is not complicated and as simulation results indicate,
the convergence is so fast that a few iterations are
enough from the practical viewpoint. Therefore, these
methods possess a significant computation time ad-
vantage.

A. Method of the Steepest Descent

The steepest descent method has been widely used in
optimization problems and its application to estimation
problems is discussed by Balakrishnan [3]. It is to be
noted that there exists a close similarity between the
computation algorithms of the steepest descent method
as applied to the present paper and of the stochastic
approximation method, although the latter is applied to
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adaptive estimation or filtering when the input data is
observed over a long interval and is assumed to be
stationary or quasi-stationary. An application of the
stochastic approximation method to adaptive antenna
systems is reported by Widrow ef al. [4], and the ap-
plication to the seismic array processor is discussed by
Lacoss [5], to whom is due some of the mathematical
formulation in the present section.

The minimization of Poyu of (5) with the constraint
(4) can be formulated as minimization of

J= Z ZWT(M)E(M, »)w(?)

(12)
+ 2@ {wr ()1 — a0}

where {\(x)} are the Lagrangian coefficients. Then the
gradient method provides the following recursive for-
mula:

a; [ o
wia(n) = wi(n) — — [———:l (13)

2 Low(w)

where «; is a positive scalar. On inserting (12) into (13)
and using the constraint (4), we arrive at the following
formula:

wip(u) = wi(u) + api(u) (14)
where p;(#) is the direction vector given by
pi(u) = — P -3 R(u, v)wi(r) (15)
and Pisa K XK singular matrix of the form
P= (7—i11T>. (16)
K

The vectors w(u) and p:(u) may be considered as
points in an N-dimensional Euclidean space £¥, where
N=K(L;+Ls+1)=K-L. However, it is more con-
venient for the following discussion to regard E¥ as a
product of L copies of K-dimensional subspace EX:

EN=EK><EKX"'XEK

7
7 (17)

Then the constraint (4) specifies a (K —1)-dimensional
hyperplane in each EX:

So:wT(u)-1 =0, 1 #= 0 (18)

Sh: (w(u) - }(1—1>T-1 =0, u=0. (19)

The hyperplane S, contains the origin of EX; the hyper-
plane S; contains a vector (1/K) 1 and is parallel to S
Then it is clear that P of (16) is the projection operator
from EX into S,. Similarly for any point x in EX, its
projection into S; is given by Px+(1/K)-1.

As can be seen from the definition (15), the direction
vector pi(u) is the projection of the gradient Z,R(, v)
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wi(@) into subspace Zo which is a product of L copies of
the hyperplane Sq:
20=So><50><v"'><50. (20)
L
The dimension of Zyis N'= (K —1)L. We define another

N'-dimensional subspace Z; by
Zr=Se X -+ X S X85 XS X---XSs
_— _— - (21)
Ll LZ

If the initial choice wo(%) is in Z;, then w;(u) also lies in
the subspace Z; for all 2. We choose the gain «; in such a
way that the next approximation w;;1(x) is the point
which minimizes J of (12) over all points on the line of
action of the vector p;(u) passing through w;(x). This
leads us to the following recursive formula.

Initialization:
wo & 21 (22a)
po = — PRuw,. (22b)
Forz=0:
2
®; = l Pr — (233.)
(p:, Rpy)
Wi = Wi + aps (23b)
iy1 = PRw;
Piv1 Wiyt (23¢)
= p,- — aiPRP,'.

In (22) and (23) we adopted the simplified notation R,
b, w; instead of R(u, v), p:(u), w.(u), etc. Equation
(22b) should read

po(w) = — P 3 R(u, v)w(v). (24)
Similarly
| pil2 = (pi, p0) = 2 p7 (W) pilw) (23)
and
(s, Rp:) = 2. 2 pi () R(u, ) pil2). (26)

u ¢

From (23a) through (23c), it follows that the projected
gradient vector p;;1(x) is orthogonal to the previous
one, p;(u), i.e.,

(Pir1, p3) = 2_ pir"(W)pi(u) = 0. (27)

The sequence of the ouput noise powers is monotone
decreasing:

—Ji=— g0

B (p1, VRjrbi)-

Therefore Jo can be written as

Jint (28)

(29)
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Since J, is finite, ]p; 4 must converge to zero. Note
that the null space of the projection operator P consists
of a set of vectors ¢ 1 where ¢ is a scalar constant. Hence
from (15) the sequence {W,-(u)} converges to wopt(#) of
(7). Furthermore, it can be shown (Appendix I) that
the sequence {J:—J..} decreases by a factor of at least
Amin/Amax at each iteration, i.e.,

min

Jon—Ju < (1 - )(J,~ —J) Qo)

max

where Amin and Amax are the maximum eigenvalue and
the minimum positive eigenvalue of the covariance
matrix function ®(u, v)=P-R(u, v)-P, respectively.
From (30) it immediately follows that the convergence
of {J:} is geometric:

Ji 2 T+ 0o — Ju) (31a)
where

>\miu

— < L.

max

p=1— (31b)

Although (22a) through (23c) appear to require com-
putation of the cross-correlation function R(x, v), it can
be written in the following way by substituting the
definition (6).

Initialization:
wo(u) € Z1 (32a)
po(u) = — (x(I — u) — x.o(t — w)1, yo(8))  (32b)
where .
yo() = 2w (w)x(t — u) (32¢)
1
Xav() = e 17-x(8). (32d)
Forz=0:
g:() = 22 pT(w)x(t — u) (33a)
a; = | pi*/|lg:0]? (33b)
Wi = w; + aip; (33¢)
D) = pi(u) — ailx(l — u) — xo(t — )1, ¢:(1)) (33d)
where { , ) is defined as
1
(1), g0y = — 22 f(g). (34)

A'f teTy
One may replace (33b) and (33c¢) by the following:
¢:(]*

a; = — (q:(0), y:(1))/ (33p")

and

Yirr() = ¥:() + aqi(1). (33¢")
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B. The Method of Conjugate Gradient with Projection

In the method of steepest descent, the projected
gradient was used as the direction vector p; to obtain
the next approximation w:;1. Although this choice of p:
maximizes the instantaneous rate of change of J, it does
not necessarily lead to the “best” approximation. More-
over, the procedure does not yield the solution in a finite
number of steps even though the dimensionality of the
unknown w(x) is finite.

In the present section we will modify the fundamental
conjugate gradient method (Appendix II) so as to be
able to apply the method to our specific problem. The
method of conjugate gradients was devised by Hestenes
and Stiefel [6] to solve a system of simultaneous linear
algebraic equations,

Ax = b (35)

where where A is an N X N positive definite matrix, x an
N X1 vector of unknowns, and b is an N X1 vector of
constants. This method is an N-step iterative one; i.e.,
the algorithm is applied to give successive approxima-
tions to the solution of the given linear systems and, if
computations are done with complete accuracy, a solu-
tion is obtained after M iterations where M £ N. Clearly
the same algorithm can be applied to find x which
minimizes the following function:

f(x) = 3xTAx — xTh. (36)

By modifying the fundamental formula we can obtain
the following conjugate gradient iterative procedure
leading to the minimization of the quadratic form (3)
under the fidelity constraint.

Initialization:
we & ) (37a)
po = ro = — PRuw,. (37b)

For:=0:
ai = |72/ (pis Rp) (38a)
Wip1 = Wi — aip; (38b)
tip1 = — PRw,1 = r; — alPRP; (38¢)
Bi=|ral?/ il (38d)
piy1 = rigr + Bipa (38¢)
In place of (38a) and (38d) one may use

ai = (pi, )/ (pi, Rp2) (38a")
Bi = — (ris1, Rp:)/(pi, Rps) (38d")

where P is the projection operator defined by the matrix
(16).

Many relations hold among the quantities appearing
in (37a) through (38e). The most important ones are

pi € Zo, 1 & 2o, wi € Zy, for all ¢ (39)
(riyr) =0,  i#j (40)
(pis Rp) =0, i 7#]. (41)
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The projected gradients {r,-; =0, -, N’—l} where
N'=(K—1)L form a set of orthogonal vectors in the sub-
space Z,. The direction vectors {p.-; 1=0, - -, N’—l]
form a set of R-conjugate or R-orthogonal vectors
(6], [7] and span the N’-dimensional subspace Z.
Since the solution vector o, and its initial guess w, are
both in Z,, their difference is always in Z, and is
representable uniquely as a linear combination of the
basis {Pj}. In fact, using the coefficients o of (38a), we
have the relation

N1

Wopt — Wo = Z aip: & Ze.

i=0

42)

As in the case of the steepest descent method, the
output noise power is decreased at each step of the
iteration

Jor—Jo= — (pi, )%/ (p:, Rp:)
= — | n]¥(ps, Rps) S 0.

Therefore, the sequence {n} must converge to zero and
the convergence of {w.(u) } to Wops(#) can be shown
from the relation (38c). Furthermore, w;(u) is closer to
the solution wo,{%) than w.(u), 1<j (see Appendix II).
The result indicates that if we stop the iterative process
at any step, the last obtained approximation is the best
in the sense of being the closest to the true solution. An
upper bound for the rate of convergence can be obtained

as in the case of the steepest descent method (Appendix
I11):

(#)

Ji =T+ pi(Jo — Jo). (44)

The iterative formula can again be written without
resorting to the correlation function R(x, v).
Initialization:

W G_ 21 (453)
pou) = ro(u) = — (x(t — u) — xao(t — w)1, yo(1)). (43b)

For:=0:

a: = [ r:|¥/] g0 (462)
Wi = w; + aip; (46b)
rip(u) = riu) — ailx(t — u) — o (t — )1, (1)) (46c)
B = | ren [/ | ri]? (46d)
Piy1 = rip1 + Bips (46e)

where the functions vo(¢), xav(t), and ¢.(t) are defined
by (32¢), (32d), and (33a).
Equations (46a) and (46b) can be replaced by

i = — (gi(), y:(0)/]| g:0)]]?

(46a")
and
Yir1 () = v:(8) + g (1).

One may readily notice that if the coefficients {8} in
the iteration formula is set to zero the conjugate gradi-
ent method reduces to the steepest descent method of
the previous section.

(46b")
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I11. PROCESSING REQUIREMENTS

The rationale for the iterative synthesis procedures is
the efficient utilization of computer memory and pro-
cessing time. In the present section we give some esti-
mates of the memory requirements and the running
time for the two methods described previously.

A. The Steepest Descent (SD) Method

The input data x(¢!) must be stored in any method
and, therefore, we exclude the space for x(¢) in the follow-
ing argument. The space for the processed output y(¢) is
also common to all methods and, hence, will be excluded
here. The quantities w; and p; take KL words and x,.(f)
and ¢.i(t) require Ny words. The memory requirement is
thus 2(N;+KL) words. However, if we do not require
the processed output until the last iteration is over,
¢i(t) can be stored in the space allotted to ¥(#). In this
respect the minimum memory requirement is

Asp = (N;+ 2KL) words.

(47)

As to the computation time, the majority is spent for the
convolutional sum to obtain ¢:(f) and p:(u) each of
which takes about KLN;(u+v), where u and v are the
MULTIPLY and ADD times in the computer in question.
Therefore,

Tsp = 2KLN;(u + v) seconds/iteration  (48)

is the running time.

B. The Conjugate Gradient (CG) Method

The KL words for r;(u) should be added to the quanti-
ties used in the method of the steepest descent. The total
memory requirement is thus

Mcee = (Ny + 3KL) words. (49)

The increase of the running time over the steepest de-
scent is 3KL(u-+») seconds per iteration due to the
additional quantities 8; and r; (#). Therefore,

Toe = QKLN; + 3KL)(u + ) (50)

is the running time.

IV. CompPaRrISON wiTH OTHER DESIGN METHODS

In this section we will compare the performance of the
iterative procedures discussed in the preceding sections
with the other synthesis methods: the time-domain

design method and the {requency-domain design
method.

A.The Tvme-Domain (I'D) Design Method

The most straightforward method for synthesizing
the filter w(u) is the time-domain method in which the
cross-correlation function R(x, v) is actually calculated
from the input data in the fitting interval 7y, and (7)
and (8) are then used. The major portion of the memory
requirements are those for the correlation function
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which takes K2L? words (excluding the working space
for matrix inversion):

Mqp = K’L* words (31)

which may well exceed Msp and Mce when either K or L
is large.

As to the computation time, R(x, v) and its inversion
take about K2L2N; and (K L)*/3 operations, respectively.
Therefore, the total computation time is

Trp =2 (K2L®N + 1K3L3%)(u 4+ ») seconds.  (52)

Here we assume that the standard matrix inversion sub-
routine with Gauss elimination method is used. If IV, is
large enough, i.e., N> L, then it follows that

R(u,v) = R(u — v). (53)

In this case the efficient recursive formula for inversion
of Toepolitz matrices devised by Wiggins and Robinson
[9] can be applied. The computation time is approxi-
mately given by

Tro’ = (K2LN; + 2.5L*K3)(u + v) seconds. (54)

B. The Frequency-Domain (FD) Synthesis Method

A method for obtaining woy«(#) approximately in the
frequency domain has been discussed extensively by
Caponetal. [2].

Relabeling the argument of w(%) from 0 to L—1 in-
stead of —L; to L,;, and applying the finite Fourier
transform, Poue of (5) can be written in the form

Pous = 25 2, wT () R(u, v)w (v)
L ;; APy Ay Y
where o
A(f) = % Z w(u) exp (—j2nfu/L) (56)
and
Pl s =5 £ X Rl -

cexp | —j2n(fuu — fu)/L}.

The two-dimensional finite Fourier transform P(f;, f2)
can be reduced to the form

P(f1, f2) = P(J)8(/r —~ /) (38)
if and only if
R(u,v) = R(u — v) (59)
and
Ru—L)=Rx), O0=2u<L-—1. (60)

The condition (59) is practically satisfied, as was men-
tioned earlier, but (60) is far from the reality since the
input x(¢) need be periodic with period L in order for
the condition to hold. However, if the filter length L, is



174

so large that the correlation function satisfies

R(u) =0, u>1L/2 (61)

then the corresponding solution wop, (%) will satisfy
Wopi(#)=20, for u>L/2. Then the quadratic form (5)
will remain the same even if R(«) is replaced by R(u—L),
for L—1zu>L/2.

If we accept the approximations (59) and (60), the
power spectrum P(f) is given by

_ 1 )
P(f) = = > X(f;0X7(f; b),

Ny tET, (62)
f=0,1, -, L'—1
where ~ means complex conjugate and where
L—1
X(f;8) = > x(t+u— L+ 1)exp {—j2nfu/L}. (63)
u=0

Here L'=(L+1)/2 for L odd, and (L/2)+1 for L even.
After the cross-power spectrum is obtained, the filter
response function is given by

L1 ﬁ—l(ﬁ 1

1 .
T P> 1T13—1(f)—1exp {]21rf(u—L1—1)/L}.

wn) = (64)

The m:ij_ority of the memory requirement in this method
are for P(f) which takes about (2K)2L’:

Mpp = 2K*L words. (65)

The number of the basic operations for the calculation
of X(f; t) and for the cross-power spectrum are ap-
proximately KL*N, and K(K+1) LN, respectively.
The matrix inversion takes 4K*L/3 operations by the
Gauss elimination method. Hence an estimate for the
total computation time is

Teo={KL(K+L)N;+4K*L/3} (u+») seconds. (66)

The direct segment method [2] for the spectral

matrix calculation is equivalent to approximating P(f)
by

3 ~ 1 Mil' . XT(f:
P(f):ﬁ X(f;nD)XT(f;nD) (67)

n=0
where M is the number of segments in the fitting interval
and D is the distance between the first data points of the
neighboring segments, i.e., M =N;/D. Use of the seg-
mentation method is equivalent, in the time domain, to
replacing the criterion P, of (5) by

M—1

P = 1= & 30D}

n=I)

(68)

which is the output noise power averaged over D other
points in the fitting interval.

It should be noted that the reduction of computing
time by use of segmentation is not a feature inherent in
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Fig. 1. Processed outputs by steepest descent method,
Ly=L,=0, T; =25 seconds, s(¢) =0 for t €Ty,

— T —_—
| — T T T T T T 1
° 10 20 0 40 50 60 »

] \M 'L/’\«"\N\/W%MNWMW\W-“w AP
e AL, “\,N'VVM M'Www\mwv A AR AA NI P e
sl de g «\AJ\;\J’\,&\[\-‘,.A[\W AR AN AN A A
e ARSI Mllﬂfgw\”.\.,\,\;\/A,«« Mo A A APA RS S A o
W _r‘wv,r(,\.‘MMMTMMU1J;r.~,/\,‘,-~ww~\nwm
Y \mm\,-n,«‘v\-m‘«»WMW,MWM»«ﬁr/"wf\,'\v'*d\mw\~“w

’MMMMW%M\‘NLMWJK AMATAAP AN

— ——/WNMWWLPWVWWWV\W’\/WWWNW«W

Fig. 2. Processed outputs by conjugate gradient method,
Li=L;=0, T; =25 seconds, s(t) =0 for t&T;.

the frequency-domain synthesis procedure, but is simply
the result of the replacement of a design criterion Py,
by P’ouws. Obviously, the segmentation method can be
equally applicable to the iterative methods of Section 11
and to the time-domain synthesis procedure as well,
and it will cut the computation time, roughly, by a fac-
tor of D.

V. SIMULATION RESULTS

The iterative procedures outlined above were applied
to the data from the Montana large aperture seismic
array. The 21 center seismometers’ outputs were used,
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ie., K=21. The Longshot explosion’s data (October 29,
1965) were superposed on the Kamchatka earthquake
data (April 8, 1966) with a 25-second delay.

Fig. 1 shows processed outputs ¥:(¢) of the first eight
iteration procedures by use of the steepest descent
method, where L, =L,=0; i.e., a simple multiply-and-
sum filter. The fitting interval 7 is the first 25 seconds
after the arrival of the Kamchatka earthquake, and
N;=500 since the data sampling rate is 20 Hz. Note that
the end of 7% is just before the arrival of the second
event. The iteration starts from the simple beam forming,

Processed outputs by steepest descent method, L, =Lz =10,
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Fig. 6. Processed outputs by the conjugate gradient method

Li=L,=0, T,="170 seconds, s{t)#0 for tE7T7y.

i.e., wo(0)=(1/K)1. The top curve of Fig. 1 is y,(¢)
=x,.(t). We notice that the interfering event (i.e., the
first event) is suppressed drastically (about 9 dB) after
the first iteration and that an approximate solution at-
tained after a few iterations virtually satisfies the prac-
tical purpose. Fig. 2 is the result obtained by the con-
jugate gradient method where L;=L,=0, and w(0)
=(1/K)1. The first two steps, i.e., ¥o(t) and y:(¢), are,
by definition, the same as those that are shown in Fig.
1, but some improvement can be noticed in the following
steps.
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Figs. 3 and 4 are the results obtained by the steepest
descent method and the conjugate gradient method,
respectively, when 10 points in the past and 10 points
in the future are used, i.e., Ly=L,=10. The iteration
starts from a simple sum, i.e., wo(u) = (1/K)8,,0l. The
interfering event is suppressed 11 dB by the first itera-
tion, and again, a few iterations seem to be enough for
practical purposes.

Figs. 5 and 6 show processed outputs of the steepest
descent method for L;=L;=0 when the second event
s(t) is present in the fitting interval Ty, which is chosen
as long as 70 seconds after the first event arrival. Initial
setting is again we(x) =(1/K)8,.01. Here some decrease
in the amplitude of the signal is observed. This effect
can be ascribed to the error of the approximation (10)
and to the discrepancy between the actual signal and
the idealized signal model (1) in which we assume signal
components are common to all seismometers.

Fig. 7 is a plot of the output noise power versus num-
ber of iterations for the steepest descent method, as well
as, for the conjugate gradient method when filter lengths
are L=1 (L,=L,=0), L=11 (L,=L,=35), and L=21
(Ly=L,=10). In all cases the conjugate gradient (CG)
method shows a faster convergence than the steepest
descent (SD) method. We also synthesized filters in
the frequency domain [2], where filter lengths of L =38
and 16 were chosen so that the fast Fourier transform
subroutine could be utilized. Reduction of the noise
power output attained by those filters is also indicated
in Fig. 7, and is clearly less than the reduction achieved
after several steps in iterative methods.

All programs were written in FORTRAN 1V, and an IBM
360 Model 67 digital computer was used for the sim-
ulation. The computer running time per iteration was
as follows.

L=1 L=11 L=21

(seconds) (seconds) (seconds)
SD method 4.28 38.16 72.30
CG method 5.07 46.00 87.27

On the other hand, the frequency-domain synthesis
takes 622.0 seconds for L=8 and 1135 seconds for
L =16, where D=1 was used in (67). Although the
computation effort should be compared using programs
written in a machine language to be precise, the simu-
lation allows us to conclude that the iterative design
provides an efficient way of synthesizing array proces-
SOTS.

APPENDIX I
THE RATE oF CONVERGENCE OF THE
STEEPEST DESCENT METHOD

In this Appendix and in Appendix IIT we adopt the
simplified notation as in Section II [see (24) through

(26) ].
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Fig. 7. Output noise power versus number of iterations.

Since {w,} converges to Wops of (7), the output noise
sequence {J,-} converges to the following value:

(69)

Jo = (Wopt, Riwops).

Let us change variables from w; to f; by the following
relation

fi € Zo. (70)
Then J; can be written into the form
Ji = (fi + Wopt, R(fi+ wopt))
= (fi, Rl;) + Jo = Ki + Jo.

fa' = Wi — Wopt,

(1)
Now we rewrite the numerator of (28) using (23b) and
(70)
| p:|2 = ||PRw,\|2 = (f;, RPRS) (72)
where we used the relation

PRwey. = 0. (13)

Since the vector f; is constrained to the subspace 2y it

is convenient to write f; as
fi=P-g (74)

with no constraint on g;. Then (72) can be written as
follows:

| p:]2 = (gi, 2%) (13)
where

&= P-R-P. (76)

Similarly the denominator of (28) can be written as fol-
lows:

)

The quantity K; defined by (71) can be likewise written
as

(i, Rps) = (gi, B3g4).

K; = (fi, Rf) = (gi, ®g4). (78)
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Therefore from (28) and (75)-(78), it follows that

7y ¢2 b 1y ¢2 %
K¢+1=K,-{1—(g &) (¢ g)}. (79)
(gi, Pgs)  (gi, Pga)
The explicit representation for ® of (76) is
®(u,v) = P-R(u,v)-P (80)

which represents the covariance function of the pro-
jected process

P-x(t) = x(f) — xa(f)-1. (81)

Clearly @(u, v) is a nonnegative definite and its N(= K L)
eigenvalues are all positive except for one which is Ay =0.
Letting Amax be the largest eigenvalue and Anin be the
smallest eigenvalue, excluding Ay, of the covariance
function ®, then clearly,

>\max g >\min > >\0 = 0. (82)

Any given vector g;& E¥ can be uniquely decomposed
into the two components g;‘¥ and g;?:

gV = Pgi=fi€ Z (83)

and v
gi(Z)v = g; — sz 1 Zo- (84)

If g.;9=f,=0, then w;=w,p, and the solution is at-
tained. Therefore, we assume that f;0, and the follow-
ing inequalities hold for all :

oo ¥'g) _ Un 1D o, (85)
(gia ‘bgi) (fi> of.)

and
(g, ‘I’%gi) _ (f+, ‘Iff,') > 1 ' 56)
(gf) q)dgi) (fi7 cI)-*fi) >\mux

Then (79), (85), and (86) lead to (30) immediately.

AprpPENDIX I1
Basic ALGORITHM OF THE CONJUGATE
GRADIENT METHOD

Let x¢ be an arbitrary starting ‘approximation to the
solution vector of (35). Then, the following formulas
define the fundamental conjugate gradient iterative
procedure leading to the solution A=A4~1% [6]-[8]:

po=ro =0 — Ax (87)
ai = | r:|*/(ps, Ap) (882)
Tiv1 = % + oups (88b)
X1 = b — Axgy = ri — a;Ap; (88c)
Be= | rial¥/ | r:]? (88d)
biy1 = ri + Bipa (88e)
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After M iterations, with M = N, x will be equal to the
solution % if all computations are done with no loss of
accuracy. Many relations hold among the quantities
appearing in (88a) through (88e):

(riyr;) =0, 1 #£] (89a)
(ps, Aps) = 0, i (89b)
(ps, 7)) = 0, i<j (89¢)
(piyri) = | rel%, iz (89d)
(rsy, Aps) = (puy, AP2) (89e)
(riy Ap;) =0, A (891)

Using the properties (89d), the sequences «; and B
satisfy

L2 ) .
a; = ( 7 — (pl) f.,) (90a)
(psy Aps)  (ps, 4p2)
Bi = Lrani® o Ap) (90b)
[ ri|® (pi, Ap3)

Some other salient relations that hold among the quan-
tities appearing in the iterative formulas are

[2i— k| > |25 — k|, i<j (91)
(xi - h: A—l(xi - h)) > (xf - h? A‘l(xj — h).)v (92)
1 <7
and
2 O T,
(pi, Aps)  (pi, Aps)  (ri, A7)

Equation (92) will be used in Appendix III where we
discuss the rate of convergence of the conjugate gradient
method.

AprrPENDIX III
THE RATE oF CONVERGENCE OF THE
CoNJUGATE GRADIENT METHOD

The argument required for a proof of the inequality
(44) is essentially the same as in Appendix I. The only
difference is the right-hand sides of (28) and of (43).
However, using the inequality relation (93) we have the
following:

ri|t ri|t iy &? i
| | _ (g5 ¥%) o1
(piy Rps)  (riy Rry) (g, D))
where we used the relation
r;, = — PR’LU,, = — PRf, = — cbg, (95)

where f;, g;, and ® are defined by (70), (74), and (76),
respectively. The rest of the proof is exactly the same as
in Appendix I.
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