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The problem of estimating two simultaneous seismic event signals is first discussed
using the signal model of Kelly and Levin and the method of maximum likelihood. In
comparing the experimental results of the maximum-likelihood processor with its ana-
lytical performance, it becomes apparent that a modified signal model is required which
takes into account the incoherent components of the signal. The optimum processor for
rejecting an interfering event is then derived and reasonable agreement is obtained
between experimental results and the analysis. With the modified model, the major
change in the processor is found in the detector., The detection statistic consists of two
parts: one responsive to the energy of the coherent component and one responsive to the
energies of the noncoherent components.

I. INTRODUCTION

This paper discusses some analytical and experimental results in seismic
array processing. It is concerned with the problem of the estimation and detec-
tion of a seismic signal in the presence of an interfering seismic signal and back-
ground noise.

The first problem that arises in an analytical study of array processing is
the choice of a suitable representation for seismic signals and background
seismic noise. One approach is to represent the signal and noise as stationary
vector random processes with known crosscorrelation functions and apply the
multidimensional Wiener filtering theory [1]. However, the finite duration of the
seismogram of an event and the variations in its character as different phases
arrive suggest that the representation of the signal as a stationary random
process is not realistic [2].

A more appealing model for the signal is the one proposed by Kelly and
Levin [2]. This model assumes that the signal waveform is completely unknown
but is identical at each seismometer except for a time delay due to a finite propa-
gation velocity. Let the k" seismometer (or sensor) be located at a position
r, relative to some origin in the horizontal plane, k = 1,2, ..., K. Let s(¢t) be
the signal that would be observed by a seismometer at the origin in the absence
of noise. Then the output of the k" seismometer is

X () =s(t~u-rg+d)+n (D), (1.1

where n, (f) is the noise and u = [uy, u;] is the vector of delay per unit distance
suffered by the signal as measured along each coordinate axis, and where d, is
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the time anomaly associated with the k'# instrumentation channel. Subsequent
development in this paper will formulate a model of the process which is in-
dependent of these time anomalies. The results are, therefore, applicable to
data which have been preconditioned to compensate for the incurred anomalies.
The u is often called the inverse phase velocity vector since it is related to the
phase velocity vector v of the wave by

v

(vl ?

u= (1.2)
‘In Section II we will discuss the problem of estimating two (or multiple, in
general) simultaneous seismic event signals using the method of maximum likeli-
hood (ML) estimation, based on the signal model (1.1). The methods of analysis

used in this section are due to Kelly and Levin [2], Capon et al. {4] and
Schweppe [5]. The structure of the ML-processor for two signal sources was
originally obtained by Schweppe [5].

In Section III we present both analytical and experimental results of the per-
formance of the ML-processor, The experimental results are shown to fit the
general form predicted but for an interfering signal power to background noise
ratio much smaller than expected. This result suggests a modified signal model
in which the interfering event has both coherent and noncoherent, or noiselike,
components.

In Section IV we introduce this modified signal model which takes into ac-
count the noncoherent components of the signal. By modifying the solution ob-
tained by the method of unconditional maximum-likelihood (UML) estimation, the
““optimum’’ processor for rejecting an interfering event is derived. Experimental
results are also obtained for this processor. Reasonable agreement with the
analysis is obtained, but some discrepancies are noted. These discrepancies
suggest a further modification of the model in which the signal consists of
coherent and partially coherent components.

In Section V the detection problem for this modified model is discussed from
the maximum-likelihood point of view [7]. The structure of the detector is
closely related to the ML-estimator and the UML-estimator. With our modified
model, the major change in the processor is found in the detector. The detection
statistic consists of two parts: one responsive to the energy of the coherent com-
ponent and one responsive to the energies of the noncoherent components.

1. maXIMUM-LIKELIHOOD ESTIMATION OF TWO SIMULTANEOUS
SEISMIC EVENTS

A. Maximum-Likelihood Estimates

L §]

Let s;(f) be the signal due to a seismic event ‘‘i,”’ and let the inverse phase
velocity vector of that event be denoted by u;, i = &, 8. Then the output of the
k" sensor is

B
XA0:Z:&u_u”g+nga k=12 ..., K . (2.1

i=0l
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Let us define the delay operator D, which can be represented by the following

diagonal matrix function

Q,(t):diag (¢ -u;-rl, i=0¢,8. 2.2)

Then Eq. (2.1) can be written using vector notation as
B
X0 =3"D ®s,(01+NO . 2.3)
i=a

Since the detection problem is considered eventually, a hypothesis test is
formulated as follows:

Hy: noise only exists
against

H,: signals due to two events are present.
The noise components n,(f) of the sensor outputs are assumed to be Gaussian
processes with mean zero and a covariance matrix

E{_l!(r) N (] = D, ) . 2.4

Then the (conditional) likelihood function for H; against H, is given by

B B 2
1
= . -1 - . R .
A(sgsp ug,ug) = exp {Z[x_\’, D, ® s;llp 3 ZD, ® s; 1 . ,  (2.5)
= =X
where
[I_YyQi ® Sil_]fD:f f z_\’T(t)Q_l(t, YD, (¢) ® 5;(¢)1 atdt” . (2.6)
Here (® means the convolution.
After some manipulation Eq. (2.5) can be written as
1
A(s_,{u,}):exp{<y_,s_>-2—<s,B“-s_>}, 2.7

where v is a two dimensional function with components vi(t), i=0,f
. r ® 0 K K o0 L
vi() =17 D, (-1t f (¢, ) X()d = j Drp (trugorg t) x
— ; k’zl —o0
x (H)dt' , i=o,8 , (2.8

and p’l is a 2 x 2 matrix function with entries p,‘jl (t, t') which is a function
dependent on the noise covariance function and the inverse phase velocities

-1 ’ T -1 s, s’ -1 ’
p7 () = 1 Di(-0 ® g ) ® Iz)j(‘f)_l_= (Dkk/(f +ug, o ur)
22,

ij=o,B . (29
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In order to find the maximum-likelihood estimate (MLE) of s = colls, (#)] and
the u;’s, we first fix the u;,’s and maximize As, {u;}) over s. Equation (2.7) is

maximized by the choice

S::B v, (2.10)
or
8 ~
§;(Gug,ug) = Zf piit, ) v;()at” , i=0a,8 . (2.11)
j= Y=
We substitute (2.10) into (2.7) and call the result K (fu;h)
1 1
/\(iui})~exp{2—<z,p Z>} :exp{5<z,§>} . (2.12)

The MLE of u,’s are those numbers which maximize (2.12) and the MLE of s,(#)’s
are obtained by substituting those results into (2.11)

§;(0 = §,(t; ug, ug , i=0a,8 . (2.13)

An important property of the MLE s;(¢) is that it is an unbiased estimate when
the true values of parameters u;’s are known, i.e.,

Els;(0)=s;( , i=0,8 . (2.14)

This can be shown by taking the expectation of v and by substituting the result
into Equation (2.10). Equation (2.14) indicates that in estimating sg(t), the other
event sy (¢) has no effect, that is, a complete null-steering is possible insofar as
no estimation error of the u;’s exists.

It is not difficult to show that the error matrix function of the MLE § is given
by p. Moreover, it can be shown that the covariance function of any linear un-
biased estimate of s cannot be smaller than p: let s* be any unbiased estimate

of s, then
E[(s_*—s_)(g*—§)T]Z£ . (2.15)

A proof can be provided by applying the Cramer-Rao inequality to the conditional
likelihood function (2.7) (see also Section 1V). Equations (2.14) and (2.15) are
clearly a version of the result obtained by Capon et al. [3] for a single event
case. When the inverse phase velocities are unknown parameters, the above
properties do not hold since s is not linearly dependent on those parameters.

I1l. IMPLEMENTATION OF THE MAXIMUM-LIKELIHOOD PROCESSOR
AND ITS PERFORMANCE

A. Structure of the Maximum-Likelihood Processor

In order to see clearly the structure of the maximum-likelihood estimator let
us assume that the background noise is stationary in time and is uncorrelated
between sensors with common covariance function @ (¢t - ); i.e.,
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O, =9-1L . (3.1)
Substitution of (3.1) into (2.8) and (2.9) yields

VOO ® D xteur) , i-af (3.2)

k

and

P ) Zcp-l(t-t'+(1li-1.j>.rk> , ij=0, B . (3.3)
k

Equation (3.3) can be written as
PO =K -9t (0@ c;;(0, Lj-a,8, 3.9

where ¢;;(f) is a function depending only on inverse phase velocities defined by
1 K
Cij(t)zl? Z S+ (u;—u)re) , Lj=0,8, (3.5)
k=1

and indicates closeness (coupling) between two events.
Inversion of the 2 x 2 matrix function (3.4) is given by

() - cap()

1
PO= 90 ® ® gas(t) | (3.6)
- —cpa(D B0
seismometer 12 K-t K
inputs ) (ane

x, 1)

e
beam-forming | aimed at a agimed at 8

Y gt

subtraction of
the other event
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correction of ! 7 I >
distortion 1-IC, g ()l I-lc, gtfl
Salt) Qﬁ(n

Fig. 1. The maximum-likelihood processor.
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where g, 5(t) is the inverse of 5(t) - c¢ g(t) ® co g(~ 1) and is an even function

808 @36 - cupl) ® cupl=Hl =50 . (3.7
Then substituting (3.2) and (3.3) into (2.10), one obtains
SO =1y -c;;(D @y, ® gup0 , i=0a,f , 3.8)
where
1 X
Yi(t):EZxk(t+ wr) , =0, . (3.9
k=1

Note that the noise covariance function @ (f) does not come into the structure

of the estimator at all. This is a result of the assumption that the noise is un-
correlated between sensors with common spectrum. The structure of the ML-
processor is diagrammatically shown in Fig. 1, where the role of the filter g¢ (1)
is to correct distortion caused on the signal waveshape by subtraction of the
other event.

B. Performance of the ML-Processor

In this section we will present some numerical results on the performance of
the ML-processor compared with the simple delay-and-sum (DS) processor [3].
Event B is regarded as the event of interest and the event & is considered to be
a unidirectional noise added to the background noise n, (). Let us assume that
the noise is stationary Gaussian, independent between sensors with common
power spectrum P (f), i.e., cf(cp(t)) = P(f). We also assume that event O is a
second order stationary process with spectrum P, (f). The variance of the output
of a DS-processor aimed at the desired event is obtained as

M —0o

1 oo
Pps=varlyg(Hl = E " {tP(H+K| Caﬁ(f)l ZpPu(DY df (3.10)
where C 5([) is the Fourier transform of ¢ (t) and yﬁ(t) is defined by (3.9).
The variance of the MLE sg(t) is obtained from (2.15) and (3.6) as

Py = var {sﬁ(m = ppp(0)

__P(H
= — df . 3.11
f I-1c, 017 G4

We define a processing gain of the MLE over the DS-processor by

DS

Gy =10 logyo (dB) . (3.12)

ML

We now give the results of some calculations to determine the ability of the
ML processing. In this calculation we assume for simplicity P y(f) and P (f) have
the same shape, i.e.,

Puy=M P . (3.13)
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We took as the shape of P, (f) and P (f) a smooth approximation to the spectrum
of the output of an individual seismometer for Event o, defined below. This
spectrum is plotted in Figure 2.

For a seismic array, we considered the 21 subarrays of the Montana LASA
(Large Aperture Seismic Array). The locations of 21 sensors are given in Table L
Two seismic events used in this study are the following: Event o: date, 4/8/66;
time observed at LASA center subarray, 1:46:45.4; Event 8: date, 10/29/69;
time observed at LASA center subarray, 21:08:31.65. We assumed that the

array was pointed in the direction of Event 8.

[To )=

POWER
[+]
)

103

L 1 1 "

o

2 3 4 5
cps

Fig. 2. The power spectrum shape used for the calculation.
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Fig. 3. The inverse phase velocity vectors of the seismic events used in experiments.
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k Iie,x [Km] T,y [Kml

1 9.975 7.079
2 -66. 607 -79. 205
3 -54. 447 80.571
4 0.0 0.0

5 -7.250 -3.268
6 -11.592 5.199
7 -1.592 8.831
8 7.226 16.772
9 16. 049 -2.109
10 4.552 -5.958
11 -2.108 -12.722
12 -19.791 -15. 406
13 -12. 267 28.175
14 25. 386 16.852
15 16.226 -20, 605
16 -8.648 -59.925
17 -53. 052 7.715
18 12.596 52.726
19 78.155 76. 357
20 65. 808 -19.189
21 57.157 -86. 340

Table I. The locations of 21 sensors of the Montana LASA.

This location corresponds to the inverse phase velocity
ug= [0.057185, —0.038984] sec/Km . (3.14)

The interfering event had inverse phase velocity
ug = [0.044631, —0.042763) sec/Km . (3.15)

By adjusting the time delays we moved this interfering event along the line, Au,
connecting u, and ug (see Fig. 3)

u

Au= —e" "8 [ |Aul . (3.16)

,ua—ulgl

We calculated Gy for |Au} = 0. ~ 3.0 sec/Km choosing M, as a parameter.
These results are valid for this range of values of | Au| and this argument of
A u no matter where the atray is pointed. This value of the argument, of A u was
chosen so that a specific comparison could be made to the performance on the
two actual events. This is done in the next section. The results of this calcula-
tion of G, are given in Figure 4.
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Fig. 4. Gain of the maximum-likelihood processor over the delay-and-sum processor.

C. Experimental Results

The ML-processor outlined above was then applied to data from the Montana
LASA. The outputs of the twenty-one center seismometers were used. In this
experiment, estimation of the inverse phase velocities was omitted and process-
ing was done only for signal waveform extraction. Figure 5 is a plot of processed
outputs for the case where Event 3 was superposed on Event 0 with a delay of
25 seconds. The six curves are, from the top, yq (6), yﬁ(t), vy () - Caﬁ(t) ®
y3(0, yﬁ(t) - Ca6(°t) ® yo (D), 54 () and §E(t)' As is seen from this result
the ML-processor performs quite satisfactorily in suppressing interference from
the other event.

Now let us compare the result with the performance curves of Figure 4. The
background noise in the data of Event o is extremely weak compared with the
signal level. This can be noticed from Fig. 5 in which y (#) and yﬁ(t) show
practically no fluctuations before the arrival of Event o. Choice of M, = 100
(or 20 dB) in terms of (3.13) would be conservative. Then we anticipate a gain
of at least 19 dB. However, the value calculated from yﬁ(t) and 5,5(0 of Fig. 4
over the period of the first 25 seconds after the arrival of Event o was 7.8 dB.
This value corresponds to M = 3 in the performance curves of Figure 4. This
apparent decrease of the interfering signal to the background noise ratio is



766 COMPUTER PROCESSING IN COMMUNICATIONS

AT '
i[ o ~J\\/\\]J jJ\J\V\/U\h/\/‘\\ J*\\AMWVJ\{\W\MVWJ\INMVMMVWMJVWV\W
+ T '\ﬂ / \vﬂ Ay [\/ il o e

PRI ILINT)

ol ol i w«w\j\wwwwwwwwwwwwwww

T —

Q.f,{‘ Y VJ’U\w\m\;\m,MW\M‘-\,V\\/W\;\/\w\,«V\/wW\V\vwwwww\fwv-
|- 1 1 | 1 J
0 20 40 60 80 100

TIME (SECONDS)

Fig. 5. Processed outputs of the maximum-likelihood processor.

mostly ascribed to a deviation of the signal characteristic from the idealized
signal model on which our analysis has been based. The fluctuation observed
in traces in Fig. 4 in the interval before the start of Event 8 is not the amplified
background noise, but is due to noiselike components contained in Event
signal.

In the theoretical curves of Fig. 4 we calculated noise power as a function of
Au =uy ~ ug Inour experiments we also moved Event & over the range | Au| =
0.0015 ~ 0.030 sec/Km by adjusting time delays. We essentially synthesized
data of an artifical event which we call @’. The event &’ is the one which we
might have observed if Event & had occurred at a point whose inverse phase
velocity differs from that of Event 8 by A u (see Figure 3). The results are
plotted in Fig. 6 for | Au} = 0.03, 0.015, 0.005, and 0.003 sec/Km. The gain of
the MLE over the SD-processor outputs is as follows (averaged over 25 seconds
after the start of Event Q)

|Aul: 0.003 0.005 0.015 0.030 (sec/Km) ,
Gain: 5.66 9.06 681 498 (dB) .
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Fig. 6. Outputs of the delay-and-sum processor and the maximum-likelihood processor for
various Au.

or

These results are plotted in Figure 4 and are seen to correspond roughly to
the case M. = 2 ~ 4.

In the next section we will develop a modified signal model in which the
event has coherent and noncoherent components. We will see there that the
ratio of coherent to noncoherent power for Event ¢ is consistent with an M in
the 2 ~ 4 range.

IV. A MODIFIED SIGNAL MODEL AND ASSOCIATED OPTIMUM
PROCESSOR

A. Unconditional Maximum-likelihood Estimator

In the last two sections our analysis has been based on the idealized signal
model that the signal is identical at each seismometer except for a time delay.
We have been neglecting dispersive effects and local inhomogeneities in the
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medium which would cause the signal to differ in waveform from sensor to sensor.
In the present section a more realistic signal model is considered. It will enable
us to more reasonably compare experimental and analytical results.

Consider the case of a single seismic event. According to our modified
model, the input to each seismometer consists of three parts

X () =st—rg )+ 2, () + n (O, 4.1)

where s(f) is a component common to all sensor outputs and will be called the
coherent component of a signal. The second term of (4.1), z,(¢), is an additional
component due to inhomogeneities in the medium and will be called the non-
coherent component of a signal. From the view point of estimating the coherent
component, s(t), the z,(t)’s may be regarded as additional noises. But from the
detection viewpoint they should be regarded as stochastic signals and be taken
into account to serve for detection of an event. Detection problems will be dis-
cussed in a later section.

In case of two (or multiple, in general) simultaneous events, the outputs of
the sensors are now given, instead of (2.3) by

8
X0 =) D0 @ 5,0 L+ Z,(0)+ N (D) (4.2)

i= 00

We assume that the noncoherent components Z;(f)’s are Gaussian vector pro-
cesses with zero mean and with covariance functions

R4, )= EIZ(®) ZF () , i-aB . (4.3)

Although the assumption that the background noise and the noncoherent com-
ponents of the signal are Gaussian will be fairly realistic, we know little about
the shape of a coherent component. As a matter of fact a novelty of the signal
model set by Levin and Kelly [2] lies in the assignment of the signal waveform
as a completely unknown time function, thus no a priori assumption regarding the
shape of the signals are made. However, as was discussed in the last section,
a seismic signal contains noise-like noncoherent components with a magnitude
which is not negligible compared with the coherent component. In order to take
this fact into consideration we need to tie down some of the parameters of the
model, at least the average power of the coherent component relative to the non-
coherent components.

To make our problem tractable and have a closed form solution, we assume
that the coherent signal component s(f) is also Gaussian (possibly nonstationary)
with covariance function K;(t, '), i = &, 8. It is to be noticed that the MLE
discussed in Sec. II is equivalent to the result which will be obtained by assum-
ing K;(¢t,t") =  in the following discussion. Although the Gaussian assumption
about the signal is set for ease of mathematical treatment, the optimum solution
obtained in the following argument holds for the non-Gaussian case also under
the minimum mean squared error criterion. This will be discussed in the course
of the argument.
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The probability density function of the signal, s;(f) is then given by
1 1y, , , .
o;(s))=c;exp { - 7 s;(OK7 (t,t) s;(¢) dt dt , i=a,8 . (4.9

The optimum procedure, with those statistics given, will be the unconditional
maximum-likelihood estimate (UMLE) {8] or the maximum a postetior probability
computer [10], The unconditional likelihood ratio is given by

B
L(i, {“,'i)= H UI(S,-) A(S_y {“1}) f 4.5)
So

where A is the (conditional) likelihood ratio given by
AGs, fu) = cexp L 1 X1}2 1 I X ||2,+ < vk s> - 1—<s, p* 1. s>} , (4.6)
= R I R A

where v* is a 2 x 1 matrix function with entries v*(¢), i = @, 8 and p*~' is a

2 x 2 matrix function with entries p;",-"l (¢t,t). These functions take the same form
as v;(#) and p7}! (¢, ¢') of Eqs. (2.8) and (2.9) except that the noise covariance
function @ is now replaced by @* which is defined by

B
O* (6, 1) = Q6 ) + D R4, 4.7

i=x

Defining a 2 x 2 matrix function K(¢, t') by

K (@, t) 0
K(t,t) = . (4.8)
0 Kﬁ(t, t)
the logarithm of the unconditional likelihood ratio takes the following form
£ (s, up,up = 21og L = ||X H;- HXIG .+ 2<vhs> - <s, (p* ' + K™D s> .
(4.9)

The unconditional maximum-likelihood estimates (UMLE) of s, ny and ugare
found by first fixing the u;’s and maximizing ”E/(i, ug, uﬁ) over s. Such a value
§ is readily obtained as

|

={v*, (4.10)
where a 2 x 2 matrix function £ is defined by
£l o el KL (4.11)

The UMLE of u,’s are those numbers 4,’s which maximize the quantity <v*, §>
or <K*’ gz* >. When these estimates are substituted in (4.10), the result is the
UMLE of_s_ which we denote by 3.
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Let us discuss some important properties of the UMLE assuming the true
values of parameters u;’s are known, Taking the conditional expectation of §,
we have

E[sl=¢. Elv¥l=¢.p*tvs=(I-¢-KY)s . 4.12)
)i/s__ £ {/S_— £_ F; - = £ = -
Thus S is a biased estimate with the bias
Il(g)z—é-l_("l .5 . (4.13)

The variance of § must satisfy the following inequality which is an extension
of the Cramer-Rao inequality to unconditional estimates [9]

E E[G-s-bs)(@E-s-bsNTzA. ]! AT (4.14)

sXs_

where J and A are 2 x 2 matrix functions defined by

T
J=E E dlogL |dlogL ) (4.15)
= s X/s | ds dIs

and

P (4.16)
=—:+s— 3er | .

respectively. By substituting the unconditional likelihood ratio (4.6) into the
above equations and after some manipulation, we have the following result
E E [(8-s-b(s)(s~s-blshT]2p* gx— -¢- K' RS CRY)

s X/s

Therefore, the mean squared error of § must satisfy the inequality

E. h; [(s.s)(s-s)T]>E[b(s)bT(s)]+AJ‘1 AT,
s X/s

(4.18)

II"D
H"\\

K~

II"D
IIlf‘ﬁ

It is not difficult to show that the UMLE actually attains the equality in (4.17)
and (4.18).

B. The Optimum Processor for Rejecting Interfering Signal and Noise

Let us assume that the background noise N (f) and the noncoherent components
é,(t) are stationary in time and are uncorrelated between seismometers with
common covariance functions ¢ (t-t") and r;(¢-t"), respectively.

Define @*(t) as the covariance function of all noiselike components

B8
P*O=9M+ Y ', (4.19)

i= 0
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The result of Sec. III will then carry over directly to our present case (see
Egs. (3.2) to (3.9)).
Let us define a function h; (¢) by

h,.(t):ll?cp*(t) ® KM, i=a,B8, (4.20)
or
_l P* (f) .
H‘(O‘Kpi(f) , i=0, 8, (4.21)

where P*(f) and P,(f) are power spectra of the noiselike components and of
s; (0, ice., P*(f) = F {@*(H} and P,(f) = F K, (). The UMLE § is then ob-
tained in a closed form

s;(8) =[{5(t)+ hj(t)§ ® y: () “Cij(t) ® Y,‘(t)] ® g)&lg(t) , I= OtuB ,  (4.22)

where g;ﬁ(t) is a function which satisfies the equation

8ap() * 8O + by ()} ® [8() + hp(} - ¢ 4(t) ® coup-0l=8(H . (4.23)

Figure 7 represents a diagram of the UML-processor for two simultaneous
events. Notice that @*(f) of (4.19) does not come into the structure. We notice
also its basic similarity to the ML-processor of Figure 1. In fact the former is
reduced to the latter when A () and hg(t) are set to zero.

As was mentioned earlier the UMLE is equivalent to the minimum mean

—on

seismometer R
outputs T *y(h)
beam- farming Lolmed at tﬂ [ aimed at 8 _]
Yaltl L gt
subtroction of
the other svent Hg(t) Caglf)| [Cgqlf) Hylt)
+ - -+
+(Z M
correction of
distortion ot hal
Balt? gt
Gl = '
(HHg NN+ HgIM) - [ Cqgith
where
| Palf)
Hil) = — 0 iza,
i x Fw ek

Fig. 7. The unconditional maximum-likelihood processor.
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squared ertor linear estimate but it is not unbiased. We can now introduce another
fifter which compromises unbiasedness and minimization of the mean squared
error. Let us assume again that sﬁ(t) is a desired signal and sy () be an inter-
fering unidirectional noise. We now define an estimate S8 opt (9) as the value of
sﬁ(t) of (4.22) when hﬁ(t) is set equal to zero, i.e.,

S8 0pe (0 = U8 + B (D} ® yp) ~cpy () ® y, () * g () , (4.24)
where
&% 50 @B+ b, (O -c 30 @ caﬁ(— Nl =6() . (4.25)
An alternative expression for Sﬁ,opt(t) is obtained by
$B,0pc (D =130 = da (0 ® ¢ ;-0 @ yo (D] ® [8(1) - do () ® ¢, 5() ®
caﬁ('t)]_l ,  (4.26)
or in the frequency domain expression

Y 5(f) = Do () C g, () Yo (B

= , 4.27)
Sﬁ‘opt([) I‘DOL([)IC[BOL([)|2
where the function d (f) and its Fourier transform D (f) are defined by
dy () ® [8(0) + A (D] = 8(H) (4.28)
and by
KP_ (f
Dy (f) = __KPuh) (4.29)

P*(f) + KPP (f)

The mean squared error of Sz pt(t) is obtained, in the frequency domain, as

,0

P o P df (4.30)
oPt_K J:w 1°Da([)|caﬁ(f)|2 . .

It should be remarked that the expression (4.27) was originally obtained by
Kelly and Levin from a somewhat different approach [2]. We will call the proces-
sor which generates sﬁ,opt(t) the optimum processor in the sense that it is the
optimum for rejecting a second seismic event when the power spectral ratio of
the coherent component and the total noise-like component is known.

C. Performance of the Optimum Processor and Experimental Results

The purpose of this section is to present the numerical results of the perfor-
mance of the optimum processor defined above, along with some experimental re-
sults. As we did in Sec. lIl B, we assume that P*(f) and P (f) are of the same
shape and are given by Figure 2. Defining a constant ¥, by (3.13), P, is
written as

1 o0 P*(f)
P - _j Sl 4.31)
o0 1- Donlcotﬁ(f)l
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where
KM
o= —— (4.32)
1+KM

The processing gain of the optimum processor over the delay-and-sum processor,

defined by

P
Gopi=10 logio 5o (4.33)

opt

is a function of Auand M only. G, is given in Fig. 8 for various values of
M. and for the range of Au, described in Section IIl B. Comparing these curves
with those in Fig. 4, the difference in performances of the ML-processor and the
optimum processor can be noticed especially for small | Au| and M. AG =
G,p+ - Gy is a gain due to the knowledge of the interfering signal to the noise

component ratio.
This processor was also run on the data described in Section Il C. The

results are given in the table below and are plotted in Figure 8.
| Au|: 0.003 0.005 0.015 0.030 (sec/Km) ,

Gain: 6.01 9.15 6.81 499 (dB)
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/' // - —— o
10 fH e P f
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5 ’// . o T I
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o \
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i
-0 l 02 03

o
INVERSE PHASE VELOCITY (sec/km)

Fig. 8, Gain of the optimum processor over the delay-and-sum processor,
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M. was also estimated on this data by averaging over the first 25 seconds of
Event (. The estimate obtained was 2.8. Notice that the data generally fit the
model for this value of M. Notice also that this value of My gives general
agreement to the output of the maximum-likelihood processor (Figure 4).

There are two discrepancies in the experimental results. First, the ‘“optimum”
processors do not perform as well as for small Au as is predicted. Second, there
is not the predicted difference between the ML processor of Section III and the

¢

optimum processor of this section. Our conjecture is that these effects are a
consequence of a partial coherency or directional quality of the non-coherent
component of the signal.

V. MAXIMUM-LIKELIHOOD DETECTION

In this section we consider the detection problem. In the detection of a
signal of known form but with parameters which are only vaguely known (e.g.,
arrival time and carrier frequency in case of a radar signal), the method of the
maximum likelihood detection is often used [7]. In this detection strategy one
assumes that a signal of the expected form is present in the observed input and
the signal parameters are estimated by the method of maximum-likelihood. These
estimates are tested to determine whether they might have been obtained from an
input containing noise alone. The detector structure takes the form of the maxi-
mum-likelihood estimator followed by a matched filter (or equivalently a correla-
tor) that treats the MLE as the true value of the signal. The problem of detect-
ing the presence or absence of a Gaussian signal in additive Gaussian noise can
be handled in a similar fashion. The optimum detector in this case consists of
the UML estimator (equivalent to the optimum filter under the minimum mean
squared error criterion) and a correlator that treats the UMLE as the true signal
waveshape. This interpretation of an optimum receiver has been found by Price
[10] and Kailath [11]. In the present section a similar approach is applied to the
case of two simultaneous seismic event signals.

We start from the original signal model which does not take into account non-
coherent components. If we substitute the MLE s of the signal waveform s and
parameters u,’s into (2.7), the likelihood ratio becomes

AG, fu ) = exp {;—<K, §>} ' 5.1

which is the maximum-likelihood detection statistic. When the background noise
is uncorrelated among sensors (see (2.1)), the detection statistic is written in
terms of ¢(¢) and the beam output y;(¢)

T,=<v,§> :fg’“(z) o7 (H ® {(r)} dt . (5.2)

Note that the ML-detector depends on the noise covariance function @(f) although
the ML-estimator does not.
Equation (5.2) is a test statistic to detect whether two events are present or
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noise only is present. A more realistic situation will be the case where one
knows that an event has occurred but is uncertain about the existence of the
second event. This detection problem is formulated as the following hypothesis
test

Ho: X(0 =Dy () @ sa (0 1+ N |, (5.3)
8
Hy: X0 = 3 D0 ® s,(0 LI+ N (5.4)

=L

Then the conditional likelihood ratio function for H; against Hy is calculated as
Ads) = < > < ~1 1 -1
(s) exp{ Vg Sg Sow Pop Spg> - 2<SB’ Pap s5>} . (5.5

If one substitutes the MLE éof (2.13) into (5.5), one obtains after some manipula-
tion

- 1 . -
A(§)=exp §<S’B’ PZ%,XB Sg> . (5.6)

Thus the detection of the event 3 is equivalent to comparing the following
quantity with some threshold

T, :ff 8500 P (6 0) S5(0) de dt . 6.7

Now let us consider the modified signal model discussed in Section IV, If a
priori knowledge of the signal waveform is given as in Eq. (4.4), then the optimum
detector will be derived from the unconditional likelihood ratio of (4.5). By sub-
stituting the UML estimate s into (4.9), a test statistic is obtained as

Ty=|1X]12 - XNZ, +<wx, s> . (5.8)
— (1) — @ r —
If the background noise is much weaker than the noncoherent components of the

event, then @1 >> (2*“1 and thus T ; can be approximated as follows
T3;||,1H;+<g*, s> . 5.9

Note that the last term of (5.8) or (5.9) is essentially the same as T; of (5.2) and
is the estimated signal energy to noise energy ratio. The other terms of (5.8) and
(5.9) are due to the noncoherent components. If the background noise is un-
correlated and white, the first term of (5.8) is simply the sum of energys of each
seismometer’s output. Figure 9 illustrates the structure of the maximum-likeli-
hood detector.

Now we will discuss again the problem of detecting the second event. It can
be treated in a similar way as we did in (5.3) through (5.7) by setting the follow-
ing hypothesis test

Ho =Dy () ® sold L+ Zo(0) + N(O) (5.10)
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Fig. 9. The maximum-likelihood detector.

8
Hi=3" 10,0 @ s;(0 L+ Z,(01+ M) . (5.11)

i=0L

The unconditional likelihood ratio function for this case can be defined in the
similar way as in (4.5) and after the UMLE of (4.10) being substituted, the log-
arithm of the unconditional likelihood function can be written as

L@ =X X |15, - 2<F,,8,>+ <8, £31, 5, + <3, s>, (512
where v, (f) and §—1 (t, t") are defined in the similar way as vg () of (2.8) and
f“ (¢, t') of (4.11), respectively, except that the noise covariance function in-
volved is replaced by ® which is defined by (D ® + R,. This complicated
structure is somewhat simplified if we assume uncorrelatedness of noncoherent
components and the noise among seismometers. In this case (5.12) can be
written as

2 2 - -1 -1y = < -1 -1\ =
T4:||}£H5—H}£H®“<§;(f; —f;* )S_>+<S,3‘(p55+K,3)S,3> . (5.13)

If we are not given the covariance functions K;(¢), i = @, 8, then the optimum
detector will be obtained by setting K;(¢) = « and replacing the UMLE § by the
MLE s.
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