THE RECURSIVE DESIGN OF A SEISMIC ARRAY PROCESS

By

H. Kobayashi and P. D. Welch

IBM Research Center
Yorktown Heights, New York

Summary

Two methods of a recursive (iterative) syn-
thesis of an array process are discussed:
the method of steepest descent and the method
of conjugate gradient with projection. These
methods require no intermediate statistics such
as the covariance matrix function or the cross-
power spectral matrix, and therefore require
less storage space than the conventional syn-
thesis methods. Simulation results indicate that
the convergence is so fast that a few iterations
are enough from the practical viewpoint. There-
fore these methods can save significant computa-
tion time as well.

I Introduction

The model usually adopted in the problem
of the detection and estimation of seismic events
with an array of seismometers, is to assume
that a signal due to a seismic event is common
to all seismometers except for time delays

e Ead
‘|'k -u - rk >
city of the event and r , the location of the k-th
seismometer. In this model if we assume that the
time delays are compensated so that the signal
components are lined up, the input of the k-th
seismometer is given by

-
where u is the inverse phase velo-

xk(t) = st) + nk(t) , k=1,2....,K (1. 1)

where s(t) is the unknown seismic signal and nk(t)
represents all other disturbances in the k-th
channel. Our interest lies in the case where the
noise, n, {t), is highly correlated among seismo-
meters. This will be the case, for example, when
the main noise source is another interfering event,
or when n (t) is the first arrival of an event and
5(t) is a later arrival of the same event.

Let w(u) be a K-dimensional linear filter
with finite duration [~L_, L_] whosek-th compo-
nent w,(u) is the impulse response of the k-th
channel. Then the output, y(t), is sum of these

filter outputs:

¥y <Y w' (a) x(t-u) . 2)

u

Our purpose is to design the optimum w(u),
based on the data taken over some fitting inter-
val T , that minimizes the output noise power

without distorting the signal s(t): i. e., the criterion

for optimality is to minimize

1 2
at © (y(t) - s(t) (L. 3)
teTf
under the constraint
wT()1-5 e[-L,L.] 1. 4
—u—_u.o’u_l'Z (1. 4)

which we call the ''fidelity'" constraint. N, is
the number of data points in the fitting interval,

. lis a K-dimensional vector whose entries are

all unity., The fidelity constraint (1. 4) is set
in order to pass the signal component with no
distortion. (Ref. 1)

Let us assume for the moment that the
fitting interval T, is chosen in such a way that
the unknown signal s(t) does not exist during
T_.. Then the output noise power P of (1. 3)
is simply given by the following qué)r?ratic form:

Pout = 20 % W B W  (.5)

where

s -k T

€
f tTf

x(t-u) ET(t-v) (1. 6)

Then the optimum solution for w({u) has been
obtained by Kelly and Levin [1] and Capon et. al.
[2]:
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W) =Zv:§'1(u,v) Q(v. 0) 1 (L. 7)

where

-1

R (u,v)1 (. 8)

If the unknown signal exists in the fitting
interval Equation (1. 3) becomes

Pout?—ll\; Z ) %Z fe) (1.9

f tt-:Tf tt-:Tf

where we have used the approximation
ZL
Nf

u

Since the second term of (1. 9) does not depend
on the filter, the minimization of Pou is equi~
valent to minimization of Eq. (1.5).

v_v_T {u) n(t-u) - s(t) =0 (1. 10)

teTf

IL. Recursive Design of the Array Process

In this section we will discuss two methods
of a recursive (iterative) synthesis of an array
process: the method of the steepest descent and
the conjugate gradient method with projection.
An iterative procedure generates a sequence of
the filters {v_v, (w)} which converges to the opti-
mum filter w (u) as i increases. These
techniques 1288tto very efficient software imple-
mentations on general purpose computers. The
major advantage of these methods is that the
synthesis does not require the calculation of
intermediate statistics such as the covariance
matrix function or the cross-power spectral
matrix. As a result storage requirements are
kept to a minimum. Further, the optimum
s olution is achieved, starting from an arbi-
trary initial estimate by the repetitive use of
the same formula. Hence, the processive pro-
gram is not complicated and as simulation
results indicate, that the convergence is so
fast that a few iterations are enough from the
practical viewpoint. Therefore, these methods
possess significant computation time advantages.

2.1 Method of the Steepest Descent

The steepest descent method has been
widely used in optimization problems and its
application to estimation problems is dis -

cus sed by Balakrishnan [3]. It is to be noted
that there exists some similarity between the
computation algorithms of the steepest descent
method and of the stochastic approximation
method, although the latter is applied to adaptive
estimation or filtering when the input data is
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observed over a long interval and is assumed to}
stationary or quasi-stationary. The application
of the stochastic approximation method to the
seismic array processor is discussed by Lacoss
[4], to whom is due some of the mathematical
formulation in the present section.

The minimization of P of (1. 5) with the
cons traint (1. 4) can be formulated as minimi-
zation of

TEEYS D0 W () Rlwv) wv)
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where {A (u)}'s are the Lagrangian coefficients,
Then the gradient method provides the following
recursive formula

{2.]

(2.7

where a, is a positive scalar. On inserting (2.])
into (2. 2) and using the constraint (1. 4) we arrive
at the following formula. :

3“1(11) = v_vi(u) ta, p_i(u) (2.3
where Bi(u) is the direction vector given by
Bl) = - B ) RV w,v) (2.4
v

and P is a K x K singular matrix of the form

1 T
P=(-g110) (2.5
The vectors w.(u) and p.(u) may be consider-
ed.as points in an N-dimensional Euclidean space
E ', where N = K (L +L2+1) = K. L. However,
it is more nvenien]t for the following discussion
to regard E  as a proﬂuctﬁf L iepiesKof K-di-
mﬁnsional subspace E": E = E xE x...... X
E Then the constraints (1. 4) spﬁcify a (K-1)
dimens ional hyperplane in each E:

S \ET(u)-l_=0 for u# 0 (2. 6)

0
S1 : (W(u) - l)T

1=0, foru=0 (2.7

L
K

The hyperplane S  contains the origin of EK; the
hyperplane S, contains a vector 1 and is para-
llel to S,.. en it is clear_that P of (2.5) is the
projection operator_from E° into S_. Similarly
for any point x Yx E™, its projection into S, is
. - 1
givenby Px +— . 1.
= — K -
As can be seen from the definition (2. 4), the
direction vector -Ei(u) is in an N'-dimensional gub-



spaée S x....x SO A I, where N' = K-1) L.

If the initial choice w (iu) is such that w_(u) € I
AS x...xS xS x....xS_, then {y.(u)] also lies
Tn t%e dimensional subspace L. for all i. We
choose the gain a, in such a way that the next
approximation is the point which minimizes J
of (2.1) over all points on the line of action of
the vector p.(u) passing through yi(u). This
leads us to the following recursive formula:

Initialization: Yo € Zl (2. 8a)
P --PRWO (2. 8b)
Foriz=z0 ‘p‘ l 2
a = ! (2.9a)
(p,: R pi)
= + 2.9b
¥in T Vi TP (2. 9b)
= - P 2-
Piyy P~ % PR, (2-9¢<)

In Eqs. (2.8) and (2.9) we adopted the simplified
notation R, p,, w, instead of R(u,v) p.(u), yi(u)
etc. . Equation (2. 8b) should read as

P, =-P }; Rfu, v) wo(v) (2 10)

Similarly ) -
lp, 1% =tp, . p) = 3 p; (W p(w) (2.1)
u
and
(Pi ; RPi) = ZZB?(U) R{u,v) -Ei(v)
u v

(2.12)
From the formulae (2. 9a) ~ (2. 9c¢) it fol.ows that

Py (u) is orthogonal to the previous direction
véc]?:or Bi(u) , i.e.:

(Piay PP =2 23:,1(‘1) piw) =0 (2.13)
u

The sequence of the output noise powers is mono-
tone decreasing:

4
el
=T = — <0 (2. 14)
i+l i ( Rp.)
Py » BBy
Therefore JO can be written as
4
{2 lp,|
J = —_— {2.15)
o &£ (. Rp)

and {p] - 0asi~- o. Hence from Eq. (2. 4),
{w_(u)]l converges to Wopt(u) of (1. 7).
% ad

Althoughthe recursive formulae (2. 8a) -
(2.9c) appear to require one to compute the cross-

correlation function R(u, v), it can be written in
the following way by substituting the definition
(1. 6).

Initialization:: v_vo(u) SZI (2.16a)
Bo(u) = - <x(t-u) - xav(t-u)_l, yo(t)> (2.16Db)
where

Yolt) =2 wo (u) x(t-u) (2. 16¢)

Foriz0  x_(t) = —11? 1T x@ (2.16d)
q,(t) =E£;r(u) x(t-u) (2.17a)

2 2

a = |p, 1%/ lla,mll (2. 17b)
WitV TR (2.17¢)

B, (W = p(w) - @ <x(t-u) - x_(t-u) 1, q (>
(2.174d)

where < , > is defined as

1
Ng :L:'Tf

One may replace Eqs. (2.17b) and (2.17c¢)
by the following:

<f(t), glt)> = i(t) glt) (2.18)

2
o = - <q(t), y,(t)>/ llg, 0]l (2.17¢)"
and
t) = + . '
Vit =y () +a, q.(t) (2.17d)
2.2 The Method of Conjugate Gradient with

Projection
In the method of the steepest descent the

gradient L 1. was used as the direction vector p,
to obtain fhe next approximation w, Although,1
this choice of p, maximizes the ins]tgntaneous rate
of change of J, %t does not necessarily lead to the
'‘best' approximation. Moreover the procedure
does not yield the solution in a finite number of
steps even though the dimensionality of the un-
known w(u) is finite.

In the present section we will modify the
fundamental conjugate gradient method [5-7] so
as to be able to apply the method to our specific
problem. The method of conjugate gradients was
devised by Hestenes and Stiefel [5] to solve a
system of simulataneous linear algebraic equations,

w=b

(2.19)

1P

where R is an N x N positive definite matrix and
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w, an N x 1 vector of unknowns and b isan Nx1
vector of constants. This method is an N-~step
iterative one; i. e. the algorithm is applied to
give successive approximations to the solution of
the given linear systems and, if computations are
done with complete accuracy, a solution is ob-
tained after M iterations where M < N (the order
of the system). Clearly the same algorithm can

be applied to find w which minimizes the following
function
fw =3 wRw-wb (2. 20)

By modifying the fundamental formula [5.6]
we can obtain the following conjugate gradient
iterative procedure leading to the minimization
of the quadratic form (1. 5) under the fidelity con-
straint.

Initialization: W, e}:l (2. 2la)
P =Ty =- PRw, (2. 21b)
Forizg 2
= |=1% (v, Rp) (2. 22a)
Wi T Wt P (2. 22b)
TSt u. PRp (2. 22¢)
B, = lrml / Iril2 (2. 229)
Piyp = Ty T B P (2. 22e)
In place of (2. 22a) and (2. 22d) one may use
e, = (p;: ri)/(pi, Rp,) (2. 22a)"
B,=- r,,;r Rp}/(p;» Rp)

(2. 22d)"

where P is the projection operator defined by the
matrix (2.5).

Many relations hold among the quantities
appearing in (2. 2la) - (2. 22e). The most impor-
tant ones are

P eX, T, €2, W, eZl (2. 23)
for all i
(r., t)=0 , i#]j (2. 24)
i
(pi' Rp.) =0, i#j (2. 25)

The projected gradients {r ; i=0, , N1-1}
where N' = [K - 1) L form a set of orthogonal

vectors in the subspace }:0 and {pi 3 i=0, ,N'-1}
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form a set of "R-conjugate "or'" R-orthogonal

vectors. Since R is positive definite, it follows
that (p., Rp,) > 0 and therefore Ip. ; i=0,...,N'-
1}are heceslsarily linearly independent and span
the N'-dimensional subspace ¥, . Since the solu-
tion vector w and its initial guess w_ are both
in %, their d1?Perence is always in T, and is rep-
resentable uniquely as a linear combination of the

basis fp,}. In fact, using the mefficients a, of
Eq. (2.22a) we have the relation
N'-1
wopt -w, = IZO a p, € Zo (2.26)

As in the case of the steepest descent metho
the output noise power is decreased at each step
of the iteration

J. . -3 =

2
i+1 =33 = - (pp )/ (P, Rp))

- Irif/ (p;» Rp,) <0 (2.2

Furthermore it can be shown that the following
property in the fundamental gradient method can
be carried over to our conjugate gradient method
with projection: the approximation w, (u) is closer
to the solution w (u) than \Zi(u), i J<;], i.e.
I\Kopt(u) - \Kj(u) ']°£w (u) - w(u) | The result

indicates that if we stop the iterative process at
any step, the last obtained approximation to the
solution is the best, in the sense of being the
closest to the true solution,

The iterative formula can again be written
without resorting to the correlation function
R(u, v):

Initialization: w_ € X

0 €5 (2. 28a)

Polu) = rp(u) = - <x(t-u) - x (t-u)l, Yot)>

(2. 28b)
Fori 20
2 2
= 5 177 e | (2.292)
AT A + o Py (2.29h)
r +1(u) = Ei(u) -a <x(t-u) - xav(t-u) 1,
qi(t)> (2. 29¢)
_ 2 2
Bo= lry 177 Ixyl (2. 294)
P~ Tin t APy (2. 29¢)

here the f ti t d
where the functions yo( Vs xav(t) an qi(t) are




defined by (2.16c), (2.16d), and (2.17a).

Equations (2. 29a) and (2, 29b) can be replaced
by
- <a(t), yi(t) >/ Jla o |12
it i

G‘i = (2. 298.)'

and

= . q.(t 2. 29b)!
Y (8 = v (6 + a, g (t) (2. 29b)
One may readily notice that if the coefficients
{8.}in the iteration formula is set to zero, the
colnjugate gradient method reduces to the steepest
descent method of the previous section,

III. Processing Requirements

The rationale of the iterative synthesis pro-
cedures is the efficient utilization of computer
memory and processing time. In the present
section we give some estimates of the memory
requirements and the running time for the two
methods described above.

The Steepest Descent Method: The input data
x(t) must be stored in any method, and therefore,
we exclude the space for x(t) in the following
argument. The space for the processed output
y(t) is also common to all methods and hence will
be excluded here. The quantities w_ and p, take
KL words and x_ (t) and q.(t) requirle N W%ers,
respectively. e memory requirement is thus
2(N, + KL) words. However, if we do not require
the processed output until the last iteration is
over, q.{t) can be stored in the space alloted to
y(t). In this respect the minimum memory
requirement is

MSd = (Nf + 2KL) words (3.1)
As to the computation time, the majority is spent
for the convolution sum to obtain q.(t) and Bi(u)
each of which takes about KLN_ (n+ 1), where p
and yare the MULTIPLY and ADD times in the
computer in question. Therefore

T

sd = 2 KLNf (u+ v) seconds/iteration (3. 2)

is the running time.

The Conjugate Gradient Method: The KL
words for r.(u) should be added to the quantities

used in the method of the steepest descent. The
total memory requirement is thus
M = (N_+ 3KL) words (3.3)
cg f

The increase of the running time over the
steepest descent is 3KI1{u + v) seconds per iter-
ation due to the additional quantities B, and r.(u):

i =i
Therefore

TCg =~ ZKLNf + 3KL) (u+ V) (3.4)

is the running time,

V. Simulation Results

The iterative procedures outlined above
were applied to the data from the Montana Large
Seismic Array. Twenty-one center seismometers!
data were used, i,e. K=21. The Longshot
explosion's data (Oct. 29, '65) were superposed
on the Kamchatka earthquake data (Apr. 8, '66)
with a 30 second delay. Figure 1 shows processed
outputs of the conjugate gradient method, where
L =1L, =5, The fitting interval is the first 25
seconds after the arrival of the Kamchatka earth-
quake, and N_ = 500 since the data sampling rate

is 20 c¢/s. The interation starts from the simple
geam-fo;ming, i.e. w(u) = < Gu’ o 1,u=-5...,

We notice that the interfering noise is
suppressed drastically (more than 10 dB) by the
first iteration, and an approximate solution
attained after several iterations virtually satisfies
the practical purpose.

Figure 2 is a plot of the output noise
power vs. number of iterations for the steepest
descent method as well as for the conjugate
gradient method when filter lengths are L =1
(L1=L2=0), L:ll(Ll=L =5)and L = 21
(L, = L2 =10). In all cases the conjugate gradient
(C-G) method shows a faster convergence than the
steepest descent (S-D) method. We also syn-
thesized filters in the frequency domain RJ],
where filter lengths of L = 8 and 16 were chosen
so that the Fast Foruier Transform subroutine
could be utilized. Reduction of the noise power
output attained by those filters is also indicated
in Figure 2, and is clearly less than the reduction
achieved after several steps in iterative methods.

All programs were written in FortranlIV
and an IBM 360 Model 67 digital computer was
used for the simulation. The computer running
time per iteration was:

L=1 L=11 L=21
S-D method 4,28 sec. 38.16 sec. 72.30 sec.
C-G method 5.07 sec. 46.00 sec. 87.27 sec.

On the other hand, the frequency domain synthesis
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takes 622.0 sec. for L = 8 and 1135 sec. for L = 16b.
Although the computation effort should be compared
using programs written in 2 machine language to
be precise, the simulation allows us to conclude
that the iterative design provide an efficient way

of synthesizing array processors.
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Figure 1. Processed Outputs of an Array Pro-
cessor Designed by the Conjugate

Gradient Method
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