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Abstract—Due to a large number of multipath components signal-to-noise ratios (SNRs) are selected, which is an optimal
in a typical ultra wideband (UWB) system, selective Rake scheme in the absence of interfering users and inter-symbol
(SRake) receivers, which combine energy from a subset of jniarference (1SI). For a minimum mean square error (MMSE)

multipath components, are commonly employed. In order to Rak . the fi P i lecti lqorith
optimize system performance, an optimal selection of multipath | axe receiver, the “convenuonal® Tinger seiection algorithm

components to be employed at fingers of an SRake receiver needdS t0 choose the paths with highest signal-to-interference-
to be considered. In this paper, this finger selection problem is plus-noise ratios (SINRs). This conventional scheme is not

investigated for a minimum mean square error (MMSE) UWB  necessarily optimal since it ignores the correlation of the
SRake receiver. Since the optimal solution is NP hard, a genetic noise terms at different multipath components. In other words,

algorithm (GA) based iterative scheme is proposed, which can . . . .
achieve near-optimal performance after a reasonable number choosing the paths with highest SINRs does not necessarily

of iterations. Simulation results are presented to compare the Maximizes the overall SINR of the system. In [7], the optimal
performance of the proposed finger selection algorithm with that finger selection problem is shown to be an NP-hard problem,
of the conventional and optimal schemes. _ and two suboptimal algorithms are proposed based on an
Index Terms—Ultra-wideband (UWB), impulse radio (IR),  gpproximate objective function and constraint relaxations. In
MMSE Rake receiver, optimization, genetic algorithm (GA). . . .
this paper, we propose a genetic algorithm (GA) based scheme,
I. INTRODUCTION which performs finger selection by iteratively evaluating the

) ) _ exact objective function without the need for any constraint
Recently impulse radio (IR) ultra wideband (UWB) SyS;g|axations. Using this technique, near-optimal solutions can

tems ([1]-[5]) have drawn considerable attention due to theig ghtained in many cases with a degree of complexity that
suitability for short-range high-speed data transmission apd ,ch lower than that of the optimal exhaustive search
precise location estimation. In an IR-UWB system, very Shoéﬁgorithm.

pulses with a low duty cycle are transmitted, and each in-pe remainder of this paper is organized as follows. Section
formation symbol is represented by positions or polarities gf jescrines the transmitted and received signal models in
a number of pulses. Each pulse resides in an interval callgdy, iyser frequency-selective environment. The finger se-
frame”, and positions of pulses in frames are determingd.tion problem is formulated and the optimal algorithm is
by time-hopping (TH) sequences specific to each user, whiglsqrined in Section Il followed by a brief description of the
prevents catastrophic collisions among pulses of different Usegs,entional algorithm in Section V. In Section V, the GA-
[1]- based finger selection scheme is presented. Simulation results

Commonly, users in an IR-UWB system employ Rake rege presented in Section VI, and concluding remarks are made
ceivers to collect energy from different multipath componentg, he |ast section.

A Rake receiver combining all the paths of the incoming
signal is called arall-Rake (ARake receiver. Since a UWB Il. SIGNAL MODEL

signal has a very wide bandwidth, the number of resolvabIeWe consider a synchronous, binary phase shift keyed IR-

multipath components is usually very large. Hence, an ARal(ﬁNB system with K users, in which the transmitted signal

receiver is not implemented in practice due to its complexity. . .
. r?m userk is represented by:
However, it serves as a benchmark for the performance o

more practical Rake receivers. A feasible implementation of (%) E, & k _

; . . . i i _ ) () ; (k)
multipath diversity combining can be obtained bgelective-  Six’ (t) = N Z A b, Pt = 5Ty — ¢ Te),
Rake (SRakg receiver, which combines th&/ best, out of J=—00
L, multipath components [6]. Thosi&/ best components are @)

determined by a finger selection algorithm. For a maxim@lhere p;,(t) is the transmitted UWB pulsef; is the bit
ratio combining (MRC) Rake receiver, the paths with higheshergy of uset, T; is the “frame” time, N; is the number

_ _ _ _ _ of pulses representing one information symbol, a@N | €
1This research is supported in part by the National Science Foundat|§n 1. —1Vis the bi inf . bol L dfb
under grants ANI-03-38807, CNS-0417603, and CCR-0440443, and in part 1» —1} iS the binary information symbol transmitted by user

by the New Jersey Center for Wireless Telecommunications. k. In order to allow the channel to be shared by many users
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Fig. 1.  An example time-hopping impulse radio signal with pulse-basg
polarity randomization, wheré&/; = 6, N. = 4, the time hopping sequence o, X ™
is {2,1,2,3,1,§ and the polarity codes arer1,+1,-1,+1,-1,+}. Stemp.ar (=)

Fig. 2. The receiver structure. There av€ multipath components that are
combined by the MMSE combiner.

and avoid catastrophic collisions, a TH seque{"né@}, where
c§k) € {0,1,..., N, — 1}, is assigned to each user. This T%xpressed as

sequence provides an additional time shi1‘tc§ﬁ)TC seconds

to thejth pulse of thekth user wherd. is the chip intervaland (4
is chosen to satisf§, < T,/N, in order to prevent the pulsesstemp,l( )= Z
from overlapping. We assumé&; = N_.T. without loss of J=iNg 3)
generality. The random polarity codéﬁ“) are binary random

variables taking values:1 with equal probability [8]-[10]. ~ for the ith information symbol, where we consider useas
the desired user, without loss of generality. In other words,

An example TH-IR signal is shown in Figure 1, where siyy using a correlator for each multipath component that we
pulses are transmitted for each information symbié} & 6)  want to combine, we can have symbol-rate sampling at each
with the TH sequencg2, 1,2,3, 1,0}. branch, as shown in Figure 2.

Consider the discrete presentation of the chanaéh) = Note that the use of such template signals results in equal
[agk) o a(Lk)] for userk, whereL is assumed to be the numbergam combining (EGC) of different frame components. This

of multipath components for each user, ahds the multipath M&Y not be optimal under some conditions (see [12] for

resolution. Note that this channel model is quite general in t b)optimal schemes). However, it is very practical since it
it can model any channel of the forf” a(k)é(t B %(k)) facilitates symbol-rate sampling. Since we consider a system
=11 l

if the channel is bandlimited td/7. [11]. Then, the received that employs templa_ltg 3|gnz_il_s of the f‘“f” (3), i.e. EGC of
. frame components, it is sufficient to consider the problem of
signal can be expressed as

selection of the optimal paths for just one frame. Hence, we

(i+1)Nj—1
A" pex(t — jTy — VT, — (1 - 1)T0),

K o) L _ i i
o(t) = Z Ey Z Za(k)d(-k) 40 assumeN; = 1 without loss of generality. _
Ny L% ULi/Ngl Let £ = {l1,...,lr} denote the set of multipath compo-
k=1 j==eo =l nents that the receiver collects (Figure 2). At each branch,

X prx(t — §Tf — c§’€’Tc — (= 1)T.)+ou,n(t), (2) the signal is effectively passed through a matched filter (MF)
matched to the related template signal in (3) and sampled once
%or each symbol. Then, the discrete signal for ttiepath can

be expressed, for thith information symbol, &

wherep,«(t) is the received unit-energy UWB pulse, which i
usually modelled as the derivative pf;(t) due to the effects
of the receive antenna, amdt) is zero mean white Gaussian
noise with unit spectral density. r = st Ab; + ny, (4)

We assume that the TH sequence is constrained to foel = [y,...,ly, where A = diag{\/E1,...,VEx}, b; =
set {0,1,...,Ngr — 1}, where Np < N, — L, so that [\ ...p{!)|7 andn, ~ AN(0, 02). s, is a K x 1 vector,
there is no inter-frame interference (IFl). However, the pravhich can be expressed as a sum of the desired signal part
posed algorithm is valid for scenarios with IFI as well, an@gSP) and multiple-access interference (MAI) terms:

this assumption is made merely to simplify the expressions (SP) . _(MAI)
throughout the paper. From the analysis in [12], the results of si=8 " ts§ ) ®)
this paper can easily be extended to the IFI case as well. \yhere thekth elements can be expressed as
Due to the high resolution of UWB signals, chip-rate and (SP) al(l), E=1
frame-rate sampling are not very practical for such systems. [Sl } v 0 k=9 K (6)

In order to have a lower sampling rate, the received signal
can be correlated with symbol-length template signals that
enable symbol-rate sampling of the c_orrela_tor Ol_JtpUt [13]. Theznote that the dependence of on the index of the information symbol,
template signal for théth path of the incoming signal can bei, is not shown explicitly.



and

[S(MAI)} 0,
=\ ) (k) L k) 7(k
b e o el
)
with Il(’f,)l being the indicator function that is equal tdf the

mth péth of usetk collides with thelth path of usen, and0
otherwise.

IIl. PROBLEM FORMULATION AND OPTIMAL SOLUTION

The problem is to choose the optimal set of multipat
., Iy}, that maximizes the overall
SINR of the system. In other words, we need to choose the
best samples from thé received sampleg,l=1,...,L, as

components L = {ly,..

shown in (4).

In order to reformulate this combinatorial problem, we fir
define an “assignment vector, the ith element of which is
equal tol if the sth multipath component is selected, and

The overall SINR of the system can be expressed as [7]

SINR(X) = E—;(a“))TXT
.

n

—1
<1+ 2XS<MAUA2(S<MAI>)TXT> Xal. (14)
Hence, the optimal finger selection problem can be formulated
as finding X that maximizes the SINR expression in (14),
subject to the constraint thaX has the previously defined
structure. Note that the objective function to be maximized is
not concave and the optimization variab{etakes binary val-
ues, with the previously defined structure. Hence, the problem
'ﬁ NP-hard.

IV. CONVENTIONAL ALGORITHM

Instead of the solving the optimal finger selection problem,

the “conventional” finger selection algorithm chooses fife
aths with largest individual SINRs, where the SINR for the
h path can be expressed as

Ky (az(l))Z

otherwise. Sincé/ multipath components are selected by the SINR; = (S(MAI))TAQS(MAI) g ) (15)
Rake receiverx satisfiesy ", [x], = M, where[x]; denotes ! ! "
theith element ofx. Also let p, denote anMl x 1 vector, the fori=1,..., L.

of x. For example, if the second and the third multipatAf the noise components of different paths, which is due to

components are selected for a system wita 4 and M = 2,
thenx =011 0] andpx = [2 3].
From the assignment vectat, we define anM x L
“selection matrix"X as follows:
T
X = [e[pxh e e[ } s (8)

Px| M

wheree; is an L x 1 unit vector having d at itsith position
and zero elements for all other entries, dpd]; represents

the ith element ofpy.

the MAI from the interfering users in the system. Therefore,
it does not always maximize the overall SINR of the system
given in (14).

V. FINGER SELECTION USING GENETIC ALGORITHMS

In this section, we propose a GA based finger selection
approach, which directly uses the exact SINR expression in
(14), and tries to achieve the optimal performance in an
iterative fashion.

Using the selection matriX, we can express the vector ofA. Genetic Algorithm

received samples from any/ multipath components as
r = XSAb; + Xn, 9

where n is the vector of thermal noise componems =
[n1---nz])T, and S is the signature matrix given b§ =
[s1- -~SL]T, with s; as in (5).

From (5)-(7), (9) can be expressed as
r=b)/EXa® + XSMADAD, + Xn,  (10)

whereS(MAD is the MAI part of the signature matrig.
Then, the linear MMSE receiver can be expressed as

b; = sign{6”r}, (11)
where the MMSE weight vector is given by [14]
60 =R 'XaW, (12)

with R being the correlation matrix of the noise term:
R = XSMAD A2Z(GIMADNTXT 4 527 (13)

The GA is an iterative technique for searching for the global
optimum of an objective function [15]. The name comes from
the fact that the algorithm models the natural selection and
survival of the fittest [16].

The GA starts with a population of chromosomes, where
each chromosome is represented by a binary stringt N,
denote the number of chromosomes in this population. Then,
the fittestV,o,, Of these chromosomes are selected, according
to a fitness function. After that, the fitted%,,,q4 chromosomes,
which are also called the “parents”, are selected and paired
among themselvespéiring step). From each chromosome
pair, two new chromosomes are generated, which is called
the mating step. In other words, the new population consists
of Ngooda Parent chromosomes amd,,.q children generated
from the parents by mating. After the mating step,thgation
stage follows, where some chromosomes (the fittest one in
the population can be excluded) are chosen randomly and are

3Although we consider only the binary GA, continuous parameter GAs are
also available [15].



slightly modified; that is, some bits in the selected binary string 3) Mutation: In the mutation step, an assignment, except
are flipped. After that, the pairing, mating and mutation steplse best one (the one with the highest SINR), is randomly
are repeated until a threshold criterion is met. selected, and onkand oné) of that assignment are randomly
The GA has been applied to a variety of problems ighosen and flipped. This mutation operation can be repeated a
different areas [15]-[17]. Also, it has recently been employgtlmber of times for each iteration. The number of mutations
in the multiuser detection problem [18]-[20]. The main chacan be determined beforehand, or it might be defined as a
acteristics of the GA algorithm is that it can get close ttandom variable.
the optimal solution with low complexity, if the steps of the Now, we can summarize our GA based finger selection
algorithm are designed appropriately. scheme as follows:
» GenerateN,,, different assignments randomly.
o SelectV,,, of them with the largest SINR values.
« Pairing: Pair Ny.0q Of the finger assignments according
In order to be able to employ the GA for the finger to the weighted random scheme.
selection problem we need to consider how to represent the Mating: Generate two new assignments from each pair.
chromosomes, and how to implement the steps of the iterative Mutation: Change the finger locations of some assign-
optimization scheme. ments randomly except for the best assignment.
A natural way to represent a chromosome is to consider thee Choose the assignment with the highest SINR if the
“assignment vectork defined in Section Ill, which denotes threshold criterion is met; go to the pairing step other-

B. Finger Selection via the GA

the assignments of the multipath components tothéngers wise.
of the RAKE receiver. In other wordgx]; = 1 if the 4th path In the simulations, we stop the algorithm after a certain
is selected, anfik]; = 0 otherwise; anto:1 x; =M. number of iterations. In other words, the threshold criterion

Also, the fitness function that should be maximized can i@ that the number of iterations exceeds a given value. As the
the SINR expression given by (14). Note that, given a valigimber of iterations increases, the performance of the algo-
of x, SINR(X) can be uniquely evaluated. By choosing thigthm increases, as well. The other parameters that determine
fitness function, the fittest chromosomes of the populatidhe tradeoff between complexity and performance &gy,
correspond to the assignment vectors with the largest SINRop, Vgood, @nd the number of mutations at each iteration.

values. In terms of the computational complexity, the algorithm
Now the pairing, mating and mutation steps need to B§€€ds at MostViyop + Niter(Ngood + Nmut) calculations of
designed for the finger selection problem: the SINR expression in (14), wher&i, is the number of

r.}'.F_erations, andV,,.: is the number of mutations. On the other

1) Pairing: The assignments to be paired among the i . . .
) g g P d d, the exhaustive search for the optimal solution requires

selves are chosen according to a weighted random pairﬁlf@)n

scheme [15], where each assignment is chosen with a proBBNR. calculations for

bility that is proportional to its SINR value. In this way, the

assignments with large SINR values have a greater chance of VI. SIMULATION RESULTS

being chosen as the parents for the new assignments. Simulations have been performed to evaluate the perfor-
2) Mating: From each assignment pair, two new pairs am@ance of various finger selection algorithms for an IR-UWB

generated in the following manner: Le{ andx, denote two system withN, = 20 and Ny = 1. In these simulations,

finger assignments, and Ipt,, andpy, consist of the indices there are five users in the systemi{ (= 5) and the users’

of the multipath components chosen as the Rake fingers. Théh, and polarity codes are randomly generated. We model the

the indices of the new assignments are chosen randomly frehannel coefficients as; = sign(a;)|oy| for I = 1,...,L,

the vectorp = [px, Px,]- If the new assignment is the samevhere sigiic;) is +1 with equal probability and|oy| is

asx; or X, then the procedure is repeated for that assignmedistributed lognormally asCA (xy,0?). Also the energy of
For example, consider a case whére= 10 and M = 4. If the taps is exponentially decaying a$|&; |} = Qe (1),

x; =[1001001100] andx, =[0101010010]; Wwhere\ is the decay factor ant{jle E{|ly|?} = 1 (so

that is, px, = [1478] and px, = [2469], then the Qo = (1 —e *)/(1 — e *F)). For the channel parameters,

new assignments are chosen randomly from thepset Wwe choose\ = 0.1, 0> = 0.5 and, can be calculated from

[14782469]. For example, the new assignments (chilt; = 0.5 [In(%) - Al—1)— 202}, fori =1,... L.

L . .
v different assignments.

dren) could bexs = [1101000010] and x4, = We average the overall SINR of the system over different
[0001011010] (corresponding tgy, = [124 9] and realizations of channel coefficients, TH and polarity codes of
Px, = [4 6 7 9], respectively). the users.

Note that by designing such a mating algorithm, we make In Figure 3, we plot the average SINR of the system for
sure that a multipath component that is selected by balifferent noise variances when/ = 5 fingers are to be
parents has a larger probability of being selected by the neWwosen out of. = 15 multipath components, and all the users
assignment than a multipath component that is selected lgve equal energyf|, = 1 Vk). For the GA, Nipop = 32,
only one parent does. Npop = 16, and Ngooqa = 8 are used, and3 mutations
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Fig. 3. AverageSINR versusE, /Ny for M =5 fingers, whereFl,  Fig. 4. AverageSINR versus number of fingers/, for E,/No =

is the bit energy. The channel hds = 15 multipath components 20dB, N. = 75 and L = 50. All the other parameters are the same
and the taps are exponentially decaying. The IR-UWB system has those for Figure 3.

N. = 20 chips per frame andV; = 1 frame per symbol. There

are5 equal energy users in the system and random TH and polarity

codes are used.
20

are performed at each iteration. As is observed from the °

figure, the GA based scheme performs considerably better than 4|

the conventional scheme, and gets very close to the optimal

exhaustive search scheme aftériterations. The GA scheme g 17t

needs to evaluate the SINR expression less #idrtimes for 5

the 10 iterations case, whereas the optimal algorithms needs %‘f’ls

3003 evaluations. Note that the gain achieved by using the =z

proposed algorithm over the conventional one increases as the 15 +g<;2\$2tflgi'mhm 1 Horation
thermal noise decreases. This is because when the thermal —— Genetic Algorithm, 5 Iterations
noise becomes less significant, the MAI becomes dominant, 4 iég:z:gﬁ:gg:ﬁ:z S perations 1
and the conventional technique gets worse since it ignores the Genetic Algorithm, 50 lterations
correlation between the MAI noise terms when choosing the 5 10 15 20 2
fingers. Number of Fingers

Next, we plot the SINR of the proposed and conventional
techniques for different numbers of fingers in Figure 4, wheﬁégérz- Wi@‘}’gg‘gﬁﬁgﬁer‘gﬁrigi%aﬂé’%o‘i ﬁf:)%\‘/*é%h;]htegz géz?red
there are0 m_ultlpath componer?ts andl,/No = 20dB. The user. All the other parameters are the sampe as those for Figure 4.
number of chips per framey,, is set to75, and all other
parameters are kept the same as before. In this case, the
optimal algorithm takes a very long time to simulate since
it needs to perform exhaustive search over many differénigure 5, the improvement by using the proposed algorithm
finger combinations and therefore it was not implementetiicreases significantly. The main reason for this is that the
The improvement using the GA based scheme over the cépA based scheme considers the correlations caused by MAI
ventional one decreases a$ increases since the channel igvhereas the conventional scheme simply ignores it.
exponentially decaying and most of the significant multipath
components are already combined by both of the algorithms.
The GA based scheme results in aboutdB improvement  Since UWB systems have a large numbers of multipath
for M = 5 after 10 iterations with N, = 128, N, = 64, components, only a subset of those components can be used
Ngooa = 32, and 32 mutations. The improvement is notdue to complexity constraints. Therefore, the selection of the
significant since the MAI is not very strong in this case.  optimal subset of multipath components is important for the
Finally, we consider an MAI-limited scenario, in whichperformance of the receiver. The optimal solution to this finger
there areb users withE; = 1 and B, = 10 Vk # 1, and all selection problem requires exhaustive search which would
the parameters are as in the previous case. Then, as showbeicome prohibitive for UWB systems. Therefore, we have

VIl. CONCLUDING REMARKS



proposed a GA based iterative finger selection scheme, whjetl K. Yen and L. Hanzo, “Genetic-algorithm-assisted multiuser detection
depends on the direct evaluation of the objective function. In in asynchronous CDMA communicationdEEE Transactions on Ve-
. . . . . . hicular Technologyyol. 53, no. 5, pp. 1413-1422, Sept. 2004.
each iteration, the set of possible finger assignments is updated
in search of the best assignment according to the proposed GA
stages.
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