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Abstract— Due to a large number of multipath components
in a typical ultra wideband (UWB) system, selective Rake
(SRake) receivers, which combine energy from a subset of
multipath components, are commonly employed. In order to
optimize system performance, an optimal selection of multipath
components to be employed at fingers of an SRake receiver needs
to be considered. In this paper, this finger selection problem is
investigated for a minimum mean square error (MMSE) UWB
SRake receiver. Since the optimal solution is NP hard, a genetic
algorithm (GA) based iterative scheme is proposed, which can
achieve near-optimal performance after a reasonable number
of iterations. Simulation results are presented to compare the
performance of the proposed finger selection algorithm with that
of the conventional and optimal schemes.

Index Terms—Ultra-wideband (UWB), impulse radio (IR),
MMSE Rake receiver, optimization, genetic algorithm (GA).

I. I NTRODUCTION

Recently impulse radio (IR) ultra wideband (UWB) sys-
tems ([1]-[5]) have drawn considerable attention due to their
suitability for short-range high-speed data transmission and
precise location estimation. In an IR-UWB system, very short
pulses with a low duty cycle are transmitted, and each in-
formation symbol is represented by positions or polarities of
a number of pulses. Each pulse resides in an interval called
“frame”, and positions of pulses in frames are determined
by time-hopping (TH) sequences specific to each user, which
prevents catastrophic collisions among pulses of different users
[1].

Commonly, users in an IR-UWB system employ Rake re-
ceivers to collect energy from different multipath components.
A Rake receiver combining all the paths of the incoming
signal is called anall-Rake (ARake) receiver. Since a UWB
signal has a very wide bandwidth, the number of resolvable
multipath components is usually very large. Hence, an ARake
receiver is not implemented in practice due to its complexity.
However, it serves as a benchmark for the performance of
more practical Rake receivers. A feasible implementation of
multipath diversity combining can be obtained by aselective-
Rake (SRake) receiver, which combines theM best, out of
L, multipath components [6]. ThoseM best components are
determined by a finger selection algorithm. For a maximal
ratio combining (MRC) Rake receiver, the paths with highest
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signal-to-noise ratios (SNRs) are selected, which is an optimal
scheme in the absence of interfering users and inter-symbol
interference (ISI). For a minimum mean square error (MMSE)
Rake receiver, the “conventional” finger selection algorithm
is to choose the paths with highest signal-to-interference-
plus-noise ratios (SINRs). This conventional scheme is not
necessarily optimal since it ignores the correlation of the
noise terms at different multipath components. In other words,
choosing the paths with highest SINRs does not necessarily
maximizes the overall SINR of the system. In [7], the optimal
finger selection problem is shown to be an NP-hard problem,
and two suboptimal algorithms are proposed based on an
approximate objective function and constraint relaxations. In
this paper, we propose a genetic algorithm (GA) based scheme,
which performs finger selection by iteratively evaluating the
exact objective function without the need for any constraint
relaxations. Using this technique, near-optimal solutions can
be obtained in many cases with a degree of complexity that
is much lower than that of the optimal exhaustive search
algorithm.

The remainder of this paper is organized as follows. Section
II describes the transmitted and received signal models in
a multiuser frequency-selective environment. The finger se-
lection problem is formulated and the optimal algorithm is
described in Section III, followed by a brief description of the
conventional algorithm in Section IV. In Section V, the GA-
based finger selection scheme is presented. Simulation results
are presented in Section VI, and concluding remarks are made
in the last section.

II. SIGNAL MODEL

We consider a synchronous, binary phase shift keyed IR-
UWB system withK users, in which the transmitted signal
from userk is represented by:
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where ptx(t) is the transmitted UWB pulse,Ek is the bit
energy of userk, Tf is the “frame” time,Nf is the number
of pulses representing one information symbol, andb

(k)
bj/Nfc ∈{+1,−1} is the binary information symbol transmitted by user

k. In order to allow the channel to be shared by many users



Fig. 1. An example time-hopping impulse radio signal with pulse-based
polarity randomization, whereNf = 6, Nc = 4, the time hopping sequence
is {2,1,2,3,1,0} and the polarity codes are{+1,+1,-1,+1,-1,+1}.

and avoid catastrophic collisions, a TH sequence{c(k)
j }, where

c
(k)
j ∈ {0, 1, ..., Nc − 1}, is assigned to each user. This TH

sequence provides an additional time shift ofc
(k)
j Tc seconds

to thejth pulse of thekth user whereTc is the chip interval and
is chosen to satisfyTc ≤ Tf/Nc in order to prevent the pulses
from overlapping. We assumeTf = NcTc without loss of
generality. The random polarity codesd

(k)
j are binary random

variables taking values±1 with equal probability [8]-[10].

An example TH-IR signal is shown in Figure 1, where six
pulses are transmitted for each information symbol (Nf = 6)
with the TH sequence{2, 1, 2, 3, 1, 0}.

Consider the discrete presentation of the channel,α(k) =
[α(k)

1 · · ·α(k)
L ] for userk, whereL is assumed to be the number

of multipath components for each user, andTc is the multipath
resolution. Note that this channel model is quite general in that
it can model any channel of the form
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if the channel is bandlimited to1/Tc [11]. Then, the received
signal can be expressed as
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whereprx(t) is the received unit-energy UWB pulse, which is
usually modelled as the derivative ofptx(t) due to the effects
of the receive antenna, andn(t) is zero mean white Gaussian
noise with unit spectral density.

We assume that the TH sequence is constrained to the
set {0, 1, . . . , NT − 1}, where NT ≤ Nc − L, so that
there is no inter-frame interference (IFI). However, the pro-
posed algorithm is valid for scenarios with IFI as well, and
this assumption is made merely to simplify the expressions
throughout the paper. From the analysis in [12], the results of
this paper can easily be extended to the IFI case as well.

Due to the high resolution of UWB signals, chip-rate and
frame-rate sampling are not very practical for such systems.
In order to have a lower sampling rate, the received signal
can be correlated with symbol-length template signals that
enable symbol-rate sampling of the correlator output [13]. The
template signal for thelth path of the incoming signal can be

Fig. 2. The receiver structure. There areM multipath components that are
combined by the MMSE combiner.

expressed as
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for the ith information symbol, where we consider user1 as
the desired user, without loss of generality. In other words,
by using a correlator for each multipath component that we
want to combine, we can have symbol-rate sampling at each
branch, as shown in Figure 2.

Note that the use of such template signals results in equal
gain combining (EGC) of different frame components. This
may not be optimal under some conditions (see [12] for
(sub)optimal schemes). However, it is very practical since it
facilitates symbol-rate sampling. Since we consider a system
that employs template signals of the form (3), i.e. EGC of
frame components, it is sufficient to consider the problem of
selection of the optimal paths for just one frame. Hence, we
assumeNf = 1 without loss of generality.

Let L = {l1, . . . , lM} denote the set of multipath compo-
nents that the receiver collects (Figure 2). At each branch,
the signal is effectively passed through a matched filter (MF)
matched to the related template signal in (3) and sampled once
for each symbol. Then, the discrete signal for thelth path can
be expressed, for theith information symbol, as2

rl = sT
l Abi + nl, (4)

for l = l1, . . . , lM , whereA = diag{√E1, . . . ,
√

EK}, bi =
[b(1)

i · · · b(K)
i ]T and nl ∼ N (0 , σ2

n). sl is a K × 1 vector,
which can be expressed as a sum of the desired signal part
(SP) and multiple-access interference (MAI) terms:

sl = s(SP)
l + s(MAI)

l , (5)

where thekth elements can be expressed as
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2Note that the dependence ofrl on the index of the information symbol,
i, is not shown explicitly.
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with I
(k)
l,m being the indicator function that is equal to1 if the

mth path of userk collides with thelth path of user1, and0
otherwise.

III. PROBLEM FORMULATION AND OPTIMAL SOLUTION

The problem is to choose the optimal set of multipath
components,L = {l1, . . . , lM}, that maximizes the overall
SINR of the system. In other words, we need to choose the
best samples from theL received samplesrl, l = 1, . . . , L, as
shown in (4).

In order to reformulate this combinatorial problem, we first
define an “assignment vector”x, the ith element of which is
equal to1 if the ith multipath component is selected, and0
otherwise. SinceM multipath components are selected by the
Rake receiver,x satisfies

∑L
i=1[x]i = M , where[x]i denotes

the ith element ofx. Also let px denote anM × 1 vector, the
elements of which are the indices of the non-zero elements
of x. For example, if the second and the third multipath
components are selected for a system withL = 4 andM = 2,
thenx = [0 1 1 0] andpx = [2 3].

From the assignment vectorx, we define anM × L
“selection matrix”X as follows:

X =
[
e[px]1 · · · e[px]M

]T
, (8)

whereei is anL× 1 unit vector having a1 at its ith position
and zero elements for all other entries, and[px]i represents
the ith element ofpx.

Using the selection matrixX, we can express the vector of
received samples from anyM multipath components as

r = XSAbi + Xn, (9)

where n is the vector of thermal noise componentsn =
[n1 · · ·nL]T , and S is the signature matrix given byS =
[s1 · · · sL]T , with sl as in (5).

From (5)-(7), (9) can be expressed as

r = b
(1)
i

√
E1Xα(1) + XS(MAI)Abi + Xn, (10)

whereS(MAI) is the MAI part of the signature matrixS.
Then, the linear MMSE receiver can be expressed as

b̂i = sign{θT r}, (11)

where the MMSE weight vector is given by [14]

θ = R−1Xα(1), (12)

with R being the correlation matrix of the noise term:

R = XS(MAI)A2(S(MAI))T XT + σ2
nI. (13)

The overall SINR of the system can be expressed as [7]
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)−1

Xα(1). (14)

Hence, the optimal finger selection problem can be formulated
as findingX that maximizes the SINR expression in (14),
subject to the constraint thatX has the previously defined
structure. Note that the objective function to be maximized is
not concave and the optimization variableX takes binary val-
ues, with the previously defined structure. Hence, the problem
is NP-hard.

IV. CONVENTIONAL ALGORITHM

Instead of the solving the optimal finger selection problem,
the “conventional” finger selection algorithm chooses theM
paths with largest individual SINRs, where the SINR for the
lth path can be expressed as

SINRl =
E1(α

(1)
l )2

(s(MAI)
l )T A2s(MAI)

l + σ2
n

, (15)

for l = 1, . . . , L.
This algorithm is not optimal since it ignores the correlation

of the noise components of different paths, which is due to
the MAI from the interfering users in the system. Therefore,
it does not always maximize the overall SINR of the system
given in (14).

V. FINGER SELECTION USING GENETIC ALGORITHMS

In this section, we propose a GA based finger selection
approach, which directly uses the exact SINR expression in
(14), and tries to achieve the optimal performance in an
iterative fashion.

A. Genetic Algorithm

The GA is an iterative technique for searching for the global
optimum of an objective function [15]. The name comes from
the fact that the algorithm models the natural selection and
survival of the fittest [16].

The GA starts with a population of chromosomes, where
each chromosome is represented by a binary string3. Let Nipop

denote the number of chromosomes in this population. Then,
the fittestNpop of these chromosomes are selected, according
to a fitness function. After that, the fittestNgood chromosomes,
which are also called the “parents”, are selected and paired
among themselves (pairing step). From each chromosome
pair, two new chromosomes are generated, which is called
the mating step. In other words, the new population consists
of Ngood parent chromosomes andNgood children generated
from the parents by mating. After the mating step, themutation
stage follows, where some chromosomes (the fittest one in
the population can be excluded) are chosen randomly and are

3Although we consider only the binary GA, continuous parameter GAs are
also available [15].



slightly modified; that is, some bits in the selected binary string
are flipped. After that, the pairing, mating and mutation steps
are repeated until a threshold criterion is met.

The GA has been applied to a variety of problems in
different areas [15]-[17]. Also, it has recently been employed
in the multiuser detection problem [18]-[20]. The main char-
acteristics of the GA algorithm is that it can get close to
the optimal solution with low complexity, if the steps of the
algorithm are designed appropriately.

B. Finger Selection via the GA

In order to be able to employ the GA for the finger
selection problem we need to consider how to represent the
chromosomes, and how to implement the steps of the iterative
optimization scheme.

A natural way to represent a chromosome is to consider the
“assignment vector”x defined in Section III, which denotes
the assignments of the multipath components to theM fingers
of the RAKE receiver. In other words,[x]i = 1 if the ith path
is selected, and[x]i = 0 otherwise; and

∑L
i=1 xi = M .

Also, the fitness function that should be maximized can be
the SINR expression given by (14). Note that, given a value
of x, SINR(X) can be uniquely evaluated. By choosing this
fitness function, the fittest chromosomes of the population
correspond to the assignment vectors with the largest SINR
values.

Now the pairing, mating and mutation steps need to be
designed for the finger selection problem:

1) Pairing: The assignments to be paired among them-
selves are chosen according to a weighted random pairing
scheme [15], where each assignment is chosen with a proba-
bility that is proportional to its SINR value. In this way, the
assignments with large SINR values have a greater chance of
being chosen as the parents for the new assignments.

2) Mating: From each assignment pair, two new pairs are
generated in the following manner: Letx1 andx2 denote two
finger assignments, and letpx1 andpx2 consist of the indices
of the multipath components chosen as the Rake fingers. Then,
the indices of the new assignments are chosen randomly from
the vectorp = [px1 px2 ]. If the new assignment is the same
asx1 or x2, then the procedure is repeated for that assignment.

For example, consider a case whereL = 10 andM = 4. If
x1 = [1 0 0 1 0 0 1 1 0 0] and x2 = [0 1 0 1 0 1 0 0 1 0];
that is, px1 = [1 4 7 8] and px2 = [2 4 6 9], then the
new assignments are chosen randomly from the setp =
[1 4 7 8 2 4 6 9]. For example, the new assignments (chil-
dren) could bex3 = [1 1 0 1 0 0 0 0 1 0] and x4 =
[0 0 0 1 0 1 1 0 1 0] (corresponding topx3 = [1 2 4 9] and
px4 = [4 6 7 9], respectively).

Note that by designing such a mating algorithm, we make
sure that a multipath component that is selected by both
parents has a larger probability of being selected by the new
assignment than a multipath component that is selected by
only one parent does.

3) Mutation: In the mutation step, an assignment, except
the best one (the one with the highest SINR), is randomly
selected, and one1 and one0 of that assignment are randomly
chosen and flipped. This mutation operation can be repeated a
number of times for each iteration. The number of mutations
can be determined beforehand, or it might be defined as a
random variable.

Now, we can summarize our GA based finger selection
scheme as follows:
• GenerateNipop different assignments randomly.
• SelectNpop of them with the largest SINR values.
• Pairing: Pair Ngood of the finger assignments according

to the weighted random scheme.
• Mating: Generate two new assignments from each pair.
• Mutation: Change the finger locations of some assign-

ments randomly except for the best assignment.
• Choose the assignment with the highest SINR if the

threshold criterion is met; go to the pairing step other-
wise.

In the simulations, we stop the algorithm after a certain
number of iterations. In other words, the threshold criterion
is that the number of iterations exceeds a given value. As the
number of iterations increases, the performance of the algo-
rithm increases, as well. The other parameters that determine
the tradeoff between complexity and performance areNipop,
Npop, Ngood, and the number of mutations at each iteration.

In terms of the computational complexity, the algorithm
needs at mostNipop + Niter(Ngood + Nmut) calculations of
the SINR expression in (14), whereNiter is the number of
iterations, andNmut is the number of mutations. On the other
hand, the exhaustive search for the optimal solution requires

SINR calculations for

(
L
M

)
different assignments.

VI. SIMULATION RESULTS

Simulations have been performed to evaluate the perfor-
mance of various finger selection algorithms for an IR-UWB
system withNc = 20 and Nf = 1. In these simulations,
there are five users in the system (K = 5) and the users’
TH and polarity codes are randomly generated. We model the
channel coefficients asαl = sign(αl)|αl| for l = 1, . . . , L,
where sign(αl) is ±1 with equal probability and|αl| is
distributed lognormally asLN (µl, σ

2). Also the energy of
the taps is exponentially decaying as E{|αl|2} = Ω0e

−λ(l−1),
where λ is the decay factor and

∑L
l=1 E{|αl|2} = 1 (so

Ω0 = (1 − e−λ)/(1 − e−λL)). For the channel parameters,
we chooseλ = 0.1, σ2 = 0.5 andµl can be calculated from
µl = 0.5

[
ln( 1−e−λ

1−e−λL )− λ(l − 1)− 2σ2
]
, for l = 1, . . . , L.

We average the overall SINR of the system over different
realizations of channel coefficients, TH and polarity codes of
the users.

In Figure 3, we plot the average SINR of the system for
different noise variances whenM = 5 fingers are to be
chosen out ofL = 15 multipath components, and all the users
have equal energy (Ek = 1 ∀k). For the GA,Nipop = 32,
Npop = 16, and Ngood = 8 are used, and8 mutations
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Fig. 3. AverageSINR versusEb/N0 for M = 5 fingers, whereEb

is the bit energy. The channel hasL = 15 multipath components
and the taps are exponentially decaying. The IR-UWB system has
Nc = 20 chips per frame andNf = 1 frame per symbol. There
are5 equal energy users in the system and random TH and polarity
codes are used.

are performed at each iteration. As is observed from the
figure, the GA based scheme performs considerably better than
the conventional scheme, and gets very close to the optimal
exhaustive search scheme after10 iterations. The GA scheme
needs to evaluate the SINR expression less than200 times for
the 10 iterations case, whereas the optimal algorithms needs
3003 evaluations. Note that the gain achieved by using the
proposed algorithm over the conventional one increases as the
thermal noise decreases. This is because when the thermal
noise becomes less significant, the MAI becomes dominant,
and the conventional technique gets worse since it ignores the
correlation between the MAI noise terms when choosing the
fingers.

Next, we plot the SINR of the proposed and conventional
techniques for different numbers of fingers in Figure 4, where
there are50 multipath components andEb/N0 = 20dB. The
number of chips per frame,Nc, is set to75, and all other
parameters are kept the same as before. In this case, the
optimal algorithm takes a very long time to simulate since
it needs to perform exhaustive search over many different
finger combinations and therefore it was not implemented.
The improvement using the GA based scheme over the con-
ventional one decreases asM increases since the channel is
exponentially decaying and most of the significant multipath
components are already combined by both of the algorithms.
The GA based scheme results in about a1dB improvement
for M = 5 after 10 iterations withNipop = 128, Npop = 64,
Ngood = 32, and 32 mutations. The improvement is not
significant since the MAI is not very strong in this case.

Finally, we consider an MAI-limited scenario, in which
there are5 users withE1 = 1 andEk = 10 ∀k 6= 1, and all
the parameters are as in the previous case. Then, as shown in
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Fig. 4. AverageSINR versus number of fingersM , for Eb/N0 =
20dB, Nc = 75 andL = 50. All the other parameters are the same
as those for Figure 3.
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Fig. 5. AverageSINR versus number of fingersM . There are5
users with each interferer having10dB more power than the desired
user. All the other parameters are the same as those for Figure 4.

Figure 5, the improvement by using the proposed algorithm
increases significantly. The main reason for this is that the
GA based scheme considers the correlations caused by MAI
whereas the conventional scheme simply ignores it.

VII. C ONCLUDING REMARKS

Since UWB systems have a large numbers of multipath
components, only a subset of those components can be used
due to complexity constraints. Therefore, the selection of the
optimal subset of multipath components is important for the
performance of the receiver. The optimal solution to this finger
selection problem requires exhaustive search which would
become prohibitive for UWB systems. Therefore, we have



proposed a GA based iterative finger selection scheme, which
depends on the direct evaluation of the objective function. In
each iteration, the set of possible finger assignments is updated
in search of the best assignment according to the proposed GA
stages.
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